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Abstract 
In this work, a tool that allows visualizing the probability of the power de-
mand according to the temperature and the hours of the day is presented. 
This aim contributes to the decision making support for the transformer and 
its service administration. The objective is to represent the demand accurately 
as a color statistical map based on two variables: the time of day and the am-
bient temperature. Since the daily energy consumption is periodic regarding 
the hours of the day in terms of several days, its representation with Gaussian 
models becomes difficult, but it is simplified when working with circular sta-
tistics. The circular statistics used here is the Von Mises distribution, which 
has the parameters mean address and kappa concentration. Results obtained 
from measurements made over a year in a medium-voltage transformer with 
intervals of 60 minutes are shown. 
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1. Introduction 

However, there are factors that affect consumption and therefore infrastructure. 
As of administration of energy transport ranging from low to medium voltage 
levels, several studies have been carried out such as prediction of time-series for 
estimation of the load of the distribution of transformers [1], life power of 
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transformers submerged in oil, the correlation of life and temperature [2], the 
chemical indicators of the degradation of insulating paper in transformers sub-
merged in oil [3], the estimation of lifelong service requested by their insulation 
[4], and other technologies developed [5] for monitoring of variables in 
real-time for early-bird warning, alarms and control in the operation of the 
substation. Mackenzie et al. [6] present some of the recent developments in on-
line-monitoring and diagnostic techniques that help substation’s operators know 
the condition of their transformers and make useful decisions about continuous 
operation, maintenance or replacement. However, recently in [7] [8], authors 
propose the use of neural networks for temperature prediction using a lifelong 
estimation model of the residual life of the transformer. 

This proposed system is capable of real time on-line monitoring, early warn-
ing, control and alarm for substation operation. Thus, it can be concluded that 
the problem consisting in making decisions on energy transport networks for 
home consumption demand is mainly due to inclemency of climate change. De-
cisions are further intended to improve the reliability of the system, or maintain 
it within the energy quality standards that regulate the relevant public entity, 
trying to preserve the installed infrastructure and quality of service. So, there are 
commitments for an uninterrupted service and a moderate maintenance cost to 
satisfy the user with an adequate fee. 

This problem can be addressed by establishing appropriate models with anal-
ysis methodologies that involve real situations through data available to 
represent the process. In this article, data from measurements obtained from a 
Control Center (CC) in a Transformer Substation of the EPEC company, dis-
tributor of the Cordoba Capital City, Argentina, were used to obtain electrical 
recording data for a full year from a profile of load. The CC is located in Univer-
sity Campus of the National University of Córdoba. The recordings were taken 
by using DISCAR S.A company’s equipment [9], that consists of a DIMEC con-
centrator [10] and smart meters DIMET3-P-CT [11]. 

The meters associated to a DC concentrator perform electrical registers such 
as, voltage, current, maximum active power, active and reactive energy, fre-
quency and power-factor correction every 15 minutes to the DIMEC concentra-
tor, which in each turn is connected to the control center. In this paper, the 
problem addressed follows the IEEE Standard C57.91-1995 by which establishes 
parameters and, the impact of the infrastructure is represented by the transfor-
mer’s life hours. Therefore, the administrator only requires information ade-
quately processed to make decisions. This work proposes a method based on 
circular statistics that shows the probable state of charge according to the range 
of ambient temperature in question, according to the day-time of the day. This 
work is organized as follows: in Section II the formulation of the problem is 
made taking into account the analysis of the data that are measured from the 
transformer by industrial instruments; Section III describes the methodology 
implemented where circular statistics (Von-Mises distribution) is introduced as 
an alternative to detect non-repetitive patterns. In Sections IV and V the imple-
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mentation is presented with real data measured for the daily demand and the 
results obtained. Finally, in Section VI a discussion and conclusions are pre-
sented, taking into account after the analysis, the temperature curves for deci-
sion making. 

2. Problem Formulation 

The problem consists of making decisions associated with the distribution of power 
electrical energy in medium and low voltage, maintaining the standards of service 
quality and simultaneously avoiding the deterioration of the infrastructure, specifi-
cally the transformer. 

Decisions can be diverse, starting with planning maintenance tasks in the trans-
former and reaching extreme actions such as the disconnection of loads from it, this 
at the expense of the service quality and therefore seeks to avoid. In order to make 
the right decision, it is necessary to have easy to interpret information that 
represents the working scenario of the transformer, according to the ambient tem-
perature and the time of day. Here a representation of the state of the transformer is 
proposed by means of a statistical heat map. 

The problem is faced by starting with the data analysis that is measured from the 
transformer by the appropriate instruments [9] [10] [11], which provides load val-
ues (volt ampere, VA) and ambient temperature (˚C). 

The variables are related to each other through the user because when the tem-
perature is located in warm values the user tends to consume more energy. In deci-
sion-making according to the power load values and temperature there are recom-
mendations [12] [13] [14] [15] to take into account the deterioration of the trans-
former as it is subjected to severe working conditions [2] [3] [4]. Therefore, for fol-
lowing such recommendations, the daily demand must be expressed in accordance 
with the standard [12] [13] [14] [15]. 

The function that approaches the power load demand called Equivalent load, EL, 
is defined as 

2 2 2 2
1 1 2 2 3 3

1 2 3

,N N
L

N

L t L t L t L t
E

t t t t
+ + + +

=
+ + + +





                (1) 

where 1 2, ,L L   are the load steps in VA, N is the total number of loads consi-
dered, 1 2, ,t t   is the duration in hours of each load. For example given a full 
day, this value is indicated in the legend of Figure 1. However, this number is 
not used in the standard but parameters that describe the behavior through ap-
proximations. The power demand is parameterized by four values as detailed in 
standard [14] [15], which simplify the power demand function called K1, K2, T1 
and T2. These parameters are related to the maximum consumption (K2), the 
base (K1), and the duration in hours of each level (T2 and T1). 

Graph Representation of the Demand Function 

A simple but oversized representation is to take the maximum value of the de-
mand in a cycle of 24 hours, and assume it with a duration of 6 hours for each 
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side of the peak, as shown by the red line in Figure 1. To compare with the 
measured demand, it is used the concept of effective value of the signal that is 
computed by Equation (1) for the whole day. The approximation suggested by 
the standards [14] [15] points out the use of four parameters K1, K2, T1 and T2 
as is shown for a day in Figure 1. These four parameters allow simplifying the 
description of the consumption function in a piece-wise function containing two 
steps, as recommended by the standard. Figure 1 shows the measured and ap-
proximate demands during a day. Note that an approximation of the daily de-
mand of Equation (1) has an error in the demand effective value by excess and 
the other approximation has it by default. 

Often the decisions are made by analyzing the time T2 [1], but this fact gives 
an idea of the deterioration that has suffered. For this reason, it is convenient to 
have more evident information related to the temperature and at the same time 
to detect possible alarm situations related to the excessive work of the transfor-
mer. 

Here, a method based on circular statistics that achieves the tuning of the ap-
proximate curve by the set {K1, K2, T1, T2} maintaining the same effective value 
as the measured demand is proposed. 

In addition, if the ambient temperature is taken into account, the process 
must be repeated for each thermal range and build a graphical representation.  

 

 
Figure 1. Measured daily power demand 37,945.86 VA computed by Equation (1) and 
equivalent. For the equivalent demand two calculations are shown: one by taking its 
maximum value (40,657.48 VA), and another by using the Standard´s recommendation 
(31,146.83 VA) [14] [15]. 
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Note that it is cumbersome if all the ranges overlap, or numerous graphics are 
generated, which must be mastered simultaneously. 

To facilitate the handling of information, this article proposes to generate a 
methodology for showing the probable charge state as a heat map with two in-
puts that are the hours of the day and the thermal range. 

3. Purposed Approach 

It is proposed to analyze the power demand according to the time of day, taking 
the ambient temperature as a parameter and represent a probability distribution 
function of the power consumption, thus obtaining a three-dimensional graphic 
or heat map. 

Since the daily consumption is a calendar date, and it has a temperature asso-
ciated with, the interpretation with Gaussian distributions for each hour be-
comes complex. In this class of problems that are cyclical, their interpretation is 
simplified when representing temporary variables with circular statistics. 

Circular statistics considers the data as points on the unit circle. By this way 
only the address of the data is of interest. In our case, the address is the time of 
day, so the unit circle is divided into 24 equal parts and each one is assigned a 
number of points proportional to the magnitude of the demand. 

Once the signal is represented in the unit circle, to use the Von Mises circular 
distribution, its two parameters must be calculated, which are the average direc-
tion and the kappa concentration parameter. With these parameters it is possible 
to represent the signal according to the distribution of Von Mises, analog to the 
Gaussian distribution. 

3.1. Circular Statistics Analysis 

In cases such as cyclic calendars processes with repetitions every given time pe-
riod, problems of Gaussian statistical analysis arise. 

The data can be represented by angular measurements giving the orientation 
or angles in the plane (circular data) or in space (spherical data) [16] [17]. 

Circular data is the simplest case of this category of data so-called directional 
data, where the measure is not scalar, but is angular or directional [18]. 

The basic statistical assumption is that the data is a random sample of a direc-
tion population. 

To deal with data of this nature it is necessary to use different statistics be-
cause the usual statistics used for linear data are inappropriate, given that is dif-
ficult to consider the periodic nature of this kind of processes. 

The directions in the plane can be observed either as unit vectors in the plane 
or as points in the unit circle. Therefore, each point x in the unit circle can be 
represented by an angle θ in Cartesian coordinates 

( ) ( )( )cos ,sen .x θ θ=                       (2) 

Let 1 2, , , nx x x  be samples whose corresponding angles are , 1, 2, ,i i nθ =  . 
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The average direction θ  of 1 2, , , nθ θ θ  is the direction of 1 2 nx x x+ + +  
which is the mass center (a.k.a. gravity center) x  of 1 2 nx x x+ + + . 

Therefore, if the Cartesian coordinates of xj are ( ) ( )( )cos ,senj jθ θ , then 
( ),C S  are the Cartesian coordinates of the mass center computed as 

1 1

1 1cos ,    sen .
n n

j j
j j

C S
n n

θ θ
= =

= =∑ ∑                  (3) 

Assuming that 1 2, , , nx x x  is a nonzero vector, in which case the resulting 
average length 

2 2R C S= +                          (4) 

is greater than zero, then θ  is the solution of the following equations 

( ) ( )cos ,    sen .C R S Rθ θ= =  (5) 

3.2. Measures of Concentration and Dispersion 

The resulting average length R  is the most important measure for dispersion 
in directional data. Let 1 2, , , nx x x  be unit vectors, then it is clear that 
0 1R≤ ≤ , from which follows that if the directions 1 2, , , nθ θ θ  are closely 
grouped, results 1R ≅ ; if 1 2, , , nθ θ θ  are very scattered in the range [0-2π] 
then 0R ≅ . 

3.3. Von Mises’s Distribution 

The Von Mises’s distribution is the most used in the unit circle [16] [18]. Indi-
cated as vM (μ, κ), with parameters (μ, κ) are the distribution center μ in the in-
terval [0, 2π] and the concentration κ whose reciprocal is the dispersion, ana-
logous to mean and variance of the Gaussian distribution. The Von Mises’s dis-
tribution has its density function defined by the expression 

( ) ( ) ( )( )
0

1 exp cos
2π

g
I

θ µ κ κ θ µ
κ

; , = −               (1) 

where I0 denotes the modified Bessel function of first type and order 0 

( ) ( )( )2π
0 0

1 exp cos d .
2π

I κ κ θ θ= ∫                  (2) 

Note that the Von Mises’s distribution is unimodal and is symmetric about θ 
= μ. In addition, the mode is for θ = μ and the antimode for θ = μ + π. The quo-
tient between the value of density in mode and the value of density in the anti-
mode is given by e2κ, so the higher the value of κ, the greater the grouping 
around mode. Observe that the larger the parameter κ its density function be-
comes more concentrated, as indicated in Figure 2. 

Note that the distribution deals with periodic data, and places them in the unit 
circle. The representation of Figure 2 can be done for each working temperature 
range, and generate a scheme with two variables, one is the temperature and the 
other the time of day. This makes it an adequate tool to represent the demand 
for electrical energy and add another dimension to incorporate the temperature  
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Figure 2. Von Mises distribution for μ = 0, as the parameter κ increases, the distribution 
is less flat. 

 
parameter. 

4. Implementation with Measured Data 

Time series of demand values measured during one year are available by acquisi-
tions every 15 minutes obtained through specialized equipment [9] [10] [11]. 

These measurements are arranged per day and are grouped according to the 
conditions of maximum temperature of the day, day of the week and season of 
the year (warm or cold) since it is related to the temperature of the transformer’s 
environment with the measurement. 

In accordance to the year’s season, ambient temperature ranges are defined 
for grouping the measurements, given warm season: 15 - 20, 20 - 25, 25 - 30, 30 - 
35, 35 - 40 (˚C) and cold season: 10 - 15, 15 - 20, 20 - 25, 25 - 30, 30 - 35 (˚C). 

Thus, the data are grouped according to the day of the week and the year’s 
season (Warm or Cold). In this way every Monday, every Tuesday, Wednesday, 
etc. from a year’s season belongs to the same group. 

After that each set is divided according to the maximum temperature ranges 
mentioned. Then each group of day of the week and season of year is divided 
into five subgroups. From each subgroup a representative day is selected to ana-
lyze, in accordance with the highest peak consumption. For the analysis, only 
representative daily measurements are used. 

4.1. Data Visualization 

Consumption can be represented in different ways with this data, depending on 
the need to observe the dependence of the demand according to the day of the 
week, the ambient temperature and the season of year. 

For example, real data of the same day with the same temperature range is 
been processed, and then for a week. Two seasons of temperature, warm and 
cold, are considered. The power consumption for a Monday whose maximum 
temperature is in the range 25˚C - 30˚C for the two seasons of the year is shown 
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in Figure 3. 
The analysis of a full week data for the warm season and another of the cold 

season for the same temperature range is shown in Figure 4, where both weeks 
are within the range of 30˚ - 35˚. Note that there is a big change in the consump-
tion between working days and holidays or weekends. So it is inferred that the 
analysis should be stated when consumption is relevant, as is the case of business 
days since the rest shows a very low consumption. It should be remembered that 
these data correspond to a transformer of the National University of Córdoba 
located in the University City of the City of Córdoba, Argentina. 

The consumption peak and the valley for each day of the week are shown in 
Figure 4. Two data series have been depicted with intention of observe some 
pattern or signature that serves to characterize it statistically. It can be seen that 
between business days for the same season a circular distribution like Von Mis-
es’s can be proposed [18]. 

 

 
Figure 3. Data of the same day and temperature range 25˚C - 30˚C for different seasons. 

 

 
Figure 4. Consumption of two weeks for warm and cold season with a thermal range 30˚ 
- 35˚. 
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4.2. Von Mises Probability Density Function  
for 24 Hours of Demand 

Now, represent the daily consumption using the Von Mises probability density 
function is proposed, and also show it according to the thermal ranges. To this 
end, the data must be on the unit circle. Figure 5 shows the process for Von 
Mises probability density function representation, with a large amount of data 
that is shown in the unit circle. Note that the data is normalized with its largest 
value and it must be considered along the analysis. 

The result of using the distribution with a single data per hour is also shown, 
for observing the sensitivity with the amount of data. 

The consumption of one day for two seasons is shown in Figure 6. A Wednesdays  
 

 
Figure 5. Correspondence of the time data versus its place in the unit circle, and the re-
sulting Von Mises probability density function for two thermal ranges. 

 

 
Figure 6. Comparison by Von Mises’s distribution of two days Wednesday of the same 
thermal range and different seasons. 
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of warm and cold season, together with their Von Mises’s distributions. Note 
that as the peak consumption increases, the probability density increases at the 
time the peak occurs. 

The time at which the peak of probability density appears is related to the 
moments of greatest consumption. Thus, the same graph can be compared in 
Figure 6 on two different days to see the change in the Von Mises’s distribution 
as a function of consumption, which should be read as the distribution of proba-
bilities of maximum consumption. 

In Figure 6 the red curve represents the consumption during a day Wednes-
day of the warm season in the range temperatures 30˚C - 35˚C, and the blue one 
on Wednesday in the same range but cold season. 

Observe that the demand for the highest temperature has a higher consump-
tion peak, an effect that is also noted in the higher peak of its probability density 
function. 

The distribution of a non-working day, such as Sunday, is shown in Figure 7, 
where it can be seen that the distribution has a significant quantitative change, 
since the consumption peak is at 3:00 pm for the warm season in the Wednesday 
gives 0.25 and on Sunday gives 0.165 at the same time on both days. Note that 
the trajectories describing the consumptions are very different but not those that 
describe the Von Mises distributions. The form is maintained with a mode and a 
dispersion, with its respective scale which facilitates the behavior interpretation 
of the demand. 

4.3. Using Von Mises for Daily Demand 

The average square value of the demand is explicit by Equation (1) for a single  
 

 
Figure 7. Comparison by Von Mises’s distribution of two days Sunday of the same ther-
mal range and different seasons. 
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day. This value is final and, of course, loses the information of the maximum 
value and the valley value that the demand has in the 24 hours. 

A representation recommended by the standard shows by Figure 1 in black 
and another used in practice in red. In this section, a representation of the de-
mand with the same tuple {K1, K2, T1, T2} based on the distribution of Von Mises 
is generated. 

To compute the parameters {K1, K2, T1, T2}, the peak of the Von Mises like-
lihood function detailed in the previous section is determined. The user assigns a 
percentage between 50% and 90% to this value that covers all available mea-
surements. 

Then, this value is been compared with the likelihood function hour to hour 
and the hours in which the likelihood function is greater than the percentage of 
the maximum are the hours that define T2. Once the hours that make up T2 are 
defined, K2 is calculated according to [15] by 

2
2

2
2

1 .
i T

t
t i

K W
T

+

=

= ∑                        (8) 

The consumption squares are added for the hours specified by T2 (i is the first 
hour whose likelihood function exceeds the percentage of the maximum pre-
viously determined), the square root of that sum is calculated and divided by T2. 
T1 is composed of all hours that do not form T2, and K1 is calculated equal that 
K2 but considering the demand only in the hours that make up T1. In Figure 8 
the approximation is shown using a percentage of 50% in green. 

 

 
Figure 8. Measured daily demand (37,945.86 VA) and equivalent. For the equivalent de-
mand three calculations were added, which are by taking maximum value (40,657.48 VA), 
by using the statistical computation and by using the Standard recommendation [14] [15] 
(31,146.83 VA). 
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The daily demand measured by the equipment is shown in blue. Thus, for the 
equivalent demand, three more calculations are shown, which result from taking 
the maximum value (red), by using the circular statistical computation (green), 
and by using the mechanism of the Standard (black) IEEE [15]. 

Note that there are different criteria to represent the daily demand of a trans-
former in low voltage and intends to represent the same feature. 

Decisions on the transformer are taken based on the value that the set {K1, K2, 
T1, T2} takes to determine its remaining life and to establish maintenance or 
testing programs. 

Note that depending on how the set {K1, K2, T1, T2} is taken, different values 
for daily power consumption are obtained as show Figure 8. 

The set obtained by the circular statistical method is the closest to the mean 
square value effectively measured, as indicated by the calculation of the daily 
consumption indicated in the legend. 

However, to facilitate the observation and detection of possible transformer 
overloads, it is more intuitive to observe the load as a heat map with hourly time 
and temperature inputs. 

5. Obtained Results 

The three-dimensional representation of consumption to facilitate the detection 
of critical points and valleys in consumption for real values is proposed to per-
form. To achieve a direct representation of the dependence of consumption with 
temperature, the Von Mises curves are plotted corresponding to the temperature 
ranges of a given season (warm or cold). 

The results are shown in Figure 9, where by a heat map is represented the 
 

 
Figure 9. Heat map generated by the purposed method by Von Mises statistics corres-
ponding to the temperature ranges of the selected season. 
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correspondence between the maximum consumption likelihood and the ambient 
temperature range of the transformer under study, in the time band from 0 to 24 
hours, obtained using the proposed monitoring tool. 

By observing the monitored temperature curves, two areas of importance in 
the generation of heat determined by color are shown. 

An increase in the heat temperature of the due to the season and the time of 
the day can be observed. 

Although the ambient temperature is high within the hourly range, the pres-
ence of higher consumption is reflected differently for the selected season. 

The mechanism to read this result by the user is as follows. A specific hour 
and temperature of operation must be established and so to observe what is the 
likelihood that the consumption is maximum. 

6. Conclusions 

In this paper, a methodology based on real data to model the demand in me-
dium and low voltage transformers by circular statistic of Von Mises probability 
density was detailed. 

A statistical heat map showing the occurrence likelihood of the maximum 
power in a plane of day time and temperature range is achieved. 

In the obtained results, the value of the maximum power consumption is pa-
rameterized and must be taken into account together with the probability densi-
ty. 

The results presented were obtained from a transformer in service of the Uni-
versity City of Córdoba (Argentina). The results are a heat map real time updat-
able that facilitates decision making and simplifies the representation of long 
time series of two variables in a single graph easy to interpret. 
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