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Abstract 
The study explored both Box and Jenkins, and iterative outlier detection pro-
cedures in determining the efficiency of ARIMA-GARCH-type models in the 
presence of outliers using the daily closing share price returns series of four 
prominent banks in Nigeria (Skye (Polaris) bank, Sterling bank, Unity bank 
and Zenith bank) from January 3, 2006 to November 24, 2016. The series 
consists of 2690 observations for each bank. The data were obtained from the 
Nigerian Stock Exchange. Unconditional variance and kurtosis coefficient 
were used as criteria for measuring the efficiency of ARIMA-GARCH-type 
models and our findings revealed that kurtosis is a better criterion (as it is a 
true measure of outliers) than the unconditional variance (as it can be dep-
leted or amplified by outliers). Specifically, the strength of this study is in 
showing the applicability and relevance of iterative methods in time series 
modeling. 
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1. Introduction 

The generalized autoregressive conditional heteroscedastic (GARCH-type) 
models were introduced to account for heteroscedasticity (changing variance), a 
phenomenon which occurs as a result of violation of assumption of constant va-
riance in time series. The GARCH-type models are further divided into symme-
tric and asymmetric. The symmetric GARCH models (for example ARCH and 
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GARCH) rely on modeling the conditional variance as a linear function of 
squared past residuals. The strength of this specification is in allowing the condi-
tional variance to depend only on the modulus of the past variables (past posi-
tive and negative innovations have the same effect on the current conditional 
variance). The most interesting feature not addressed by GARCH model is the 
leverage effect which occurs when an unexpected drop in price (bad news) in-
creases predictable volatility more than an unexpected increase in price (good 
news) of similar magnitude (Engle and Ng [1]; Francq and Zakoian [2]). The 
asymmetric specifications (for example EGARCH and GJR-GARCH) allow for 
the signs of the innovations (returns) to have impact on the volatility apart from 
magnitude. 

Originally, the GARCH model was specified based on the normal distribution 
for the innovations yet could not capture the heavy-tailed characterizations. Si-
milarly, the student-t distribution which is traditionally specified to remedy the 
weakness of the normal distribution in accommodating the heavy-tailed proper-
ty, is found wanting in many applications to account for excess kurtosis and thus, 
the resulting estimates of GARCH models are not efficient (Moffat and Akpan 
[3]; Feng and Shi [4]). 

Furthermore, previous studies have shown that the heavy-tailed property in-
dicates the presence of excess kurtosis which in turn is a measure of outliers 
(Moffat and Akpan [5]; Cain, Zhang and Yuan [6]; Fiori and Beltrami [7]; 
Westfall [8]). Therefore, to completely account for excess kurtosis, it is required 
that outliers (which are the observations that deviate from the overall pattern of 
the distribution of the data) be adjusted for. 

Hence, the aim of this study is to determine the efficiency of GARCH-type 
models with outliers taken into consideration using kurtosis coefficient which is 
at least approximately mesokurtic, and in particular seeks to improve on the 
work of Akpan, Lasisi and Adamu [9] who used the minimum unconditional va-
riance (which is the standard measure of the variance of a variable) as a measure 
of efficiency of GARCH-type models in the presence of outliers. However, the 
major drawback to this approach is that, the unconditional variance pertaining 
to GARCH models fitted to the outlier contaminated series could be smaller 
than or equal to that of the outlier adjusted series against the expectation that the 
GARCH models fitted to outlier adjusted series would produce the minimum 
unconditional variance. 

Moreover, the remaining part of this work is organized as follows; Section 2 
takes care of materials and method then followed by results and discussion in 
Section 3, while the conclusion of overall results is handled in Section 4. 

2. Materials and Methods 
2.1. Return 

The return series tR  can be obtained given that tP  is the price of a unit share 
at time, t and 1tP−  is the share price at time 1t − . 
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( ) 1ln 1 ln ln lnt t t t tR P B P P P−= ∇ = − = −               (1) 

The tR  in Equation (1) is regarded as a transformed series of the share price, 

tP  meant to attain stationarity, that is, both mean and variance of the series are 
stable (Akpan and Moffat [9]). The letter B is the backshift operator. 

2.2. Autoregressive Integrated Moving Average (ARIMA) Model 

Box, Jenkins and Reinsel [10] considered the extension of ARMA model to deal 
with homogenous non-stationary time series in which tX , itself is non-stationary 
but its dth difference is a stationary ARMA model. Denoting the dth difference of 

tX  by 

( ) ( ) ( )d
t tB B X Bϕ φ θ ε= ∇ =                    (2) 

where ( )Bϕ  is the nonstationary autoregressive operator such that d of the 
roots of ( ) 0Bϕ =  are unity and the remainder lie outside the unit circle. 
( )Bφ  is a stationary autoregressive operator. 

2.3. Heteroscedastic Models 

2.3.1. Autoregressive Conditional Heteroscedastic (ARCH) Model 
The first model that provides a systematic framework for modeling heterosce-
dasticity is the ARCH model of Engle [11]. Specifically, an ARCH (q) model as-
sumes that, 

, ,t t t t t tR a a eµ σ= + =  

2 2 2
1 1t t q t qa aσ ω α α− −= + + + .                   (3) 

where [ ]te  is a sequence of independent and identically distributed (i.i.d.) 
random variables with mean zero, that is ( )E 0te =  and variance 1, that is 

( )2E 1te = , 0ω > , and 1, , 0qα α ≥  (Francq and Zakoian [2]). The coeffi-
cients iα , for 0i > , must satisfy some regularity conditions to ensure that the 
unconditional variance of ta  is finite. 

2.3.2. Generalized Autoregressive Conditional Heteroscedastic  
(GARCH) Model 

Although the ARCH model is simple, it often requires many parameters to ade-
quately describe the volatility process of a share price return. Some alternative 
models must be sought. Bollerslev [12] proposed a useful extension known as the 
generalized ARCH (GARCH) model. For a return series, tR , let t t ta R µ= −  be 
the innovation at time t. Then, ta  follows a GARCH (q, p) model if 

t t ta eσ= , 

2 2 2

1 1
.

q p

t i t i j t j
i j

aσ ω α β σ− −
= =

= + +∑ ∑
                  

 (4) 

where again te  is a sequence of i.i.d. random variance with mean, 0, and va-

riance, 1, 0, 0, 0i jω α β> ≥ ≥  and ( )
( )max ,

1
 1

p q

i i
i

α β
=

+ <∑  (Tsay [13]). 
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Here, it is understood that 0iα = , for i p> , and 0iβ = , for i q> . The 
latter constraint on  i iα β+  implies that the unconditional variance of ta  is 
finite, whereas its conditional variance 2

tσ , evolves over time. 

2.3.3. Exponential Generalized Autoregressive Conditional  
Heteroscedastic (EGARCH) 

Model 
The EGARCH model represents a major shift from ARCH and GARCH mod-

els (Nelson [14]). Rather than modeling the variance directly, EGARCH models 
the natural logarithm of the variance, and so no parameter restrictions are re-
quired to ensure that the conditional variance is positive. The EGARCH (q, p) is 
defined as, 

, ,t t t t t tR a a eµ σ= + =  

2 2
1 1 12 2

ln ln .q r pt i t k
t i k j t ji k j

t i t k

a a
σ ω α γ β σ

σ σ
− −

−= = =
− −

 
 = + + +
 
 

∑ ∑ ∑      (5) 

where again, te  is a sequence of i.i.d. random variance with mean, 0, and va-
riance, 1, and kγ  is the asymmetric coefficient. 

2.3.4. Glosten, Jagannathan and Runkle (GJR-GARCH) Model 
The GJR-GARCH (q, p) model proposed by Glosten, Jagannathan and Runkle 
[15] is a variant, represented by 

t t ta eσ=  

2 2 2 2
1 1 1 .q p p

t i t i i t i t i j t ji i ja I aσ ω α γ β σ− − − −= = =
= + ++∑ ∑ ∑          

 (6) 

where 1tI −  is an indicator for negative  t ia − , that is, 

1

0 if 0,
1 if 0,

t i
t

t i

a
I

a
−

−
−

<
=  ≥

 

and ,i iα γ  and jβ  are nonnegative parameters satisfying conditions similar to 
those of GARCH models. Also the introduction of indicator parameter of leve-
rage effect, 1tI −  in the model accommodates the leverage effect, since it is sup-
posed that the effect of 2

t ia −  on the conditional variance 2
tσ  is different accor-

dingly to the sign of t ia − . 
To successfully fit the processes describe by subsections 2.2 and 2.3, the ap-

proach is based on Box and Jenkins three iterative procedures which includes 
model identification, model estimation and diagnostic checking are summarized 
as follows. 

Identification Stage: employs the plots of estimated acf (autocorrelation func-
tion) and pacf (partial autocorrelation function) as guides to selecting one or 
more ARIMA models that appears suitable. At this stage, models whose theoret-
ical acf and pacf most closely resemble the estimated acf and pacf are selected 
tentatively. 

Estimation Stage: The tentatively entertained model is fitted to data and its 
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parameters estimated using maximum likelihood techniques. 
Diagnostic checking Stage: Diagnostic checks are carried to help determine if 

an estimated model is statistically significant targeted at uncovering possible 
lack-of-fit. If no lack-of-fit is indicated, the model is ready to use. If any inade-
quacy is found, the iterative cycle of identification, estimation, and diagnostic 
checking is repeated until a suitable representation is found. (See Box, Jenkins 
and Reinsel [10]; Akpan, Lasisi and Adamu [8] for more details on the proce-
dures and its application, respectively.) 

2.4. Outliers in Time Series 

Generally, a time series might contain several, say k outliers of different types 
and we have the following general outlier model; 

( ) ( )
1

k T
t j j t tjY V I XBτ

=
= +∑ ,                   (7) 

where ( )( ) ( )( ) t tX B B aθ ϕ= , ( ) 1jV B =  for an AO, and ( ) ( )
( )jV B
B
B

θ
ϕ

=  for 

an IO at jt T= , ( ) ( ) 11j BV B −= −  for a LS, ( ) ( ) 11j BV Bδ −= −  for an TC, and 

τ  is the size of outlier. For more details on the types of outliers and estimation 
of the outliers effects (see Moffat and Akpan [16]; Sanchez and Pena [17]; Box, 
Jenkins and Reinsel [10]; Wei [18]; Chen and Liu [19]; Chang, Tiao and Chen 
[20]). 

Moreover, in financial time series, the residual series, ta  is assumed to be 
uncorrelated with its own past, so additive, innovative, temporary change and 
level shift outliers coincide, and where both the mean and variance equations 
evolves together, we have for example GARCH(1,1) model: 

( ) .T
t t t tR a Iµ τ− = +                        (8) 

.t t ta eσ=                            (9) 

2 2 2
1 1 1 1.t t taσ ω α β σ− −= + +                     (10) 

where ta  is the outliers contaminated residuals. 

2.5. Methods of Outliers Detection in Heteroscedasticity 

One approach for correcting the series for outliers is using standard criteria and 
then estimates the conditional variance. This approach involves detecting and 
correcting of outliers before estimating the conditional variance (Carnero, Pena 
and Ruiz [21]). This very method is based on the iterative framework of Chen 
and Liu [19] summarized in the following steps; 

Step I: Given an ARIMA model fitted to the data, all the potential outliers are 
detected based on preliminary model parameter estimates. 

Step II: Joint estimates of the model parameters and outliers effects are ob-
tained using the accommodated outlier information of step I. 

Step III: Outliers are identified and their effects estimated again based on the 
adjusted estimates of model parameters obtained in Step II. 
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2.6. Efficiency of Heteroscedastic Models 

Efficiency is a measure of quality of an estimator of a model. It is often expressed 
using variance or mean square error. For the purpose of this study which looks 
at a unified effect of outliers, unconditional variance and coefficient of kurtosis 
are considered as the measures of efficiency of estimator of heteroscedastic 
model. The application of coefficient of kurtosis in this case is to ensure that the 
existence of heavy-tailed is taken care of. 

For ARCH(q) model which is equivalent to GARCH(q, 0) model, the uncon-
ditional variance is given as follows: 

2

11 q
ii

ωσ
α

=

=
−∑

.                       (11) 

For GARCH(q, p) model, the unconditional variance is expressed thus: 

2

1 11 q p
i ii j

ωσ
α β

= =

=
− −∑ ∑

.                   (12) 

For EGARCH(q, p) model, the unconditional variance is expressed as follows: 

2

1

 exp
1 p

ij

ωσ
β

=

 
 =
 − ∑

,                    (13) 

where exp represent natural exponential function. 
For GJR-GARCH(q, p) model 

2

1 1 11
2

q q pi
i ii i j

ωσ
γ

α β
= = =

− −
=

−∑ ∑ ∑
.               (14) 

2.7. Kurtosis 

Kurtosis coefficient for a centered (that is, zero-mean) distribution is defined as 
the ratio of the fourth-order moment, which is assumed to exist, to the squared 
second-order moment (Francq and Zakoian [2]). This coefficient is equal to 3 
for a normal distribution (mesokurtosis). For heavy-tailed distribution, the coef-
ficient is greater than 3 (leptokurtosis). The excess kurtosis of GARCH(1,1) 
model can be obtained as follows: 

,t t ta eσ=                           (15) 

2 2 2
1 1 1 1t t taσ ω α β σ− −= + + ,                    (16) 

Note that, ( )E 0te = , ( )Var 1te = , and ( )4E 3t ee K= + , where eK  is the 
excess kurtosis of the innovation, te . 

Also, 

( ) ( ) ( )
2

1 1

Var E
1t ta ωσ

α β
= =

− +  
.               (17) 

( ) ( ) ( )4 4E 3 Et e ta K σ= +  provided that ( )4E tσ  exists. 
But, 
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( ) ( )
( ) ( ) ( )

2
1 14

22
1 1 1 1 1

1
E

1 1 2
t

eK

ω α β
σ

α β α α β

+ +
=

 − + − + − +    

,        (18) 

provided that 1 1 01 α β+ ≥>  and ( ) ( )22
1 1 11 2 0eKα α β− + − + > . the excess 

kurtosis of ta , if it exists, is then  

( )
( )

( ) ( )
( )

24
1 1

2 22 22
1 1 1 1

3 1E
3 3.

1 2E

et
a

et

Ka
K

Ka

α β

α α β α

 + − + = − = −
− − + − 

 

         (19) 

This excess kurtosis can be written in an informative expression. Considering 
the case where te  follows a normal distribution, 0eK = , 

( )

( )

2
1

22
1 1 1

6
,

1 2
g

aK α
α α β

=
− − +

                  (20) 

where the superscript, g, is used to denote the Gaussian distribution. The same 
idea applies to other GARCH-type models (Tsay [13]). 

3. Results and Discussion 

3.1. Data 

Data collection is based on secondary source as documented in the records of 
Nigerian Stock Exchange. The documented data on the daily closing share prices of 
the sampled banks (Skye bank, Sterling bank, Unity bank and Zenith bank) from 
January 3, 2006 to November 24, 2016 were purchased from the Nigerian Stock Ex-
change and delivered through contactcentre@nigerianstockexchange.com. Since 
the data were obtained from a credible and secured source therefore reliable. 

3.2. Interpretation of Time Plot 

The share prices of the four prominent Nigerian banks considered are found to 
be nonstationary given the random fluctuations away from the common mean 
(see Figures 1-4). 

To achieve stationarity, Equation (1) was applied to the share price series and 
these transformed series were found to cluster round the common mean and 
thus indicated the presence of heteroscedasticity (see Figures 5-8). 

3.3. Modeling Joint ARIMA-GARCH-Type Processes  
of Return Series of Nigerian Banks 

Based on Box and Jenkins procedures, out of the several models identified tentatively, 
the following joint ARIMA-GARCH-type models with respect to both normal 
(norm) and student-t (std) distributions in (Table 1) were considered and selected 
on the grounds of smallest information criteria and model adequacy (see Table 2). 

3.4. Identification of Outliers in the Residual Series of ARIMA 
Models Fitted to the Return Series of Nigerian Bank 

Here, we examined the residuals series of the fitted ARIMA models for detection  
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Figure 1. Share price series of Skye Bank. 

 

 
Figure 2. Share price series of Sterling Bank. 
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Figure 3. Share price series of Unity Bank. 
 

 
Figure 4. Share price series of Zenith Bank. 
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Figure 5. Return series of Skye Bank. 

 

 
Figure 6. Return series of Sterling Bank. 
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Figure 7. Return series of Unity Bank. 

 

 
Figure 8. Return series of Zenith Bank. 
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Table 1. Output of ARIMA-GARCH-type models of returns series of Nigerian Banks. 

Bank Model Parameter Estimate s.e t-ratio p-value 
Information Criteria 

AIC BIC HQIC 

SKYE ARIMA(1,1,0)-GA
RCH(1,1)-norm 

µ  −2.6e−5 1.1e−5 −2.3973 0.0165 

−4.5293 −4.5183 −4.5253 

1ϕ  3.87e−4 0.0214 0.0181 0.9855 

ω  2.0e−6 0.0000 73.3223 0.0000 

1α  0.1305 7.996e−3 16.3261 0.0000 

1β  0.8685 6.671e−3 130.1908 0.0000 

STERLING ARIMA(2,1,0)-EG
ARCH(1,1)-norm 

µ  −2.89e−4 1.57e−4 −1.8335 0.06673 

−4.3888 −4.3734 −4.3832 

1ϕ  −0.0190 0.0102 −1.8642 0.0623 

2ϕ  0.0298 5.205e−3 5.7258 0.0000 

ω  −0.0943 1.607e−3 −58.7069 0.0000 

1α  −0.0734 4.024e−3 −18.2286 0.0000 

1β  0.9859 1.7e−5 5863.5496 0.0000 

1γ  0.0975 3.588e−3 27.1638 0.0000 

UNITY ARIMA(0,1,1)- 
GARCH 

(1,1)-norm 

µ  1.38e−4 1.9e−5 7.1606 0.0000 

−4.8711 −4.8601 −4.8671 

1θ  0.1009 0.0236 4.2767 1.9e−5 

ω  4.0e−6 0.0000 115.7800 0.0000 

1α  0.2368 0.0117 20.2352 0.0000 

1β  0.7622 7.927e−3 96.1509 0.0000 

ZENITH ARIMA(2,1,1)-EG
ARCH(1,1)-std 

µ  0.0000 0.0000 1.2065 0.2276 

−7.0189 −6.9992 −7.0118 

1ϕ  −0.3086 0.0106 −29.0801 0.0000 

2ϕ  0.0495 0.0171 2.8972 0.0038 

1θ  0.2912 0.0105 27.7875 0.0000 

ω  −0.0291 8.62e−4 −33.7888 0.0000 

1α  −0.6979 9.8e−5 −7150.4179 0.0000 

1β  0.9996 6.3e−5 15825.7924 0.0000 

1γ  0.6983 9.8e−5 7147.6333 0.0000 

 
of possible potential outliers in the returns series of the banks under study. The 
iterative procedure of Chen and Liu [19] was applied and those statistics that are 
in absolute value higher than a threshold (critical value, C) identify the time 
point of a potential outlier. In this study, C = 4 is chosen on the condition that 
the number of observations, T ≥ 450 and where C = 4 is not sufficient, C = 5 is 
used. 
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Table 2. Diagnostic Checking for ARIMA-GARCH-type models of returns series of Nigerian Banks 

Bank Model 

Standardized Residuals Standardized Squared Residuals 

Lag 
Weighted 

LB 
p-value Lag 

Weighted 
LB 

p-value Lag 
Weighted 

ARCH –LM 
p-value 

SKYE ARIMA(1,1,0)-GA
RCH(1,1)-norm 

1 0.0132 0.9085 1 0.0004 0.9833 3 0.0005 0.9829 

2 0.015 1.0000 5 0.0014 1.000 5 0.0011 1.0000 

5 0.0237 1.0000 9 0.0023 1.000 7 0.0016 1.0000 

STERLING ARIMA(2,1,0)-EG
ARCH(1,1)-norm 

1 0.0944 0.7587 1 0.0003 0.9851 3 0.0004 0.9837 

5 0.1192 1.0000 5 0.0012 1.0000 5 0.0010 1.0000 

9 0.1588 1.0000 9 0.0021 1.0000 7 0.0015 1.0000 

UNITY ARIMA(0,1,1)- 
GARCH 

(1,1)-norm 

1 0.0031 0.9557 1 0.0008 0.9776 3 0.0008 0.9776 

2 0.0031 1.0000 5 0.0024 1.0000 5 0.0019 1.0000 

5 0.0035 1.0000 9 0.0039 1.0000 7 0.0028 1.0000 

ZENITH ARIMA(2,1,1)-EG
ARCH(1,1)-std 

1 0.0014 0.9697 1 0.0014 0.9704 3 0.0014 0.9704 

8 0.0066 1.0000 5 0.0041 1.0000 5 0.0033 0.9999 

14 0.0111 1.0000 9 0.0069 1.0000 7 0.0049 1.0000 

LB = Ljung-Box, LM = Lagrange Multiplier. 

3.4.1. Identification of Outliers in the Residual Series of ARIMA (1, 1, 0) 
Model Fitted to the Return Series of Skye Bank 

About twenty six (26) different outliers were identified to have contaminated the 
residuals series of ARIMA(1,1,0) model using the critical value, C = 4; six (6) 
innovation outliers (IO), six (6) additive outliers (AO) and fourteen (14) tempo-
rary change (TC) as indicated in (Table 3). 

3.4.2. Identification of Outliers in the Residual Series of ARIMA (2, 1, 0) 
Model Fitted to the Return Series of Sterling Bank 

About seven (7) different outliers were identified to have contaminated the re-
sidual series of ARIMA(2,1,0) model using the critical value, C = 5 one (1) in-
novation outlier (IO), four (4) additive outliers (AO) and two (2) temporary 
change (TC) as shown in (Table 4). 

3.4.3. Identification of Outliers in the Residual Series of ARIMA (1, 1,0) 
Model Fitted to the Return Series of Unity Bank 

About thirty three (33) different outliers were identified to have contaminated 
the residual series of ARIMA(1,1,0) model using the critical value, C = 5; two (2) 
innovation outliers (IO), six (6) additive outliers, fifteen (15) temporary change 
(TC) and ten (10) level shift (LS) as indicated in (Table 5). 

3.4.4. Identification of Outliers in the Residual Series of ARIMA (2, 1, 1) 
Model Fitted to the Return Series of Zenith Bank 

About forty two (42) different outliers were identified to have contaminated the 
residual series of ARIMA(2,1,1) model using the critical value, C = 5; thirteen 
(13) innovation outliers (IO), nine (9) additive outliers and twenty (20) tempo-
rary change (TC) as shown in (Table 6). 
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Table 3. Outliers identified in the residual series of ARIMA(1, 1, 0) model fitted to return 
series of Skye Bank. 

Type Observation index Location Estimate T-statistic 

IO 211 13/11/2006 −0.20150630 −8.487698 

IO 1841 21/06/2013 −0.10241849 −4.313995 

IO 1843 25/06/2013 0.09870872 4.157735 

IO 2178 31/10/2014 0.10295915 4.336768 

IO 2263 05/05/2015 0.09758512 4.110407 

IO 210 10/11/2006 0.81215294 34.804236 

AO 1726 04/01/2013 0.09492679 4.068020 

AO 1984 21/01/2014 −0.10371058 −4.444443 

AO 2281 31/05/2015 0.09978000 4.276001 

AO 2414 15/10/2015 0.10169110 4.357900 

AO 2456 14/12/2015 −0.09871728 −4.230459 

AO 209 09/11/2006 0.20948475 10.861708 

TC 740 09/01/2009 −0.09161349 −4.750126 

TC 742 12/01/2009 −0.07866550 −4.078778 

TC 827 18/05/2009 0.07862559 4.076708 

TC 1723 13/12/2012 0.08946532 4.638744 

TC 2311 15/05/2015 0.09068887 4.702185 

TC 2381 26/08/2015 0.09747559 5.054074 

TC 2468 05/01/2016 −0.10240036 −5.309421 

TC 2590 29/06/2016 −0.08395679 −4.353129 

TC 2592 01/07/2016 −0.12692535 −6.581033 

TC 2599 15/07/2016 0.10544854 5.467469 

TC 2314 20/05/2015 −0.10163346 −4.363007 

TC 212 14/11/2006 −0.10846069 −5.731470 

TC 741 12/01/2009 0.07648229 4.225631 

TC 2589 28/06/2016 0.07256176 4.009023 

 
Table 4. Outliers identified in the residual series of ARIMA(2, 1, 0) model fitted to return 
series of Sterling Bank. 

Type Observation index Location Estimate T-statistic 

AO 184 03/10/2006 0.6913146 27.668748 

AO 655 02/09/2008 −0.1764822 −7.063413 

AO 2371 12/08/2015 −0.1398721 −5.598155 

TC 183 29/09/2006 0.2415834 11.950355 

TC 1672 22/05/2012 −0.1075351 −5.319415 

IO 185 04/10/2006 −0.1964258 −7.900298 

AO 2372 12/08/2015 0.1407112 5.678009 
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Table 5. Outliers identified in the residual series of ARIMA(1, 1, 0) model fitted to return 
series of Unity Bank. 

Type Observation index Location Estimate T-statistic 

IO 2293 20/04/2015 −0.180979695 −7.444781 

AO 248 10/01/2007 1.098612289 45.331893 

AO 1906 24/09/2013 −0.200532990 −8.274566 

AO 2292 17/04/2015 2.302585093 95.011264 

TC 247 09/01/2007 0.365004553 19.903211 

TC 1736 18/01/2013 0.107790532 5.877674 

TC 1745 01/02/2013 0.112419182 6.130068 

TC 1753 13/02/2013 −0.118923561 −6.484743 

TC 1762 26/02/2013 0.091895380 5.010932 

TC 2291 16/04/2015 0.758297010 41.348923 

TC 2298 27/04/2015 −0.142415961 −7.765752 

TC 2304 06/04/2015 −0.098876918 −5.391626 

TC 2446 30/11/2015 −0.093629262 −5.105479 

TC 2458 16/12/2015 0.112419118 6.130064 

TC 2460 18/12/2015 0.104980801 5.724463 

TC 2467 04/01/2016 −0.106045605 −5.782525 

TC 2469 06/01/2016 −0.119002493 −6.489047 

IO 1905 23/09/2013 0.127354627 5.132279 

AO 1904 20/09/2013 −0.163097022 −6.592937 

LS 243 29/12/2006 −0.003141767 −5.772181 

LS 251 15/01/2007 −0.002771753 −5.084049 

LS 347 11/06/2007 −0.002837928 −5.102009 

LS 520 19/06/2008 −0.003114010 −5.387808 

LS 598 13/06/2008 −0.003027395 −5.143002 

LS 613 04/07/2008 −0.003035068 −5.137530 

LS 631 30/07/2008 −0.002988789 −5.037234 

LS 635 05/08/2008 −0.003001055 −5.052994 

LS 2286 09/04/2015 −0.008202488 −6.130741 

TC 1901 17/09/2013 0.097493034 5.208012 

TC 2477 18/01/2016 0.096324642 5.145597 

LS 607 26/06/2008 0.022239276 28.623733 

AO 1336 09/06/2011 −0.128187865 −5.110079 

AO 1872 05/08/2013 −0.144642972 −5.766045 
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Table 6. Outliers identified in the residual series of ARIMA(2, 1, 1) model fitted to return 
series of Zenith Bank. 

Type Observation index Location Estimate T-statistic 

IO 396 17/08/2007 −0.09816377 −13.221339 

IO 840 05/06/2009 0.04253167 5.728444 

IO 2221 06/01/2015 −0.03927918 −5.29037 

IO 2263 05/03/2015 0.04378397 5.897112 

IO 2281 18/03/2013 0.03787680 5.101495 

IO 2473 12/01/2016 −0.03936074 −5.301362 

IO 2475 14/01/2016 −0.04230834 −5.698364 

IO 2525 24/03/2016 −0.06416968 −8.642792 

IO 2565 24/05/2016 0.04357221 5.868590 

IO 2568 27/05/2016 −0.03892676 −5.242911 

AO 839 04/06/2009 −0.17023181 −23.610345 

AO 1051 13/04/2010 −0.10685231 −14.819909 

AO 1971 31/12/2013 −0.04930715 −6.838668 

AO 2027 21/03/2014 −0.04348949 −6.031786 

AO 2223 08/01/2015 0.04365213 6.054343 

AO 2389 07/09/2015 0.03931499 5.452803 

AO 2453 09/12/2015 0.04052320 5.620376 

AO 2483 26/01/2016 −0.03680867 −5.105188 

TC 395 16/08/2007 −0.04944665 −8.279793 

TC 691 27/10/2008 −0.03018987 −5.055264 

TC 710 21/11/2008 −0.03064893 −5.132133 

TC 747 20/01/2009 −0.03068035 −5.137395 

TC 802 08/04/2009 0.02900192 5.029855 

TC 838 03/06/2009 −0.05601975 −9.380451 

TC 2477 18/01/2016 0.03332783 5.580712 

IO 1970 30/12/2013 0.03696756 5.089711 

IO 2269 13/03/2015 −0.03667538 −5.049484 

TC 698 05/11/2008 0.03138467 5.372151 

TC 754 29/01/2009 0.03144461 5.382412 

TC 802 08/04/2009 0.02900192 5.029855 

IO 2569 31/05/2016 −0.04117313 −5.684147 

TC 394 15/08/2007 0.03079012 5.941387 

TC 833 26/05/2009 0.02933330 5.660273 

TC 850 19/06/2009 −0.02610763 −5.037836 

TC 2212 18/12/2014 0.02755604 5.317326 
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Continued 

AO 2282 25/01/2016 0.03601640 5.029504 

TC 2484 27/01/2016 0.02586343 5.048003 

TC 824 13/05/2009 0.02437288 5.000302 

TC 890 14/08/2009 −0.02533852 −5.198411 

TC 2217 29/12/2014 −0.02467081 −5.061424 

TC 2450 04/12/2015 −0.02471591 −5.070677 

TC 919 28/09/2009 0.02369936 5.067229 

3.5. Modeling Joint ARIMA-GARCH-Type Processes of  
Outlier Adjusted Return Series of Nigerian Banks 

However, with the identified outliers being adjusted for, we obtained a new se-
ries (outlier adjusted return series). Again, Box and Jenkins iterative procedures 
were applied and those models in (Table 7) were selected based on smallest in-
formation criteria and model adequacy (Table 8). 

3.6. Determination of Efficiency of ARIMA-GARCH-Type Models  
of Returns Series of Nigerian Banks 

The ARIMA(1, 1, 0)-GARCH(1, 1)-norm model fitted to both outlier adjusted 
return series and outlier contaminated series with the same unconditional va-
riance, 0.0016. Again, the value of kurtosis, 2.9465 captured by GARCH(1, 
1)-norm model on outlier adjusted return series is nearly the value accommodated 
by the normal distribution while GARCH(1, 1)-norm model on outlier contami-
nated series seems inferior with excess kurtosis of 132.8707 (see Table 9). 

From (Table 10), evidence shows that ARIMA(2, 1, 2)-EGARCH(1, 1)-std 
model fitted to outlier adjusted return series appeared to be more efficient given 
that the unconditional variance and kurtosis coefficient are smaller than that of 
the ARIMA(2, 1, 0)-EGARCH(1, 1)-norm model fitted to the outlier contami-
nated series. 

From (Table 11), evidence shows that ARIMA(1, 1, 0)-GJR-GARCH(1, 
0)-norm model fitted to outlier adjusted return series appeared to be more effi-
cient given that the unconditional variance and kurtosis value are smaller than 
that of the ARIMA(0,1,1)-GARCH(1,1)-norm model fitted to the outlier conta-
minated series. 

The ARIMA(2, 1, 1)-EGARCH(1, 1)-std model fitted to both outlier adjusted 
return series and outlier contaminated series converges to respective uncondi-
tional variances of 5.118125e−5 and 5.887684e−36 with corresponding kurtosis 
values of 3.5746 and 26.3794. Though, the unconditional variance of ARIMA(2, 
1, 1)-EGARCH(1, 1)-std model fitted to the outlier contaminated series is small-
er than that of the outlier adjusted return series, the model for the outlier ad-
justed return series is more efficient given that the kurtosis value is near three, 
the value occupied by normal distribution (Table 12). 
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Table 7. Output of ARIMA-GARCH-type models of outlier adjusted returns series of Nigerian Banks. 

Bank Model Parameter Estimate s.e t-ratio p-value 
Information Criteria 

AIC BIC HQIC 

SKYE 
ARIMA(1,1,0)
-GARCH(1,1)-

norm 

µ  −1.36e−4 5.0e−6 −25.9283 0.0000 

−4.6518 −4.6409 −4.6479 

1ϕ  −0.0466 0.0211 −2.2101 0.0271 

ω  2.0e−6 0.0000 67.0558 0.0000 

1α  0.1228 7.675e−3 15.9933 0.0000 

1β  0.8762 6.665e−3 131.4656 0.0000 

STERLING 
ARIMA 

(2,1,2)-EGAR
CH(1,1)-std 

µ  0.0000 0.0000 −1.51 0.1310 

−5.7621 −5.7401 −5.7541 

1ϕ  6.085e−3 1.0e−6 5673.10 0.0000 

2ϕ  0.9386 1.58e−4 5935.97 0.0000 

1θ  0.2025 3.2e−5 6283.61 0.0000 

2θ  −0.7371 1.2e−4 −6163.17 0.0000 

ω  −0.0929 2.74e−4 −338.38 0.0000 

1α  0.5597 6.7e−5 8413.54 0.0000 

1β  0.9925 1.42e−4 6970.63 0.0000 

1γ  0.5599 6.5e−5 8667.79 0.0000 

UNITY 
ARIMA(1,1,0) 
-GJR-GARCH

(1,0)-norm 

µ  −2.284e−3 1.0e−5 −220.0970 0.0000 

−4.2296 −4.2406 −4.2336 

1ϕ  0.0559 2.66e−4 209.9780 0.0000 

ω  1.0e−6 0.0000 3.4940 0.0005 

1α  0.8566 3.888e−3 220.3020 0.0000 

1γ  0.2175 0.0114 19.0470 0.0000 

ZENITH 
ARIMA(2,1,1)
-EGARCH(1,1

)-std 

µ  0.0000 0.0000 0.3698 0.7116 

−7.0635 −7.0438 −7.0564 

1ϕ  0.6094 0.0092 66.5553 0.0000 

2ϕ  0.0852 0.0045 18.7897 0.0000 

1θ  −0.6012 0.0038 −159.8213 0.0000 

ω  −0.0960 2.3e−4 −418.1551 0.0000 

1α  −0.8581 1.05e−4 −8158.1158 0.0000 

1β  0.9903 8.6e−5 11523.0226 0.0000 

1γ  0.8591 1.05e−4 8183.2788 0.0000 

4. Conclusion 

Our study has shown that the use of minimum unconditional variance as a 
measure of efficiency of heteroscedastic models in the presence of outliers is not 
heuristic as outliers are capable of inflating or reducing the unconditional va-
riance. To this end, the use of kurtosis coefficient as a measure of heteroscedastic  
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Table 8. Diagnostic checking for ARIMA-GARCH-type models of outlier adjusted returns series of Nigerian Banks. 

Bank Model 

Standardized Residuals Standardized Squared Residuals 

Lag Weighted LB p-value Lag Weighted LB p-value Lag 
Weighted 

ARCH-LM 
p-value 

SKYE 
ARIMA(1,1,0) 

-GARCH(1,1)-norm 

1 1.323 0.2500 1 2.227 0.1356 3 1.113 0.2914 

2 2.710 0.0617 5 3.072 0.3941 5 1.375 0.6257 

5 4.284 0.1838 9 3.533 0.6687 7 1.472 0.8269 

STERLING 
ARIMA(2,1,2) 

-EGARCH(1,1)-std 

1 0.0014 0.9707 1 0.0013 0.9716 3 0.0013 0.9716 

11 0.0087 1.0000 5 0.0038 1.0000 5 0.0030 0.9999 

19 0.0145 1.0000 9 0.0063 1.0000 7 0.0045 1.0000 

UNITY 
ARIMA(1,1,0) 

-GJR-GARCH(1,0) 
-norm 

1 0.0081 0.9283 1 0.3091 0.5782 2 0.0990 0.7530 

2 0.0158 1.0000 2 0.3587 0.7639 4 2.5450 0.3332 

5 4.3656 0.1730 5 2.3489 0.5386 6 2.8354 0.5386 

ZENITH 
ARIMA(2,1,1) 

-EGARCH(1,1)-std 

1 0.0010 0.9752 1 0.0009 0.9756 3 0.0009 0.9756 

8 0.0058 1.0000 5 0.0028 1.0000 5 0.0022 0.9999 

14 0.0100 1.0000 9 0.0047 1.0000 7 0.0033 1.0000 

LB = Ljung-Box, LM = Lagrange Multiplier. 
 
Table 9. Efficiency of ARIMA-GARCH-type model of Skye Bank. 

Efficiency Measurement Criteria 
ARIMA(1,1,0)-GARCH(1,1)–norm Model 

fitted to Returns Series of Skye Bank 
ARIMA(1,1,0)-GARCH(1,1)-norm Model fitted to 

Outlier Adjusted Return Series of Skye Bank 

Unconditional Variance 0.0016 0.0016 

Kurtosis Coefficient 132.8707 2.9465 

 
Table 10. Efficiency of ARIMA-GARCH-type model of Sterling Bank. 

Efficiency Measurement Criteria 
ARIMA(2,1,0)-EGARCH(1,1)-norm Model fitted 

to Returns Series of Sterling Bank 
ARIMA(2,1,2)-EGARCH(1,1)-std Model fitted to 
Outlier Adjusted Return Series of Sterling Bank 

Unconditional Variance 0.0012288 4.234715e−6 

Kurtosis Coefficient 80.0303 3.6829 

 
Table 11. Efficiency of ARIMA-GARCH-type model of Unity Bank. 

Efficiency Measurement Criteria 
ARIMA(0,1,1)-GARCH (1,1)-norm Model fitted to 

Returns Series of Unity Bank 
ARIMA(1,1,0) -GJR-GARCH(1,0)-norm Model fitted 

to Outlier Adjusted Return Series of Unity Bank 

Unconditional Variance 0.0037 2.104825e−5 

Kurtosis Coefficient 888.5032 3.2678 

 
Table 12. Efficiency of ARIMA-GARCH-type model of Zenith Bank. 

Efficiency Measurement Criteria 
ARIMA(2,1,1)-EGARCH(1,1)-std Model fitted to 

Returns Series of Zenith Bank 
ARIMA(2,1,1)-EGARCH(1,1)-std Model fitted to 

Outlier Adjusted Return Series of Zenith Bank 

Unconditional Variance 5.887684e−36 5.118125e−5 

Kurtosis Coefficient 26.3794 3.5746 
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models in the presence of outliers becomes more tractable irrespective of the 
choice of distribution of the innovations. In addition, this study highlights that 
the applicability of iterative methods in time series modeling and in gauging 
model efficiency yet failed to consider the application of iterative methods in fo-
recasting. It is recommended that further studies be extended to focus mainly on 
the application of iterative methods in maximum likelihood estimation of 
GARCH parameters. 
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