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Abstract 
In this article, We compute the enclosures eigenvalues (upper and lower 
bounds) using the quadratic method. The Schrodinger operator (A) (har-
monic and anharmonic oscillator model) has used as an example. We study a 
new technique to get more accurate bounds. We compare our results with 
Boulton and Strauss method. 
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1. Introduction 

Galerkin method is one of the best methods for determining upper bounds for 
the eigenvalues of semi-definite operators, unfortunately this method cannot 
find enclosures eigenvalue. This paper shows how to compute enclosures of the 
eigenvalues of self-adjoint operators by the Quadratic method. At first, we study 
the second-order relative spectrum (The Quadratic method) in [1] [2], and 
Boulton & Strauss method in [3] [4]. These methods have used for computing 
eigenvalue enclosures (upper and lower bounds) of the eigenvalues of self-adjoin 
operators. The quadratic method, which relies on calculation of the second-order 
which is providing, certified a priori intervals of spectral enclosure. Then we 
study our new technique which gives more accurate results, we also follow the 
results that have been published by Boulton & Hobiny in [5]. The method will be 
examined by harmonic and anharmonic oscillator models. 

Second-order relative spectra were first considered by Davies (1998) in the 
context of resonances for general self-adjoint operators in [6] [7]. It was then 
suggested by Shargrodsky and subsequently by Levitin and Shargorodsky (2000) 
in [8] that the second order relative spectra can also be employed for the pollu-
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tion-free computation of eigenvalues in gaps of the essential spectrum. Various 
implementations, including on models from elasticity, solid state, physics, relati-
vistic quantum mechanics and magneto hydrodynamics confirm that the Qua-
dratic method is a reliable tool for eigenvalue approximation in the spectral pol-
lution regime. Properties of second order relative spectra have been studied re-
cently by Bolton & Leviton in [9] and then by Bolton & Strauss (2007, 2011) in 
[3] [4]. Boulton and Strauss extended this method to normal operators and op-
timal convergence rates for eigenvalues and estimated that by an order of mag-
nitude for the harmonic & anharmonic oscillator models, by cut the interval into 
sub-interval around the eigenvalues in the Spectrum, and the approximation en-
closure eigenvalues results of these models are more accurate than the Quadratic 
method around λ. 

Our improvement depends on domain expansion around the first five eigen-
values in the spectrum, we will take a value for a less than λ1 and a value for b 
greater than λ5 and calculate the conjugate pairs of eigenvalues ( 1 2 3 4 5, , , ,λ λ λ λ λ ) 
(i.e.; around λ1 we will choose 1 1 2 3 4 5 1a bλ λ λ λ λ< < < < < < ). In this paper we 
studied two models (harmonic and anharmonic oscillator) which are: 

1): ( ) ( ) ( )2 har x u x x u x′′= − + . 
2): ( ) ( ) ( )4  anh x u x x u x′′= − + . 
Notation 

• Below   denotes a generic separable Hilbert space with inner product .  
and norm . . 

Let the operator ( ( ): D →   ) be self-adjoint. We will write ( )Spec   to 
denote the spectrum of ( ). 
•   is real inner product space means that   is real vector space on which 

there is an inner product ,x y  associating a real number to each pair of 
elements x, y. The norm is real function such that 

1 2  ,x x x= , and the dis-
tance is: ( ) 1 2, ,d x y x y x y x y= − = − − . And:  

( ) ( ) ( ), , , ; ,d x z d x y d y z x y≤ + ∈ , which is called triangular inequality. 
• For any pair of elements x, y of   satisfies the following properties:  

, 0x x ≥  

, ,y x x y=  

1 2 1 2,y x bx x y bx y+ = +  

1 2 1 2, , ,x ay by a x y b x y+ = +  

• Given a subspaces ( )D⊂   of dimension n such that: 

{ } 1

n
j j

Span b
=

=   

we will write 

( )
, 1

,
nl n n

l j k k j
a b b ×

=
 =      

• The discrete spectrum: is the set of eigenvalues of finite multiplicity. 
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• The essential spectrum of  : is the remaining part of ( )spec  . 

• ( ) ( )
( ) ess

disc

spec
Spec

Spec
=





. 

• Theorem: Let   be a self-adjoint operator: 
- ( )specλ ∈  , there exists a sequence ( )ju Dom∈   such that: 
- , 0j ju uλ →  as    j→∞  [This sequence is called Welys sequence]. 
- ( ) ( )Specessλ λ∈ ↔ −   is not Fredholm. 
• The min-max theorem tells us if   is bounded above and below by the 

mini-mum and maximum eigenvalues respectively ( )min max,λ λ , and we have: 

( ) ( ) ( )min maxif any if anyxλ λ≤ ≤ , where ( )x  denoted by Rayleigh-Ritz 
quotient on a self-adjoint operator   as: 

( ) ( )
,

; .
  ,A x

x x
x Dom

x x
= ∈


   

2. The Quadratic Method 

We begin by describing the basic framework of the Quadratic method associated 
to a self-adjoint operator. First considered by Davis (1998) in the context of re-
sonances for general self-adjoint operator in [6] [7], it was then suggested by 
Shargrodsky and subsequently by Levitin and Shargorodsky (2000) in [8], Prop-
erties of second order relative spectra have been studied recently by Boulton & 
Levitin in [9] and then by Boluton & Strauss (2007, 2011) in [3] [4]. For the ben-
efit of the reader, we include here some definitions. 

Let   be self-adjoint operator on Hilbert space  . Let ( )Dom⊂  , a 
number z∈  belongs to second order spectrum ( )2 ,Spec    if there exists 

,u v∈  such that; 

( ) ( ), 0zI u zI v− − =  .                   (2.1) 

For all u is nonzero. Means that the Second Order Spectrum usually contain 
complex numbers, but it turns out that if ( )2 ,z Spec∈    then: 

( ) ( ) ( )( ) ( ) ( )( ),Spec Re z Im z Re z Im z ϕ − + ≠  . 
Consider: { }1 2, , ne e e= . 
Be a basis of   [  is finite dimensional subspace of ( )Dom  ], then the 

Quadratic matrix polynomial is: 

( ) 2
2 1 0  2Q z z z= − +   .                   (2.2) 

where the mass, stiffness and bending matrices are; 

[ ] ( ) [ ] ( ) [ ] ( )0 1 2, , , , ,j k j k j kjk jkjk
e e e e e e= = =       

We define the spectrum of Q(z) as the set of z∈  such that 

( )  0Q z =  for some { }/ 0u∈ .                 (2.3) 

The standard way of finding Spec(Q) is to reach to the linear pencil eigenvalue 
problem: 
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u uλ=  for some { }/ 0u∈ .               (2.4) 

In this method we need to construct companion matrices which depend on 
the quadratic matrix polynomial to find the enclosure eigenvalues.  

We have two possible companion matrices form which are given by 

2 1

0
2

I
S

 
=  −  

, 
0

0
0
I

T
 

=  
 

 

And 

2

0
0
I

S
 

=  − 
, 

1 0

0
2

I
T

 
=  
  

 

The eigenvalues of the matrix polynomial can be determined from one of this 
companion matrices form 

LEMMA 2. 1: Let Q(z) is defined and be singular then: 

( )( ) ( )det 0 det 0Q z S zT= ⇔ − = .              (2.5) 

For 
2 1

0
2

I
S

 
=  −  

, 
0

0
0
I

T
 

=  
 

 

( )

( )
( )( )

2 1 1

1 1 2

0 0
det

0 2

2

det

zI I
S zT

z

zI z I

Q z

− −
− =

− − −

= − − +

=

  
    

Indeed, the assertion that Q(z) is singular is equivalent to the existence of 
0u ≠  such that 

2
2 1 02 0u z u z u− + =   .                   (2.6) 

Denoting v = zu, this can be rewritten as 

2 1 02 0u v z v− + =   .                    (2.7) 

In turn, the latter is equivalent to: 

02 1

00
02
II u u

z
v v

     
=      −        

                (2.8) 

As needed for the verification of (2.3). 
LEMMA 2.2: Let { } ( )

1

n
j j

Span b Dom
=

= ⊂   and   is the orthogonal 
projection onto  , then: 

( ) { } ( ) ( )( ){ }2 , ?Spec z u zI u zI v v= ∈ ∃ ∈ − − = ∀ ∈      (2.9) 

If ( )2Dom⊂  , then: 

( ) { } ( ){ }
( )( ){ }

2
2

2

; : 0 ; , 0,

: 0 | .

Spec z u z u v v

z Spec z

= ∈ ∃ ∈ − − = ∀ ∈

= ∈ ∈ −

   

  

  


   (2.10) 

Typically ( )2 ,Spec    contains non-real points. From the lemma it is easy 
to see that ( )2 ,z Spec∈   if and only if ( )2 ,z Spec∈  . 
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We now discuss a strategy suggested by Davis and Plum for computing the 
spectrum of self-adjoint operator. 

Let *=   and ( )Dom⊂   for z∈  to ( )Spec  , consider the func-
tion [ ): 0,→ ∞  be given:  

( )
( ) 

min
 v L

z
z

v∈

−
=


                  (2.11) 

Then ( )z  is an upper bound for the distance from z to the spectrum of  , 
that means: 

( ) ( ) ( ){ }, min : .Dist z Spec z specλ λ= − ∈     

So ( ) ( ),z dist z Spec≥     .                 (2.12) 

Assume that z not in ( )Spec  , since ( )Dom⊂   then:  

( )
( )

( )

( ) ( )

0

11

0

11

 
min

 

sup

, so

v

v

z v
z

v

z u

u

z dist z Spec z

≠ ∈

−−

≠ ∈

−−

−
=

−
≥

= − = ∈   






 



        (2.13) 

Therefore ( )x  can be small only when x∈  is close to ( )Spec  , so we 
can make a connection between ( )Spec   and ( )x . 

Suppose [a, b] be an interval of the spectrum of   which lies in it, and 

( ) ( ) ( ){ }2 :Dom u Dom Lu Dom⊂ = ∈ ∈   . 

let [ ]0 1 2, , , , ,na z z z z b z= = ∀ ∈  , 

( )
( )

( )

( )

( )

2

0 2

2

0

,
² min

 
min

 
min

  , is nonzero

n

v

v

v

z v v
z

v

z v

v

Q v
v

G z v

≠ ∈

≠ ∈

∈

−
=

−
=

=

=










  

Clearly, ( ) ( ){ }2 , : 0Spec z G z= ∈ =  . For z∈ , let Q(z) be as in (2.1), 
  0v≠ : 

( )
( ) 

minv

Q v
G z

v∈=                    (2.14) 

Thus the zeros of G(z) appear in conjugate pair. 
THEOREM 2.1: (Shargorodsky): 
For ( )2 ,Specλ ∈   , and ( ) 0G λ = , let 

( ) ( )upp Re Imλ λ λ= + , ( ) ( )low Re Imλ λ λ= −  
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Then:  

( )  ,low upp Specλ λ ϕ  ≠   .                 (2.15) 

Let a ıbλ = +  for ,α β ∈ , then: 

( ) ( )( ) ( ) ( )( ) ( )( ) ( )2, , 2 , ,u v u v ı u v u vλ λ α α β α β− − = − − + − −      

Then either β = 0, u∈ , u = v we get: 

( ) ( )( )2 22 2 , 0u u ı u uα β β α− − + − =    

So: 
( ) 2

2
2

a u

u
β

−
=


 and ( )( ), 0u uα − =           (2.16) 

So: 
( )

( ) ( )  ,
a u

dist Spec
u

β α α
−

= ≥ ≥   


            (2.17) 

3. The Boulton and Strauss Method 

The method of second order relative spectra has been shown to reliably ap-
proximate the discrete spectrum for a self-adjoint operator in [2]. Boulton and 
Strauss extended this method to normal operators and find optimal convergence 
rates for eigenvalues and estimated that by an order of magnitude in [3] [4]. The 
spectrum of  , ( ) Spec  , may be expressed as the union of the discrete spec-
trum consisting of all isolated eigenvalues of finite multiplicity, ( )  discSpec  , 
and the essential spectrum, where. 

( ) ( )
( )

 
 ess

disc

spec
Spec

Spec
=





                    (3.1) 

In most standard situations the essential spectrum can be found analytically, 
but points in ( )  discSpec   are usually estimated by numerical procedures. The 
standard numerical techniques, such as the Quadratic method, aim at solving 
Galerkin approximate problems posed in weak form: find { }0u∈ −  and 
λ ∈  such that , ,u v u vλ=  v∀ ∈  (  is finite dimensional). Boulton 
and Strauss method depends on sub-interval around the eigenvalues in 

( ) Spec   to find more accurate approximation enclosure eigenvalues than the 
Quadratic method around λ. Let: 

( ) ( ) ( ) ( )min maxinf and sup .Spec Specλ λ= =                (3.2) 

( ) ( ) ( ) ( )2 min max; , , .Dom Spec D λ λ ∀ ⊂ ⊂       

( ) ( ) ( )2 min maxlim , ? ,n nSpec D λ λ→∞
   ⊆       for any sequence ( n ). 

By corresponding limit sets which has been stimulated by the following prop-
erty: if ( ) ( ),a b Spec ϕ=  , then: 

( ) ( ) ( )2 , , , .Spec D a b Domϕ= ∀ ⊂            (3.3) 

whenever ( )2 ,z Spec∈  . 
Thus inclusions of points in the spectrum of   are achieved from Re(z) with 
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a two-sided explicit residual given by |Im(z)|. Indeed, if ( ) ( ),a b Spec λ=   
and ( )2 ,z Spec∈    with ( ),z D a b∈ , then: 

( )
( )
( ) ( )

( )
( ) ( ) { }

2 2

,
Im z Im z

Re z Re z Spec
b Re z Re z a

λ
 
 − + =

− − 
 

         (3.4) 

4. New Technique to Get More Accurate Results 

we described a new technique to get more accurate bounds for the eigenvalues in 
( )Spec  . Hobiny was discussed the Quadratic method to estimate enclosure ei-

genvalues for self-adjoint operator and illustrated the results on the harmonic 
and anharmonic oscillator models to know the accuracy and efficiency for this 
method in [5]. We discussed also the bounds of the size of the enclosure eigen-
values and studied them in the context of one dimensional Schrodinger opera-
tors, and illustrated that the conjugate pairs of the eigenvalues in ( )2 ,Spec    
are closed to the real line, so the conjugate pairs will give small intervals (a, b)s 
enclosing points in ( )2Spec  . 

After that Boulton in [9] [10] [11], was modified this studying and gave a value 
for each a, b within a specific domain for the first five eigenvalues in ( )Spec  , 
(i.e.: 1 1 1a bλ< < , 2 2 2a bλ< < , 3 3 3a bλ< < , 4 4 4 a bλ< < , 5 5 5a bλ< < ). 

Our improvement depends on domain expansion around the first five eigen-
values in ( )Spec  , we will take a value for a less than λ1 and a value for b 
greater than λ5 and calculate the conjugate pairs of eigenvalues (λ1, λ2, λ3, λ4, λ5) 
(i.e.; around λ1 we will choose 1 1 2 3 4 5 1a bλ λ λ λ λ< < < < < <  where: 

 ( ) ( )
( )
( )

2

1
1

low

Im z
Re z

b Re z
λ = −

−
                (4.1)  

( ) ( )
( )

( )

2

1
1

upp

Im z
Re z

Re z a
λ = +

−
                (4.2)  

And the same technique for other eigenvalues. Then we will apply a, b in our 
programs to find the first five enclosure eigenvalues and produce our compari-
son by numerical experiments on the harmonic and anharmonic oscillator mod-
els. 

5. Schrodinger Operator 

Consider the trial subspace   constructed via the finite element method on fi-
nite segment. 

Let 0>  and set =   then, the general Schrodinger equation is: 
( ) ( ) ( ) ( ) ( )  ; ,u x u x V x u x x′′= − + ∈ −              (5.1) 

where V(x) is called the potential function, and it must be bounded below  
( ) ( ) 0u u= − =  ; which is called the Dirichlet Boundary Conditions. 
If we take u(x) as a common factor then:  

( ) ( ) ( )
2

2

d  
d

V x u x u x
x

λ
 −

+ = 
 

                  (5.2) 
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Take:  

( )
2

2

d  
d

V x
x

−
= +  then ( ) ( )u x u xλ=            (5.3) 

so the operator   is a differential equation. 

If ( ) 2V x x=                          (5.4),  

then the equation is related to harmonic oscillator model. 

If ( ) 4V x x=                          (5.5),  

then the equation is related to anharmonic oscillator model. 
We compare between the Quadratic method, Boulton & Strauss and our de-

velopment on these models to calculate the enclosure eigenvalues to know which 
one is the best in this field. 

6. Harmonic Oscillator Model 

The Harmonic Oscillator is one of the most important models of quantum 
theory. 

Let har =  , for ( ) 2V x x= , then the exact eigenvalue is 1 2 1j jλ + = + ;
j∈ . 

By Schrodinger equation we have: 

( ) ( ) ( )2har x u x x u x′′= − +                   (6.1) 

And ( ) ( )har x u xλ=                       (6.2) 

This equation can be solved explicitly and we can find the approximation ei-
genvalues using Matlab program by matrices M, N, R where, 

( ),M ′ ′= Ψ Ψ    

2 ,N x = Ψ Ψ   

( ),R = Ψ Ψ    

And 
 app

M N
R

λ +
= . 

Now we compute ( )2 6 6  ,har harSpec L  as described before and calculate the ei-
genvalues enclosure. All the coefficients of the matrices were found analytically. 

NOTE: In our improvement method we choose (n = 200, L = 6) to compare 
our results with Boulton and Strauss method, which approximate the first five 
eigenvalues of harmonic and anharmonic models with n = 200, L = 6. 

Figure 1 and Figure 2 show the conjugate pair for each eigenvalue with upper 
and lower bounds of eigenvalues in ( )2 6

harSpec  .  
Trial 1: In this trial we use the Quadratic method, Boulton & Strauss method, 

and our improvement with: n = 200, L = 6, to find the first five approximation  

enclosure eigenvalues (upper and lower eigenvalues) of 6
har , where 2Lh

n
=  

(see Table 1, Figure 3). 
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We calculate the Error between the exact and the lower bound for the first five 
approximation enclosure eigenvalues of 6

har . error j jexact λ= − . The slope of 
the graphs is close to the value (6) in all cases as n increases (Figure 3).  

 
Table 1. Approximating enclosures for the first five eigenvalues of 6

har  with n = 
200, λlow is the lower bound of the enclosing λ and λupp is the upper bound. 

Λ Quadratic method Boulton and Straus method Our improvement method 

λ1
 Upp 

low 
1.000343714729056 
0.999656285291227 

1.000000236289758 
0.999999763730525 

1.000000118025628 
0.999999986897263 

λ2
 Upp 

low 
3.001030615492415 
2.998969384689878 

3.000002124427357 
2.999997875754936 

3.000000212522912 
2.999999882073825 

λ3
 Upp 

low 
5.002199221800688 
4.997800779032315 

5.000009673565887 
4.999990327267100 

5.000000537815785 
4.999999463031893 

λ4
 Upp 

low 
7.003900035336483 
6.996099967297225 

7.000030421847483 
6.999969580786066 

7.000001171500465 
6.999998311445117 

λ5
 Upp 

low 
9.006150673512703 
8.993849333094289 

9.000075664791041 
8.999924341814951 

9.000001996954438 
8.999996566707424 

 

 
Figure 1. Second order spectra relative to Lhar. The horizontal axis is the real part of 
the points in ( )2 6 6  ,har harSpec L  and the vertical axis is imaginary part. 

 

 

Figure 2. ( )2 6
harSpec   and illustration on the end pints of the segment given in 

Theorem 2.1, ( ) ( )Re z Im z−  and ( ) ( )Re z Im z+ . 
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(a) 

 
(b) 

 
(c) 

Figure 3. Approximating enclosures for the first five eigenvalues of 6
har  by the: 

Quadratic, Boulton & Strauss, and Our improvement methods with n = 200, λlow is 
the lower bound of the enclosing λ and λupp is the upper bound. (a) This sub-figure 
shows the error between the exact and lower bound for the first five approximation ei-
genvalues of 6

har  using the quadratic method; (b) This sub-figure shows the error be-
tween the exact and lower bound for the first five approximation eigenvalues of 6

har  us-
ing the Boulton & Strauss method; (c) This sub-figure shows the error between the exact 
and lower bound for the first five approximation eigenvalues of 6

har  using our im-
provement method. 

https://doi.org/10.4236/am.2019.104016


S. M. Abusamra 
 

 

DOI: 10.4236/am.2019.104016 222 Applied Mathematics 
 

7. Anharmonic Oscillator Model 

The anharmonic oscillator is another model of Schrodinger equation in one di-
mension. This model is one of the most important problems of quantum me-
chanics. 

We choose this model to show that the technique for both methods can be ap-
plied to operator where the exact spectrum is not known. 

Let 6
anh A= , for ( ) 4V x x=  then; by Schrodinger equation we have  

( ) ( ) ( )4anh x u x x u x′′= − +                  (7.1) 

And ( ) ( )anh x u xλ=                      (7.2) 

The exact eigenvalue is unknown. 
This equation can be solved explicitly and we can find the approximation ei-

genvalues using Matlab program by matrices M, N, R where: 

( ),M ′ ′= Ψ Ψ    

4 ,N x = Ψ Ψ   

( ),R = Ψ Ψ    

We compute ( )2 6 6  ,anh anhSpec L , as in Figure 4. 
Trial 2: In this trial we use the Quadratic method, Boulton & Strauss method, 

and Our improvement technique with: n = 200, L = 6, to find the first five ap-
proximation enclosure eigenvalues (upper and lower eigenvalues) of 6

anh ,  
where  

2Lh
n

=  

(see Table 2, Figure 5). 
 
Table 2. Approximating enclosures for the first five eigenvalues of 6

anh  with n = 
200, λlow is the lower bound of the enclosing λ and λupp is the upper bound.  

Λ 
Quadratic  
method 

Boulton  
and  

Straus method 

Our  
improvement  

method 

λ1
 Upp 

low 
1.060362557981696 
1.060361563013190 

1.060362252449401 
1.060362061273195 

1.061066062252193 
1.059658118801031 

λ2
 Upp 

low 
3.799676880351021 
3.799638443628093 

3.799673918715551 
3.799672602711578 

3.797040801641494 
3.797040801641494 

λ3
 Upp 

low 
7.455732063205368 
7.455606688132128 

7.455701633603200 
7.455694527185979 

7.462745619537849 
7.448650264962926 

λ4
 Upp 

low 
11.644110613912629 
11.644649763222517 

11.644757012619969 
11.644727274867936 

11.659764086317372 
11.629726975328792 

λ5
 Upp 

low 
16.262159917276765 
16.261391679238212 

16.261854836128617 
16.264709951625957 

16.289304652770664 
16.234347516123545 
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Figure 4. Second order spectra relative to 6

anhL . The horizontal axis is the real part of the 

points in ( )2 6 6  ,anh anhSpec L  and the vertical axis is imaginary part. 

 

 

 

 
Figure 5. Approximating enclosures for the first five eigenvalues of 6

anh  by the 
Quadratic, Boulton & Strauss, and Our improvement methods with n = 200, λlow is 
the lower bound of the enclosing λ and λupp is the upper bound. 
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8. Conclusions 

We compute ( )2 6 6  ,har harSpec L  and ( )2 6 6  ,anh anhSpec L , as we described before 
and calculate the eigenvalues enclosure. All the coefficient of the matrices 0 , 

1  and 2  were found analytically. 
Figure 1 and Figure 4 show ( )2 6 6  ,har harSpec L  and ( )2 6 6  ,anh anhSpec L  for 

value n = 200, clearly in both the second-order relative spectra is not the same. 
In Table 1 and Table 2 we show the approximation of the first five eigenva-

lues enclosures of 6
har , 6

anh  respectively, with n = 200 by three different 
methods (Quadratic method, Boulton & Strauss method, and Our improvement) 
to compare between these methods and identify which one is more accurate for 
computing eigenvalues. 

For the Harmonic oscillator model, the error between the approximation re-
sults and the first five exact eigenvalues (1, 3, 5, 7, 9) in our technique is less than 
the error between the exact and the approximation eigenvalues by the Boulton 
and Strauss method, and the same thing between of the Quadratic method re-
sults and the exact eigenvalues, so the approximation enclosure eigenvalues by 
our technique is more accurate and effective than the Boulton & Strauss method 
and the Quadratic method, also Figure 3 shows that clearly. 

For the anharmonic oscillator model, the exact eigenvalues are unknown but 
by results and Figure 5, we can confirm the previous result. 
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