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Abstract 
A fuzzy logic compensator is designed for feedback linearizable nonlinear 
systems with deadzone nonlinearity. The classification property of fuzzy logic 
systems makes them a natural candidate for the rejection of errors induced by 
the deadzone, which has regions in which it behaves differently. A tuning al-
gorithm is given for the fuzzy logic parameters, so that the deadzone com-
pensation scheme becomes adaptive, guaranteeing small tracking errors and 
bounded parameter estimates. Formal nonlinear stability proofs are given to 
show that the tracking error is small. The fuzzy logic deadzone compensator 
is simulated on a one-link robot system to show its efficacy. 
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1. Introduction 

Very accurate control is required in mechanical devices such as xy positioning 
tables [1], overhead crane mechanisms [2], robot manipulators [3], etc. For 
many of these devices, the performance is limited by deadzone, friction, and 
backlash. Precise positioning, in particular, control of very small displacement is 
an especially difficult problem for micro positioning devices. Due to the non-
analytic nature of the actuator nonlinearities and the fact that their exact para-
meters (e.q. width of deadzone) are unknown, such systems present a challenge 
for the control design engineer. A number of control strategies have been devel-
oped to overcome the problems caused by the deadzone effects. The most rele-
vant published strategies are: deadzone compensation using neural networks [4] 
and variable structure control [5]. Control of gear transmission servo system 
with asymmetric deadzone nonlinearity is proposed in [6] and [7]. Compensa-
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tion for nonsymmetrical deadzones is considered in [8] for nonlinear systems in 
Brunosky form with known nonlinear functions, and for unknown nonlinear 
canonical form systems in [9] where a backstepping approach is used. The use of 
fuzzy logic systems has accelerated in recent years in many areas, including 
feedback control [10]. Fuzzy logic deadzone compensation schemes are provided 
in [11] [12] [13]. Particularly important in fuzzy logic control are the universal 
function approximation capabilities of fuzzy logic systems [14] [15]. The fuzzy 
logic systems offer significant advantages over adaptive control, including no 
requirement for linearity in the parameters assumptions and no need to com-
pute a regression matrix for each specific system. Actuator nonlinearities are 
typically defined in terms of piecewise linear functions according to the region 
to which the argument belongs. The fuzzy logic function approximation proper-
ties and ability of fuzzy logic systems to discriminate information based on re-
gions of the input variables, make them an ideal candidate for compensation of 
non-analytic actuator nonlinearities. 

In this paper, we present the deadzone compensation method for feedback li-
nearizable nonlinear systems. In Section 2, a brief overview on the feedback li-
nearization theory is given [16] [17]. The fuzzy deadzone compensation tech-
nique is described in Section 3. An adaptive fuzzy deadzone compensation 
scheme combined with a feedback linearizing control law is developed and ana-
lyzed in Section 4. Also, a practical bound on the tracking error from the track-
ing error dynamics is derived. The zero dynamics systems caused by joint 
damping are analyzed and shown to be bounded-input, bounded-state stable. 
Section 5, the fuzzy deadzone compensation is applied to control a single link 
manipulator with deadzone nonlinearity as well as joint flexibility and damping. 
In addition, we investigate the performance of the fuzzy logic deadzone com-
pensation through the computer simulations. 

2. Feedback Linearization 

Feedback linearization has been proved to be a powerful tool in control of non-
linear systems. The Lie derivative [18] of two functions ( )h x R∈  and  
( ) ( ) ( ) ( ) T

1 2, , , n
nf x f x f x f x R= ∈  

, for nx R∈ , is defined as 

1
1

f n
n

h hL h f f
x x
∂ ∂

= + +
∂ ∂

 .                    (1) 

For ( ) ng x R∈ , and recursively with 0
fL h h= , it follows that 

( ) f
g f

L h
L L h x g

x
∂

=
∂

                       (2) 

( )1 , 1, 2,
i
fi i

f f f

L h
L h L L h f i

x
+ ∂

= = =
∂

                (3) 

A single input single output nonlinear system 

( ) ( )
( )

, ,

,

nx f x g x u x R u R

y h x y R

= + ∈ ∈

= ∈



                
 (4) 
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has relative degree ρ  at a point 0x  if 1) ( ) 0k
g fL L h x =  for ( )0x N x∀ ∈  (a 

neighborhood of 0x ), 0,1,2, , 2k ρ∀ = −  and 2) ( )1
0 0g fL L h xρ− ≠ . 

Assume that the system (4) has relative degree n at x and define 

( )

( )
( )
( )

( )

( )
( )
( )

( )

1

2
2

3

1

f

f

n
fn

h xT x
L h xT x
L h xz T x T x

L h xT x −

  
  
  
  = = =
  
  
  

   



                 (5) 

which is a diffeomorphism. It follows that 

( ) ( )
1

1

, 2,3, ,k k
n n

n f g f

T T k n

T L h x L L h x u
−

−

= =

= +







                    (6) 

With the new state ( )z T x= , the feedback control law 

( )
( )( )1

1 n
fn

g f

u r L h x
L L h x−= −                    (7) 

linearizes the system (4), i.e., which leads to the system 

1, 1, 2, , 1i i

n

z z i n
z r

+= = −

=




                     
 (8) 

which can be put in a matrix form z Az br= + , where r R∈  is a new input. 
Here we note that ( )T x  should be a diffeomorphism in the region, which is 
reachable by ( )x t driven by ( )r t . 

If the system (4) has relative degree nρ <  at x, the transformed system be-
comes 

( ) ( ) ( )
1 2 2 3 1

0 0 0 0

, , ,

, , , ,

z z z z z z

z b a u q
ρ ρ

ρ ξ ξ ξ ξ ξ ξ ξ
−= = =

= + =

  






              
 (9) 

where T
1 2, , ,z z zρξ  =  

 and T
0 1, , nz zρξ + =  

. The zero dynamics system 

is ( )0 0,qξ ξ ξ=  [18] [19]. A feedback linearizing controller  

( )( ) ( )( )0 01 , ,u a r bξ ξ ξ ξ= −
 

may ensure that ξ  is bounded. However, even if 
the system zero dynamics ( )0 00,qξ ξ=  are stable, a bounded ξ  may not en-
sure that 0ξ  is also bounded. For a tracking problem 1 2, , ,z z zρ  do not 
converge to zero. The zero dynamics subsystem is driven by the “inputs” iz , 

1,2, ,i ρ=  , with its own states as jz , 1, 2, ,j nρ ρ= + +  . For bounded in-
puts iz , 1,2, ,i ρ=  , and with arbitrary initial conditions ( )0jz , for ( )jz t  to 
be bounded, the condition is that the zero dynamics subsystem ( ) ( )( )j jz t q z t= , 

1, 2, ,j nρ ρ= + +  , is bounded input, bound-state stable [19]. 

3. Compensation of Deadzone Nonlinearity 

In this section a fuzzy logic precompensator is designed for the non-symmetric 
deadzone nonlinearity. It is shown that the fuzzy logic approach includes and 
subsumes approaches based on switching logic and indicator functions [7] [8]. 
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This brings these references very close to fuzzy logic work in [11], and poten-
tially allows for more exotic compensation schemes for actuator nonlinearities 
using more complex decision (e.g. membership) functions. This section provides 
a rigorous framework for fuzzy logic applications in deadzone compensation for 
feedback linearization systems. 

If u, v are scalars, the nonsymmetric deadzone nonlinearity, shown in Figure 
1, is given by 

( )
,

0,
,

v d v d
u N v d v d

v d d v

− −

− +

+ +

+ < −
= = − ≤ <
 − ≤

               (10) 

The parameter vector [ ]Td d d+ −=  characterizes the width of the system 
deadband. In practical control systems the width of the deadzone is unknown, so 
that compensation is difficult. Most compensation schemes cover only the case 
of symmetric deadzones where d d− += . 

The nonsymmetric deadzone may be written as 

( ) ( )du N v v sat v= = −                      (11) 

where the nonsymmetric saturation function is defined as 

( )
,

,
,

d

d v d
sat v u d v d

d d v

− −

− +

+ +

− < −
= − ≤ <
 ≤

                (12) 

To offset the deleterious effects of deadzone, one may place a precompensator 
as illustrated in Figure 2. There, the desired function of the precompensator is  

 

 
Figure 1. Deadzone nonlinearity. 

 

 
Figure 2. Fuzzy deadzone compensation with feedback linearization. 
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to cause the composite throughput from w to u to be unity. The power of fuzzy 
logic systems is to that they allow one to use intuition based on experience to de-
sign control systems, then provide the mathematical machinery for rigorous 
analysis and modification of the intuitive knowledge, for example, through 
learning or adaptation, to give guaranteed performance, as will be shown in Sec-
tion 4. Due to the fuzzy logic classification property, they are particularly po-
werful when the nonlinearity depends on the region in which the argument v of 
the nonlinearity is located, as in the non-symmetric deadzone. 

A deadzone precompensator using engineering experience would be discon-
tinuous and depend on the region within which w occurs. It would be naturally 
described using the rules 

If (w is positive ) then ( ˆv w d+= + ) 

If (w is negative) then ( ˆv w d−= − )              (13) 

where 
Tˆ ˆ ˆd d d+ −

 =    is an estimate of the deadzone width parameter vector d. 
To make this intutive notion mathematically precise for analysis define the 

membership function’s 

( )

( )

0, 0
1, 0

1, 0
0, 0

w
X w

w

w
X w

w

+

−

<
=  ≤

<
=  ≤                     

 (14) 

One may write the precompensator as 

Fv w w= +                          (15) 

where Fw  is given by the rule base. 
If ( ( )w X w+∈ ) then ( ˆ

Fw d+= ). 

If ( ( )w X w−∈ ) then ( ˆ
Fw d−= − ).               (16) 

The output of the fuzzy logic system with this rule base is given by 

( ) ( )
( ) ( )

ˆ ˆ
F

d X w d X w
w

X w X w
+ + − −

+ −

−
=

+
.                  (17) 

The estimates d̂+ , d̂−−  are, respectively, the control representive value of 
( )X w+  and ( )X w− . This may be written (note ( ) ( ) 1X w X w+ −+ = ) as 

( )Tˆ
Fw d X w=                         (18) 

where the fuzzy logic basis function vector given by 

( ) ( )
( )

X w
X w

X w
+

−

 
=  − 

                     (19) 

is easily computed given any value of w. 
It should be noted that the membership functions (14) are the indicator func-

tions and ( )X w  is similar to the regressor [6] [7] [8] [9]. The composite 
through from w to u of the fuzzy logic compensator plus the deadzone is 
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( ) ( ) ( ) .F F d Fu N v N w w w w sat w w= = + = + − +           
 (20) 

The fuzzy logic compensator may be expressed as follows 

( )Tˆ
Fv w w w d X w= + = +                    (21) 

where d̂  is estimated deadzone widths. 
Given the fuzzy logic compensator with rulebase (16), the throughput of the 

compensator plus deadzone is given by 

( )T Tu w d X w d δ= + − 

                    (22) 

where the deadzone width estimation error is given by 
ˆd d d= −                           (23) 

and the modeling mismatch term δ  is bounded so that Mδ δ<  for some 
scalar Mδ . 

4. Adaptive Fuzzy Logic Deadzone Compensation  
with Linearization 

In this section we show how to provide fuzzy logic deadzone compensation for 
deadzone in feedback linearizable nonlinear system. The proposed control 
structure is shown in Figure 2. The fuzzy logic deadzone compensator is given 
by (21). We show to tune or learn the deadzone width estimates d̂  on-line so 
that the tracking error is guaranteed small and all internal states are bounded. 
This turns the deadzone compensator into an adaptive fuzzy logic deadzone 
compensator. 

The system has a deadzone nonlinearity ( )N ⋅  with control input v, that is 

( ) ( ) ( )
( )

,x f x g x u u N v

y h x

= + =

=



                  (24) 

From the (24) and (22) 

( ) ( ) ( )( )Tx f x g x w dX w d δ= + + − 

 .               (25) 

The control task now is to design a feedback row of w and a fuzzy logic logic 
tuning law for d  to ensure desired closed loop system properties. 

1) Design with exact feedback linearization [20]: In this case, the assumption 
is that the system (25) has relative degree n. Introduce the ( ) nz T x R= ∈ , where 
( )T x  is a diffeomorphism defined in (5). Then it follows that 

( ) ( ) ( ) ( )( )( )T TTz f x g x w g x d X w d
x

δ∂
= + + −
∂

 

 .         (26) 

Choose the feedback linearizing control input w as 

( ) ( ) ( )( )11
f n

g n

w r L T x r x
L T

α β−= − = −              (27) 

where ( )nT x  is the last row of ( )T x , ( ) g nx L Tα = , and ( ) f nx L Tβ = . This 
control law has the properties 
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( ) ( ) ( ) ( )( )1T f x g x x x Az
x

α β−∂
− =

∂               
 (28) 

( ) ( )1T g x x b
x

α−∂
=

∂
                     (29) 

where A and b are from (8). 
With the controller (27), we can rewrite (26) as 

( ) ( )( )T TTz Az br g x d X w d
x

δ∂
= + + −

∂
 

 .             (30) 

Then we choose the linear feedback control law 

dr Fz r= − +                          (31) 

where 1 nF R ×∈  is such that A bF−  has desired stable eigenvalues and dr  is 
a reference input, and introduce the reference system as 

( )m m dz A bF z br= − + .                    (32) 

For the tracking error mz z z= − , it follows from (30)-(32) that 

( ) ( ) ( )( )T T
m

Tz z z A bF z g x d X w d
x

δ∂
= − = − + −

∂
 



             (33) 

Theorem 1: Given the system (24), select the tracking control (31) and dead-
zone compensator (21), where ( )X w  is given by (19). The estimated deadzone 
widths be provided by the fuzzy logic system tuning algorithm 

( )
( ) ( )
( ) ( )( )

T

T

if 0
ˆ

ˆ if 0

x X w z Pb
d t

x X w z kd z Pb

α δ

α δ

 Γ == 
Γ − ≠





 

         (34) 

where the scalar 0k >  and Γ  is chosen dialgonal with positive diagonal elements. 
If 0δ = , then all closed loop signals are bounded. If 0δ ≠ , The tracking error 
evolves with a practical bound 

( ) 2
0

min4
x Pbc

z
Q k

α
≤ .                      (35) 

where minQ , minimum singular value of Q. 
Proof: Define a Lyapunov function candidate for error dynamics (33) as 

( ) ( )T T 11,
2

V z d z Pz d d−= + Γ  

                     (36) 

where n nP R ×∈  with T 0P P= >  satisfies the Lyapunov equation  
( ) ( )T 2P A bF A bF P Q− + − = −  for a chosen n n×  matrix T 0Q Q= > . 
Differentiating (36) and using (29) and (33) yields 

( ) ( ) ( ) ( ) ( ) ( )( )T T T T T 1V t z t Qz t x z t Pb d X w d d dα δ −= − + − + Γ 

   


   .   (37) 

If 0δ = , the tuning algorithm (34) results in ( ) ( )T 0V z t Qz t= − ≤

  . This 
means that ( )V t  is bounded and 2

mz z z L= − ∈ , i.e., z  and d  are bounded, 
and so z and d. Since ( )z T x=  is a diffeomorphism. ( )x t  is also bounded, 
and are w and z , which implies that ( ) ( )( )lim 0t mz t z t→∞ − = . 
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If 0δ ≠ , substitution the tuning algorithm (34) gives 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( ){ }

T T T T

1 T ˆT

V t z t Qz t x z t Pb d X w d

d x X w z kd z Pb

α δ

α−

= − + −

+ Γ − Γ −

 


  



 

.        (38) 

where ˆd d d= −  and 0d =  by deadzone widths is constant, ˆd d= − 

 . 
Therefore, 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

T T T

22
M M

V t z t Qz t x zPbd d x k d d z Pb

Q z x z Pb d d x kd z Pb x k d z Pb

α δ α

α δ α α

= − − + −

≤ − − + −

  


   

  

   

 (39) 

where Mδ δ< , Md d<  for some scalar Md , Mδ  respectively, and bounding 
properties were used. Therefore 

( ) ( ) ( )
2

min 0V t z Q z x Pbc d x k d Pbα α ≤ − − +  
 



          (40) 

where o M Mc kd δ= − . 
This is negative as long as the quantity in the brace is positive. To determine 

conditions for this, complete the square to see that V  is negative as long as 
either 

( ) 2
0

min4
x Pbc

z
Q k

α
>                        (41) 

or 

0c
d

k
> .                          (42) 

According to the standard Lyapunov theorem, the tracking error decreases as 
long as the error is bigger than the right-hand side of Equation (41). This implies 
Equation (43) gives a practical bound on the tracking error 

( ) 2
0

min4
x Pbc

z
Q k

α
≤ .                      (43) 

Also, Lyapunov extension shows that the deadzone width bound, d , is 
bounded to a neighborhood of the right hand side of Equation (42). 

2) Design for systems with zero dynamics: When the system relative degree is 
nρ < , the system can only be partially feedback linearized. Let ( ) nz T x R= ∈  

be a diffeomorphism. In this case, there are two parts of  
( ) ( ) T

1: , ,cz T x T x z zρξ  = = =  
, which is the feedback linearization part, and 

( ) T
0 1, ,z nT x z zρξ + = =  

, which is the zero dynamics. Similar to (26), we can 
obtain 

( ) ( ) ( ) ( )( )( )
( ) ( )( )

T T

T T

f

c

T
f x g x w g x d X w d

x
T

A b r g x d X w d
xρ ρ

ξ δ

ξ δ

∂
= + + −

∂
∂

= + + −
∂

 

 

          (44) 

by choosing a control law ( ) ( )( )1w x r xα β−= − , which has the properties 
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( ) ( ) ( ) ( )( )1fT
f x g x x x A

x ρα β ξ−∂
− =

∂
 

( ) ( )1fT
g x x b

x ρα −∂
=

∂
                     (45) 

The zero dynamics system then is ( )0 0,qξ ξ ξ= . The reference model is 
similar to that in (32) but mz Rρ∈ . Defining the new tracking error mz zξ= − ; 
the fuzzy logic tuning algorithm is of the same form as that in (34) which 
ensures that ξ  and d̂  are bounded. If the zero dynamics system is bounded 
input, bounded-state stable, the system state z is bounded, and so is x. 

5. Simulation Results 

In this section, we illustrate the effectiveness of fuzzy logic deadzone compensa-
tion with feedback linearization by computer simulation. Consider the control of 
a single link manipulator with joint flexibility and damping as well as with 
deadzone nonlinearity in Figure 3. 

( ) ( )
( ) ( ) ( )

1 1 1 2 1 2

2 1 2 1 2

sin 0

,
e

e

Iq MgL q k q q b q q

Jq k q q b q q u u N v

+ + − + − =

− − − − = =

  

  

            (46) 

where 1q , 2q  are the angular positions of the link and motor, I and J are the 
inertia, ek  is the elasticity constant of the joint spring, M and L represent the 
mass and the position of the center of gravity of the link, and u is the torque 
applied at the motor. With the state variables 1 1x q= , 2 1x q=  , 3 2x q= , 

4 2x q=  , this system can be expressed as that in (24). 
For the system (46) with flexibility only, i.e., 0ek > , 0b = , as in [21], a 

diffeomorphism ( )T x  is 

( )
( )

( ) ( )

( ) ( )

1 1 1

2 2 2

3 3 1 1 3

4 4 2 1 2 4

sin

cos

e

e

z T x x

z T x x
kMglz T x x x x

I I
kMglz T x x x x x

I I

= =

= =

= = − − −

= = − − −

             (47) 

and the feedback linearizing control is 
 

 
Figure 3. A flexible one link robot. 
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( )( )

( )

4 4

2
1 2 1

1 3 1

1

sin cos

cos

g f

e

e

e e e

w L T r L T

kIJ Mgl Mglr x x x
k I I I

k k k Mglx x x
I I J I

= −

  = − + +  
 

 + − + +  
 

           (48) 

For the system (46) with joint flexibility and damping, i.e., 0ek > , 0b > , it 
can be verified that it has a relative degree of three and can only be partially 
feedback linearized. With 

( )
( )

( ) ( ) ( )

1 1 1

2 2 2

3 3 1 1 3 2 4sin e

z T x x

z T x x
kMgl bz T x x x x x x

I I I

= =

= =

= = − − − − −
        

 (49) 

the partial feedback linearization control input is 

( )

( )

2 1 1 3

2 4

cos e e

e

k kIJ Mgl bw r x x x x
b I I I J

k b b b x x
I I I J

  = + − + −  
 

  + − + −   
   

          (50) 

which results in the partial linear system 1 2z x= , 2 3z z= , 3z r= . With 
( )4 4 3z T x x= =  and ( ) [ ]T1 2 3 4, , ,T x z z z z= , ( )T x x∂ ∂  is nonsingular, i.e., 

( )T x  is diffeomorphism. It then follows that 

4 4 3 1 1 2sine ek kI Mglz z z z z z
b b b b

= − + + + +              (51) 

which is a bounded input, bounded state stable zero dynamic system. 
In both cases, the control signal w is applied to a fuzzy logic deadzone 

compensator for the deadzone nonlinearity ( )u N v= . Some simulation results 
for fuzzy logic deadzone compensation of the system (46) with deadzone widths 

0.2d+ = , 0.2d− = −  are given in Figure 1 for the joint flexibility case. The 
system parameters are as follows: [ ]1 kgM = , [ ]9.8 rad secg = , [ ]1 mL = , 

2 21.5 kg mI ML  = = ⋅  , 20.2 kg mJ  = ⋅  , [ ]10 N m radek = ⋅ ,  
20.07 kg m secb  = ⋅  . The tracking response without and with deadzone 

nonlinearity is shown in Figure 4(a) and Figure 4(b) for ( )sin 2π 1800dr t= . 
The response with a fuzzy deadzone compensator is shown in Figure 4(c), 
showing significiant performance improvement. Figure 4(d) shows estimates of 
deadzone widths. Simulation results for the joint flexibility plus damping case 
are shown in Figure 5 for ( )sin 2π 1800dr t= . These results indicates that the 
fuzzy deadzone compensation significantly improves system tracking performance. 

6. Conclusion 

A fuzzy logic deadzone compensator has been proposed for feedback linearizable 
nonlinear systems. The classification property of fuzzy logic systems makes them 
a natural candidate for offsetting this sort of actuator nonlinearity having a  
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Figure 4. System response with flexibility (a) with deadzone nonlinearity, (b) without deadzone 
nonlinearity, and (c) with fuzy logic deadzone compensation. (d) Estimates of deadzone widths. 

 

 
Figure 5. System response with flexibility and damping (a) with deadzone nonlinearity, (b) without 
deadzone nonlinearity, and (c) with fuzy logic deadzone compensation, (d) estimates of deadzone widths. 
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strong dependence on the region in which the arguments occur. It was shown how 
to tune the fuzzy logic parameters so that the unknown deadzone parameters are 
learned on line, resulting an adaptive deadzone compensator. Using nonlinear 
stability techniques, the bound on tracking error is derived from the tracking 
error dynamics. Simulation results show that significantly improved system 
performance can be achieved by the proposed adaptive fuzzy logic compensation. 
The future research is to get the results of experiment on robot manipulators. 

Conflicts of Interest 

The author declares that there is no conflict of interest regarding the publication 
of this paper. 

References 
[1] Xu, Q. (2014) Design and Development of a Compact Flexure-Based XY Precision 

Positioning System with Centimeter Range. IEEE Transactions on Industrial Elec-
tronics, 61, 893-903. https://doi.org/10.1109/TIE.2013.2257139 

[2] Chang, C.Y. (2007) Adaptive Fuzzy Controller of the Overhead Cranes with Nonli-
near Disturbance. IEEE Transactions on Industrial Informatics, 3, 164-172.  
https://doi.org/10.1109/TII.2007.898433 

[3] Kormushev, P., Deniris, Y. and Caldwell, D.F. (2015) Encoderless Positional Con-
trol of a Two Link Robot Manipulator. Robotics and Automation, Seattle, 943-949. 

[4] He, W., David, A.S., Yin, Z. and Sun, C. (2016) Neural Network Control of a Ro-
botic Manipulator with Input Dadzone and Output Constraint. IEEE Transactions 
on Systems, Man, and Cybernetics: Systems, 46, 759-770.  
https://doi.org/10.1109/TSMC.2015.2466194 

[5] Utkin, V.I. (1993) Sliding Mode Control Design Principles and Applications to 
Electric Drives. IEEE Transactions on Industrial Electronics, 40, 23-36.  
https://doi.org/10.1109/41.184818 

[6] Yu, Z., Ju X. and Ding, Z. (2016) Control of Gear Transmission Servo Systems with 
Asymmetric Deadzone Nonlinearity. IEEE Transactions on Control Systems Tech-
nology, 24, 1472-1479. https://doi.org/10.1109/TCST.2015.2493119 

[7] He, W., He, X. and Sun, C. (2017) Vibration Control of an Industrial Moving Strip 
in the Presence of Input Deadzone. IEEE Transactions on Industrial Electronics, 64, 
4680-4689. 

[8] Recker, D.A., Kokotovic, P.V., Rhode, D. and Winkelman, J. (1991) Adaptive Non-
linear Control of Systems Containing a Deadzone. IEEE Conference on Decision 
and Control, Brighton, 11-13 December 1991, 2111-2115.  
https://doi.org/10.1109/CDC.1991.261510 

[9] Tian, M. and Tao, G. (1996) Adaptive Control of a Class of Nonlinear Systems with 
Unknown Deadzones. IFAC World Congress, San Francisco, 209-214. 

[10] Kumar, R. and Kumar, M. (2015) Improvement Power System Stability Using Uni-
fied Power Flow Controller Based on Hybrid Fuzzy Logic PID Tuning in SMIB Sys-
tem. Green Computing and Internet of Things, Nodia, October 2015, 815-819.  
https://doi.org/10.1109/ICGCIoT.2015.7380575 

[11] Jang, J.O. (2005) Deadzone Compensation of an XY Positioning Table Using Fuzzy 
Logic. IEEE Transactions on Industrial Electronics, 52, 1696-1701.  

https://doi.org/10.4236/am.2019.103008
https://doi.org/10.1109/TIE.2013.2257139
https://doi.org/10.1109/TII.2007.898433
https://doi.org/10.1109/TSMC.2015.2466194
https://doi.org/10.1109/41.184818
https://doi.org/10.1109/TCST.2015.2493119
https://doi.org/10.1109/CDC.1991.261510
https://doi.org/10.1109/ICGCIoT.2015.7380575


J. O. Jang 
 

 

DOI: 10.4236/am.2019.103008 99 Applied Mathematics 
 

https://doi.org/10.1109/TIE.2005.858702 

[12] Lewis, F.L., Tim, W.K., Wang, L.Z. and Li, Z.X. (1999) Deadzone Compensation in 
Motion Control Systems Using Adaptive Fuzzy Logic Control. IEEE Transactions 
on Control Systems Technology, 7, 731-742. https://doi.org/10.1109/87.799674 

[13] Oh, S.Y. and Park, D.J. (1998) Design of New Adaptive Fuzzy Logic Controller for 
Nonlinear Plants with Unknown or Time-Varing Dead Zones. IEEE Transactions 
on Fuzzy Systems, 6, 481-492. 

[14] Lv, M., Baldi, S. and Liu, Z. (2019) The Non-Smoothness Problem in Disturbance 
Observer Design: A Set Invariance-Based Adaptive Fuzzy Control Method. IEEE 
Transactions on Fuzzy Systems, 27, 598-604.  
https://doi.org/10.1109/TFUZZ.2019.2892353 

[15] Yang, C., Jiang, Y., Na, J., Li, Z., Cheng, L. and Su, C.Y. (2019) Finite Time Conver-
gence Adaptive Fuzzy Control for Dual Arm Robot with Unknown Kinematic and 
Dynamics. IEEE Transactions on Fuzzy Systems, 21, 759-770.  
https://doi.org/10.1109/TFUZZ.2018.2864940 

[16] Arif, J., Ray, S. and Chaudhuri, B. (2014) Multivariable Self Tuning Feedback Linea-
rization Controller for Power Oscillation Damping. IEEE Transactions on Control 
System Technology, 22, 1519-1526. https://doi.org/10.1109/TCST.2013.2279939 

[17] Park, H., Chwa, D. and Hong, K.S. (2007) A Feedback Linearization Control of 
Container Crane: Varying Rope Length. International Journal of Control, Automa-
tion and Systems, 5, 379-387. 

[18] Isidori, A. (1995) Nonlinear Control Systems. 3rd Edition, Springer-Verlag, Berlin.  
https://doi.org/10.1007/978-1-84628-615-5 

[19] Krstic, M., Kanellakopoulos, I. and Kokotovic, P.V. (1995) Nonlinear and Adaptive 
Control Design. Wiley, New York. 

[20] Slotine, J.J.E. and Li, W. (1991) Applied Nonlinear Control. Englewood Cliffs, Pren-
tice Hall. 

[21] Spong, M.W. and Vidyasagar, M. (1989) Robot Dynamic and Control. Wiley, New 
York. 

 
 

https://doi.org/10.4236/am.2019.103008
https://doi.org/10.1109/TIE.2005.858702
https://doi.org/10.1109/87.799674
https://doi.org/10.1109/TFUZZ.2019.2892353
https://doi.org/10.1109/TFUZZ.2018.2864940
https://doi.org/10.1109/TCST.2013.2279939
https://doi.org/10.1007/978-1-84628-615-5

	Fuzzy Logic Deadzone Compensation with Feedback Linearization of Nonlinear Systems
	Abstract
	Keywords
	1. Introduction
	2. Feedback Linearization
	3. Compensation of Deadzone Nonlinearity
	4. Adaptive Fuzzy Logic Deadzone Compensation with Linearization
	5. Simulation Results
	6. Conclusion
	Conflicts of Interest
	References

