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Abstract 

In this paper, some theoretical notions of well-posedness and of well-posedness 
in the generalized sense for scalar optimization problems are presented and 
some important results are analysed. Similar notions of well-posedness, re-
spectively for a vector optimization problem and for a variational inequality 
of differential type, are discussed subsequently and, among the various vector 
well-posedness notions known in the literature, the attention is focused on 
the concept of pointwise well-posedness. Moreover, after a review of 
well-posedness properties, the study is further extended to a scalarizing pro-
cedure that preserves well-posedness of the notions listed, namely to a result, 
obtained with a special scalarizing function, which links the notion of pont-
wise well-posedness to the well-posedness of a suitable scalar variational in-
equality of differential type. 
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1. Introduction 

The notion of well-posedness is significant for several mathematical prob-
lems and it is closely related to the stability of an optimization problem: it plays, 
in fact, a crucial role in the theoretical and in the numerical aspects of optimiza-
tion theory [1] [2]. The study of well-posedness, used also in different areas as 
mathematical programming, calculus of variations and optimal control, becomes 
important mainly for problems in which, due to certain hypotheses, the optimi-
zation models are imprecise or when the existing algorithms in literature are suf-
ficient enough to guarantee only the approximate solutions of such problems 
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while the exact solution may not exist or may even be more difficult to compute. 
Under these hypotheses, the well-posedness of an optimization problem is fun-
damental, in the sense that it ensures the convergence of the sequence of ap-
proximate solutions, obtained through iterative techniques, to the exact solution 
of the problem. 

Two different concepts of well-posedness are known in scalar optimization. 
The first, due to J. Hadamard, requires existence and uniqueness of the optimal 
solution and studies its continuous dependence from the data of the considered 
optimization problem. The second approach, introduced by A. N. Tykhonov, in 
1966, requires, instead, besides the existence and the uniqueness of the optimal 
solution, the convergence of every minimizing sequence of approximate solu-
tions to the unique minimum point. The links between Hadamard and Tykho-
nov well-posedness have been studied in [3] [4] [5]. There, besides uniqueness, 
additional structures are involved: in [6] [7], for example, basic ingredient is 
convexity. 

The notion of well-posedness for a vector optimization problem is, instead, 
less developed, less advanced; there is no commonly accepted definition of 
well-posed problem, in vector optimization. Some attempts in this direction 
have been already done [8] [9] [10] [11] and have been made some comparisons 
with their scalar counterparts. For instance, [12] gave a survey on various aspects 
on well-posedness of optimization problems. 

The well-posedness was generalized also to other contexts: variational inequa-
lities, Nash equilibria and saddle point problems, all special cases of an equili-
brium problem. For instance, [13] investigated well-posedness for optimization 
problems with constraints defined by variational inequalities while Margiocco et 
al. [5] [14] [15] discussed Tykhonov well-posedness for Nash equilibria. [16] at 
last, gave a definition of well-posed for saddle point problems and related results. 
[3] introduced the notion of well-posedness for variational inequality problems 
based on the fact that an optimization problem can be formulated as a variation-
al inequality problem involving the derivative of the objective function. In all 
these cases, the idea is an extension of the concept of minimizing sequences seen 
as approximate solutions. 

2. Research Aims 

The aim of this survey is twofold. The first aim is to recall some basic aspects of 
the mathematical theory of well-posedness in scalar optimization, to collect the 
two notions of well-posedness, Tykhonov well-posedness and Hadamard 
well-posedness, to give some strengthened versions of well-posedness and to 
show, in particular, some generalizations of the two types of well-posedness. The 
underlying idea is that sometimes the uniqueness of the solution could be 
dropped. Indeed, in different situations like in linear and quadratic program-
ming, there is not always required the uniqueness of the solution; sometimes, 
namely, the uniqueness of the solution for a particular minimization problem is 
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not of such an importance as its stability. The second aim is to present the no-
tion of well-posedness in the vector optimization and, in particular, to verify if 
the well-posedness of the vector problem is equivalent to the well-posedness of 
the scalarized problem or better investigate the links between the well posedness 
of a vector optimization problem and of a vector variational inequality. Among 
the various vector well-posedness notions known in the literature, the attention 
is focused on the concept of pointwise well-posedness. After a review of 
well-posedness properties, the authors extend the study to a scalarizing proce-
dure that preserve well-posedness of the notions listed, namely to a result, ob-
tained with a special scalarizing function, which links the notion of pontwise 
well-posedness to the well-posedness of a suitable scalar variational inequality of 
a differential type. 

The authors hope that the paper is very useful for stimulating the research and 
for providing fresh insights leading to new applications. 

The paper is organized as follows. In Section 2, after the introduction, the re-
search aims are analysed while in Section 3 some results on Tykhonov 
well-posedness and on Hadamard well-posedness and on their relations are 
analysed. In Section 4, some generalizations of the notion of well-posedness are 
investigate (in case in which there is not uniqueness of solutions) and some 
strenghthened versions of well-posedness (for istance well-posedness in the 
sense of Levitin and Polyak) while in Section 5 are studied some results of 
well-posedness of vector optimization problems and among the various vector 
well-posedness notions, known in the literature, the attention is focused on the 
concept of pointwise well-posedness, introduced in [9], (in particular a type of 
pointwise well-posedness and strong pointwise well-posedness for vector opti-
mization problems). Subsequently, always in the section, are established basic 
well-posedness results for a vector variational inequality. Section 6 is devoted to 
the main results of the paper obtained by means of a special scalarization func-
tion. The notion of pontwise well-posedness is linked to well-posedness of a 
suitable scalar variational inequality of a differential type whose construction 
represents an interesting application of the so-called “oriented distance func-
tion”, a special scalarizing function, which allows to establish a parallelism be-
tween the well-posedness of the original vector problem and the well-posedness 
of the associate scalar problem. Section 7, finally, contains a general discussion 
on directions for future research and provides a conclusion. In other words, the 
article ends with some concluding remarks while the last part of this article 
represents the reviewed references. The emphasis is layed on papers published in 
the last three decades. 

3. Tykhonov and Hadamard Well-Posedness 

In scalar optimization the different notions of well-posedness are based either on 
the behaviour of “appropriate” minimizing sequences (converging to a solution 
of the problem) or on the dependence of the optimal solutions on the data of op-
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timization problem. This section is devoted exactly to a study of two different 
notions of well-posedness. In particular, in it the authors give, initially, a cha-
racterization of the Tykhonov well-posedness, and a characterization of the Ha-
damard well-posedness, for a problem of minimizing a function f on a closed 
and convex set K; subsequently, they show the links between the two definitions 
and also some extensions and summarize some known results. 

1) Tykhonov well-posedness 
The first notion of well-posedness of an optimization problem was introduced 

in 1966 by A.N. Tykhonov and later took his name. 
Let : nf R R→  be a real-valued function and let K be a nonempty subset of 
nR . Throughout this paper, the scalar optimization problem: 

( )min
x K

f x
∈

 

is denoted by ( ),P f K  and consists in finding *x K∈  such that 

( ) ( ) } ( ){* inf , infKf x f x x K f x= ∈ =  

The set, possible empty, of the solutions of the optimization problem 
( ),P f K  is denoted by argmin ( ),P f K . 
The optimization problem ( ),P f K  is said Tykhonov well-posed if it satis-

fies together the following properties: 
a) existence of the solution (i.e. ( ),P f K  has a solution), 
b) uniqueness of the solution (i.e. the solution set for ( ),P f K  is a singleton), 
c) *x  is a good approximation of the solution of ( ),P f K , if ( )*f x  is 

close to ( )inf .K f x  
More precisely: 
The problem ( ),P f K  is said Tykhonov well-posed if there exist exactly a 

unique *x K∈  such that ( ) ( )*f x f x≤  for all x K∈ , and if *
nx x→  for 

any sequence }{ nx K⊂  such that ( ) ( )*
nf x f x→  (i.e. ( ) ( )infn Kf x f x→ ). 

Recalling that a sequence }{ nx K⊆  is said minimizing sequence for problem 
( ),P f K  when ( ) ( ) ( )*infn Kf x f x f x→ =  as n → +∞ , the previous defini-

tion can be rephrased in equivalent way, so [2]: 
Definition 3.1: The problem ( ),P f K  is said Tykhonov well-posed if it has, 

on K, a unique global minimum point, *x , and, moreover, every minimizing 
sequence for ( ),P f K  converges to *x . 

The definition 2.1 is motivated by the fact that, usually, every numerical me-
thod for solving ( ),P f K  provides iteratively some minimizing sequences 

}{ nx  for ( ),P f K ; such sequences are also called sequences of approximate 
solutions for the problem ( ),P f K  and therefore it is important to be sure that 
the approximate solutions }{ nx  are not far from the (unique) minimum *x . 

In other words, the Tykhonov well-posedness of the optimization problem 
( ),P f K  requires existence and uniqueness of minimum point *x  towards 

which every sequence of approximate solutions of the problem ( ),P f K  con-
verges. More precisely, to consider well-posedness of Tykhonov type, it is intro-
duced the notion of “approximating sequence” for the solutions of optimization 
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problems and it is required convergence of such sequences to a solution of the 
problem. For more details see [3] [6]. 

Remark 3.1: 
When K is compact, the uniqueness of the solution of a minimization prob-

lem ( ),P f K  is enough to guarantee its well-posedness but there are however 
simple examples in which the uniqueness of the solution of ( ),P f K  is not 
enough to guarantee its Tykhonov well-posedness even for continuous func-
tions. 

A simple example of a problem with a unique solution but which is not Tyk-
honov well-posed is the following: 

( )
2

4 1
xf x

x
=

+
 

Obviously ( )K R= . ( ),P f K  has a unique solution at zero, namely the 
argmin ( ) }{, 0P f K = , while nx n= , 1, 2,n =   provides a minimizing se-
quence which does not converge to this unique solution. Hence ( ),P f K  is not 
Tykhonov well-posed. Therefore, for continuous functions the Tykhonov 
well-posedness of an optimization problem ( ),P f K  simply means that every 
minimizing sequence of ( ),P f K  is convergent. 

Another example: 
Let K R= . If ( ) 2e xf x x −= , ( ),P f K  has a unique minimum 0 0x =  but 

it is not Tykhonov well-posed, since the sequences }{ }{nx n=  is minimizing 
but it does not converges to 0 0x = . 

If ( ) 2f x x= , then ( ),P f K  is Tykhonov well-posed. 
For convex functions in finite dimensions the uniqueness of the solution is 

enough to guarantee its Tykhonov well-posedness while this is no longer valid in 
infinite dimensions [4]. It is, in fact, known the following result: 

Proposition 3.1: ([17]) Let : nf K R R⊆ →  be a convex function and let K 
be convex. If ( ),P f K  has a unique solution, then ( ),P f K  is Tykhonov 
well-posed. 

Different characterizations of Tykhonov well-posedness for minimization 
problems determined by convex functions in Banach spaces can be found in [3]. 

The next fundamental theorem [2] gives an alternative characterization of 
Tykhonov well-posed problems: it uses the set of ε-optimal solutions and states 
that Tykhonov well-posedness of ( ),P f K  can be characterized by behaviour 
of ( )arg min ,diam f Kε −    as 0ε → . 

Theorem 3.1: If the minimization problem ( ),P f K  is Tykhonov 
well-posed, then 

( )-arg min , 0diam f Kε →    as 0ε →  

where 

( ) ( ) ( )}{-arg min , : infKf k x K f x f xε ε= ∈ ≤ +  

is the set of ε-minimizers (approximate solutions) of f over K and diam denotes 
the diameter of given set. 
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Conversely, if f is lower semicontinuous and bounded from below on K, 
( )-arg min , 0diam f Kε →    as 0ε →  

implies Tykhonov well-posedness of ( ),P f K . 
When K is closed and f is lower semicontinuous and bounded, from below it 

is possible to use the sets: 

( ) ( ){ ( ) ( ) }, : inf , and ,n
K fL x R f x f K d x Kε ε ε= ∈ ≤ + ≤ , 0ε >  

to introduce the notion of well-posedness of ( ),P f K : 
Definition 3.3: Let K be closed and let :f K R→  be lower semicontinuous. 

The minimization problem ( ),P f K  is said to be well-posed if: 

( ) }{ ,inf , 0 0K fdiamL ε ε > =  

Of course, if to any of the notions of generalized well-posedness is added the 
uniqueness of the solution, it is obtained the corresponding non generalized no-
tion. Different characterizations of Tykhonov well-posedness for minimization 
problems determined by convex functions in Banach spaces can be found in [3]. 

2) Hadamard well-posedness 
The second notion of well-posedness is inspired by the classical idea of J. Ha-

damard to the beginning of previous century: it requires existence and unique-
ness of solution of the optimization problem together with continuous depen-
dence of the optimal solution and optimal value on the data of the problems. 

Definition 3.3: The minimization problem ( ),P f K  is said to be Hadamard 
well-posed if it has unique solution *x  ( *x K∈ ) and *x  depends conti-
nuously on the data of the problem. 

This is the well-known condition of well-posedness considered in the study of 
differential equations, translated for minimum problems. The essence of this no-
tion is that a “small” change of the data of the problem yields a “small” change of 
the solution. 

In fact very often the mathematical model of a phenomenon is so complicated 
that it is necessary to simplify it and replace it by other model which is “near” 
the original and, at the same time, it is important to be sure that the new prob-
lem will have a solution which is “near” the original one. The well-known varia-
tional principle of Ekeland [18], an important tool for nonlinear analysis and 
optimization, asserts just that a particular optimization problem can be replaced 
by other which is near the original and has a unique solution. 

3) Relations between Hadamard and Tykhonow well-posedness 
Almost all the literature deals with different notions of well-posedness, even if 

especially with Tykhonov well-posedness. Some researchers have investigated 
the relations between these notions of well-posedness but there is no general re-
search to such relations. At first sight, the two notions seem to be independent 
but, at least in the convex case, there are some papers showing a connection be-
tween the two properties: for instance [6] [7] [17]. The two notions (Tykhonov 
and Hadamard well-posedness) are equivalent at least for continuous objective 
functions. The links between Hadamard and Tykhonov well-posedness have 
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been studied in [4] [5] [7]. There, besides uniqueness, additional structures are 
involved: in [6] [7], for example, basic ingredient is convexity. The object of this 
section is to describe generally the relations between Hadamard and Tykhonov 
well-posedness: a central role is provided by the well-known Hausdorff conver-
gence. 

We remember the concept of Hausdorff convergence of sequences of sets. 
Let D, E be subsets of nR  and define 

( ) ( ) ( )}{, max , , ,E D e E D e D Eδ =  

where 

( ) ( ), sup ,
a E

e E D d a D
∈

=  

Definition 3.4: Let kA  be a sequences of subsets of nR . We say that kA  
converges to nA R⊆  in the sense of Hansdorff, and we write kA A→  when 
( ), 0KA Aδ → . 
The following theorems [6] show the relations between the Tykhonov and the 

Hadamard well-posedness: 
Theorem 3.2: Let K be a closed convex subset of nR  and let :f K R→  be 

a convex continuous function with one and only one minimum point on every 
closed and convex subset of K. If ( ),P f K  is 

Hadamard well-posed, with respect to the well-known Hausdorff convergence, 
then ( ),P f K  is Tykhonov well-posed on every closed and convex subset of K. 

Theorem 3.3: Let : nf R R→  be a convex function uniformly continuous 
on every bounded set. If ( ),P f K  is Tykhonov well-posed on every closed and 
convex set, then ( ),P f K  is Hadamard well-posed, with respect to the Haus-
dorff convergence. 

The Tykhonov well-posedness does not, in general, imply the Hadamard 
well-posedness if the objective function is only continuous. 

4. Some Generalizations 

In the above definitions it is required the existences and the uniqueness of solu-
tion towards which every minimizing sequence converges. The different notions 
of well-posedness, however, admit generalizations which do not require unique-
ness of the solution. In other words, the uniqueness requirement can be relaxed 
and well-posed optimization problems with several solutions can be considered. 
Therefore, while the requirement of existence in the previous definitions is cru-
cial, the uniqueness condition is more debatable. In fact, many problems in li-
near and quadratic programming or many multicriteria optimization problems 
are usually considered as well-posed problems, although uniqueness is usually 
not satisfied [1]. 

More precisely, in scalar optimization problems it is difficult to guarantee the 
uniqueness of the optimal solutions, uniqueness that is critical to the solution 
stability and calculation. 

In other words, the different notions of well-posedness admit generalizations 
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which do not require uniqueness of the solution. In particular, the concept of 
Tykhonov well posedness can be extended to minimum problems without uni-
queness of the optimal solutions. It becomes imperative, namely, to generalize 
the notion of well-posedness for a minimization problem, introduced by Tyk-
honov, based on the fact that every minimizing sequence converges towards the 
unique minimum solution and to discuss the well-posedness for problems hav-
ing more than one solution. 

This new definition requires existence, but not uniqueness, of solution of 
( ),P f K , and, for every minimizing sequences, the convergence of some sub-

sequence of the minimizing sequence towards some optimal solution. 
Definition 4.1: The problem ( ),P f K  is called Tykhonov well-posed in the 

generalized sense if every minimizing sequence for ( ),P f K  has some subse-
quence converging to an optimal solution of ( ),P f K , i.e. to an element of 

( )arg min ,f K . 
More precisely the problem ( ),P f K  is called Tykhonov well-posed in the 

generalized sense if ( )arg min , 0f K ≠ /  and every sequence nx K∈  such that 
( ) ( )infnf x f K→  has some subsequence ny y→  with ( )arg min ,y f K∈ . 
From the definition it follows, obviously, that, if the problem ( ),P f K  is 

Tykhonov well-posed in the generalized sense, then it has a non-empty compact 
set of solutions, i.e. ( )arg min ,f K  is nonempty and compact. Moreover, when 
( ),P f K  is well-posed in the generalized sense and ( )arg min ,f K  is a single-

ton (i.e. its solution is unique), then ( ),P f K  is Tykhonov well-posed. 
When ( )arg min ,f K  is a singleton, the previous definition reduces to the 

classical notion of Tykhonov well-posedness or rather the problem ( ),P f K  is 
Tykhonov well-posedness if it is Tykhonov well-posed in the generalized Tyk-
honov sense and ( )arg min ,f K  is a singleton; thus generalized well-posedness 
is really a generalization of Tykhonov well-posedness. 

In order to weaken the requirement of uniqueness of the solution, other more 
general notions of well-posedness have been introduced, depending on the hy-
potheses made on f (and K). Here, the author recall the concept of well-setness 
introduced in [1]. 

Definition 4.2: Problem ( ),P f K  is said to be well-set when, for every mi-
nimizing sequence 

}{ nx K⊆ , ( ( )), arg min , 0nd x f K → , as n → +∞ , 

where ( )arg min ,f K  denotes the set of solutions of problem ( ),P f K  while 
( ),d x K  ( ) }{, inf :n nd x K x y y K = − ∈   is the distance of the point x from 

the set K. 
The idea of the behaviour of the minimizing sequences was used by different 

authors also to extend this concept to strengthened notions. These notions are 
not suitable for numerical methods, where the function f is approximated by a 
family or a sequence of functions. For this reason new notions of well-posedness 
have been introduced and studied. 

Before, however, we consider two generalizations of the notion of minimizing 
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sequence. 
The first was introduced and studied by [19]; they introduced a new notion of 

well-posedness that strengthened the Tykhonov’s concept as it required the 
convergence to the optimal solution of each sequence belonging to a larger set of 
minimizing sequences. The Levitin-Polyak well-posedness has been investigated 
intensively in the literature, such as [20] [21] [22] [23]. 

Konsulova and Revalski [24] studied Levitin-Polyak well-posedness for con-
vex scalar optimization problems with functional constraints. While, recently, 
[20] generalized the results of Konsulova and Revalski [24] for non convex op-
timization problems with abstract and functional constraints. 

The well-posedness of the minimization problem ( ),P f K  in the sense of 
Tykhonov concerns the behaviour of the function f in the set K but it does not 
take into account the behaviour of f outside K [12]. Of course, often, one can 
come across with minimizing sequences that do not lie necessarily in K and one 
wants to control the behaviour of these minimizing sequences, as well. Levitin 
and Polyak in [25] considered such kind of sequences. 

Definition 4.3: Let K be a nonempty subset of nR . The sequences 
}{ 1n n

x K
∞

=
⊂  is a Levitin-Polyak minimizing sequences for the minimization 

problem ( ),P f K  if 

( ) ( )infn Kf x f x→  and ( ), 0nd x K →  

where ( ) }{, inf :n nd x K x y y K= − ∈  is the distance from the point nx  to 
the set K while  is the Euclidean norm. 

In other words, a sequences }{ 1n n
x

∞

=
 is a Levitin-Polyak minimizing se-

quences for ( ),P f K  if not only ( )}{
1n n

f x
∞

=
 approaches the greatest lower 

bound of f over K but also the sequence }{ 1n n
x

∞

=
 tends to K. 

Then, the well-posedness concept can be strengthened as follows: 
Definition 4.4: The minimization problem ( ),P f K  is called Levitin-Polyak 

well-posed if it has unique solution *x K∈  and, moreover, every Levitin-Polyak 
minimizing sequence for ( ),P f K  converges to *x . 

Of course, this definition is stronger than that of Tykhonov since requires that 
each sequence, belonging to a larger set of minimizing sequences, convergs to 
the unique solution, namely Levitin-Polyak well-posedness implies Tykhonov 
well-posedness. 

The converse is true provided that f is uniformly continuous but not necessar-
ily true if f is only continuous. It is enough to consider 

}{ 20K R R= × ⊂ , ( ) ( )2 2 4,f x y x y x x= − +  

and the generalized minimizing sequence }{1\ n . 
As Tykhonov well-posedness can be characterized by the behaviour of 

( )-arg min ,diam f Kε   , as Levitin Polyak well-posedness can be characterized 
by the behaviour of the set: 

( ) ( ){ ( ) ( ) }, : , and inf ,K fL x K d x K f x f Kε ε ε= ∈ ≤ ≤ +  
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defined for 0ε >  and for f bounded from below on K. 
In analogy with Theorem 3.1, the following result gives [3]: 
Theorem 4.2: If K is closed and f is lower semicontinuous and bounded from be-

low on K, then ( ) 0diamL ε →  as 0ε →  implies Levitin-Polyak well-posedness 
of ( ), .P f K  

A second generalization of the usual notion of minimizing sequences is the 
following: 

Definition 4.5: A sequence }{ 1n n
x K

∞

=
⊂  is said to be a generalized mini-

mizing sequence for the minimization problem ( ),P f K  if are fulfilled both: 

( ), 0nd x K →  and ( ) ( )limsup infn Kf x f x≤  

Consequently another strengthened version of the well-posedness is the fol-
lowing: 

Definition 4.6: The minimization problem ( ),P f K  is said strongly 
well-posed if it has unique solution *x K∈  and, moreover, every generalized 
minimizing sequences for ( ),P f K  converges to *x . 

Obviously, in general strong well-posedness of the problem ( ),P f K  implies 
that of Levitin-Polyak, which in its turn implies the Tykhonov well-posedness. It 
is important underline that, each of the previous definitions, widely studied in 
many papers [3] [4] [15], is based on the behaviour of a certain set of minimiz-
ing sequences. 

The corresponding generalization of Levitin-Polyak well-posedness in the case 
of non-uniqueness of the solution, or when the uniqueness of the solution is 
dropped, is: 

Definition 4.7: The minimization problem ( ),P f K  is called generalized 
Levitin-Polyak well-posed if every Levitin-Polyak minimizing sequence }{ nx  

}{( )nx K⊂  for ( ),P f K  has a subsequence converging to a solution of 
( ),P f K . 
Of course, any of the notions of generalized well-posedness, at which is added 

the uniqueness of the solution, is equivalent, obviously, to corresponding non 
generalized notion. 

5. Well-Posedness of Vector Optimization Problems 

In scalar optimization, the different notions of well-posedness are based either 
on the behaviour of “appropriate” minimizing sequences or on the dependence 
of optimal solution with respect to the data of optimization problems. In vector 
optimization, instead, there is not a commonly accepted definition of 
well-posedness but there are different notions of well-posedness of vector opti-
mization problems. For a detailed survey on these problems it is possible to refer 
to [1] [8] [9] [11] [25]. 

In this section, we propose some of these definitions of well-posedness for a 
vector optimization problem; in particular, among the various vector 
well-posedness notions known in the literature, the attention is focused on the 
concept of pointwise well-posedness, introduced in [9]. 
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We consider the vector optimization problem: 

( ),VP f K  ( )minC f x  x K∈  

where K is a nonempty, closed, convex subset of nR , : n lf K R R⊆ →  is a 
continuous function and lC R⊆  is a closed, convex, pointed cone and with 
nonempty interior. Denoted by int C  the interior of C. 

A point *x K∈  is said to be an efficient solution or minimal solution of 
problem ( ),VP f K  when: 

( ) ( ) }{* \ 0f x f x C− ∉−  x K∀ ∈  

If, in the above definition, instead of the cone C is used the cone 
}{0 intC C= ∪ , *x  is said weak minimal solution. Then, a point *x K∈  is 

said to be a weakly efficient solution or weak minimal solution of problem 
( ),VP f K  when: 

( ) ( )* intf x f x C− ∉−  x K∀ ∈  

The set of all efficient solutions (minimal solutions) of problem ( ),VP f K  is 
denoted by ( ),Eff f K  while ( ),WEff f K  denotes the set of weakly efficient 
solutions (weak minimal solutions) of ( ),VP f K . Moreover, every minimal is 
also a weak minimal solution but the converse is not generally true. 

In this section the authors recall a notion of well-posedness that considers a 
single point (a fixed efficient solution) and not the whole solution set: a particu-
lar type of pointwise well-posedness and strong pointwise well-posedness for 
vector optimization problems. This definition can be introduced considering, as 
in the scalar case, the diameter of the level sets of the function f. 

Generalizing Tykhonov’s definition of well-posedness for a scalar optimiza-
tion problem, in [26] are introduced the notions of well-posedness and of 
strong well-posedness of vector optimization problem ( ),VP f K  at a point 

( )* ,x Eff f K∈  and are provided, also, some conditions to guarantee 
well-posedness according to these definitions. 

Definition 5.1: The vector optimization problem ( ),VP f K  is said to be 
pointwise well-posed at the efficient solution *x K∈  or Tykhonov well-posed 
at ( )* ,x Eff f K∈ , if: 

( )*inf , , 0diamL x k α =  , 0k C α∀ ∈ ∀ >  

where: 

( ) ( ) ( ) }{ ( ) ( ) }{* * *, , : :CL x k x K f x f x k x K f x f x k Cα α α= ∈ ≤ + = ∈ ∈ + −  

Definition 5.2: The vector optimization problem ( ),VP f K  is said to be 
strongly pointwise well-posed at the efficient solution *x , or Tykhonov strongly 
well-posed at ( )* ,x Eff f K∈ , if: 

( )*inf , , 0sdiamL x k α =  k C∀ ∈  

where: 

( ) ( ) ( ) ( ) }{* *, , : and ,s CL x k x K f x f x k d x Kα α α= ∈ ≤ + ≤  
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For the sake of completeness, we recall that it is also possible to introduce 
another type of well-posedness of the vector optimization problem ( ),VP f K  
at a point ( )* ,x Eff f K∈  [27]. 

Definition 5.3: The vector optimization problem ( ),VP f K  is said to be 
H-well-posed at a point ( )* ,x Eff f K∈  if *

nx x→  for any sequence 
}{ nx K⊆ , such that ( ) ( )*

nf x f x→ . 
Definition 5.4: The vector optimization problem ( ),VP f K  is said to be 

strongly H-well-posed at a point ( )* ,x Eff f K∈  if *
nx x→  for any sequence 

}{ nx  such that ( ) ( )*
nf x f x→  with ( ), 0nd x K → . 

Remark 5.1: 
If int 0C ≠ / , then well-posedness at a point ( )* ,x Eff f K∈  of the vector 

optimization problem ( ),VP f K , according to definition 5.1 [resp. to def. 5.2], 
implies well-posedness according to definition 5.3 [resp. to def. 5.4]. It is easy 
realize that the pointwise well-posedness of type 5.1 is weaker than pointwise 
well-posedness of type 5.3 [27]. 

An useful tool in the study of vector optimization problems is provided by the 
vector variational inequalities, that, introduced first by Giannessi in 1980, have 
been studied intensively because they can be efficient tools for investigating vec-
tor optimization problems and also because they provide a mathematical model 
for equilibrium problems; they provide, namely, an unified and efficient frame-
work for a wide spectrum of applied problems. 

Before, however, it is important to underline that the theory of variational in-
equalities provides a convenient mathematical apparatus for obtain result relat-
ing to a large number of problems with a wide range of applications in econom-
ics, finance, social, pure and applied sciences. In fact, it is well known that many 
equilibrium problems, arising in finance, economics, transportation science and 
contact problems in elasticity, can be formulated in terms of the variational in-
equalities [27]. In other words, the ideas and the techniques of variational in-
equalities are being applied in a variety of diverse areas of sciences and prove to 
be productive and innovative. 

There is a very close connection between the optimization problems and the 
variational inequalities. In fact, the well-posedness of a scalar minimization 
problem is linked to that of a scalar variational inequality and, in particular, to a 
variational inequality of differential type (i.e. in which the operator involved is 
the gradient of a given function). The links between variational inequalities of 
differential type and optimization problems have been deeply studied in [3] [12] 
[15] [28]. Furthermore, by means of Ekeland’s variational principle [18], that, as 
it is well known, is an important tool to prove some results in well-posedness for 
optimization, a notion of well-posed scalar variational inequality has been in-
troduced and its links with the concept of well-posed optimization problem have 
been investigated [3]. 

In this section, are treated the vector variational inequalities of differential 
type. 
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Let : n lf R R→  be a function differentiable on an open set containing the 
closed convex set nK R⊆ . The vector variational inequality problem of diffe-
rential type consists in finding a point *x K∈  such that: 

( ),SVVI f K′  ( )* *, int
l

f x y x C′ − ∉−  y K∀ ∈  

where f ′  denotes the Jacobian of f and ( )* *,
l

f x y x′ −  is the vector whose 
components are the l inner products ( )* *,if x y x′ − . 

It is well known that ( ),SVVI f K′  provides a necessary condition for *x  to 
be an efficient solution of ( ),VP f K . It is, instead, a sufficient condition for *x  
to be an efficient solution of ( ),VP f K  if f is int C -convex while, if f is 
C-convex, ( ),SVVI f K′  is a sufficient condition for *x  to be an weakly effi-
cient solution of ( ),VP f K . These remarks underline the links between opti-
mization problems and variational inequalities also for vector case. This is a fur-
ther reason for a suitable definition of well-posedness for a vector variational 
inequality which could be compared and related to the given definition for vec-
tor optimization. Then, a notion of well-posedness is introduced for the vector 
variational inequality problem ( ),SVVI f K′ , obtained by generalizing the defi-
nition of the scalar case and it is defined the following set: 

( ) ( ) }{0
0: : , int ,

c l
T x K f x y x y x c C y Kε ε′= ∈ − ∉− − − ∀ ∈  

where 0ε >  and 0 intc C∈ . ( )0c
T ε  is a directional generalization of the set 

( )T ε  of the scalar case. 
Definition 5.5: The variational inequality ( ),SVVI f K′  is well-posed if, for 

every 0 intc C∈ , ( ) ( )( )0 , , 0
c

e T WEff f Kε →  where  
( ) ( ), sup ,

i K
K i

A A
e A A d A A

⊂
= . 

The following result states the relationship between well-posed optimization 
problem and a well-posed variational inequality, in the vector case [12]. 

Theorem 5.1: If the variational inequality ( ),SVVI f K′  is well-posed, then 
problem ( ),VP f K  is well-posed at *x . 

For C-convex functions, in particular, well-posedness of ( ),VP f K  and 
( ),SVVI f K′  substantially coincide. To show that, it is necessary to assume that 

f is differentiable on an open set containing K and observe that: 
Definition 5.6: The function : n lf K R R⊆ →  is said to be C-convex when: 

( )( ) ( ) ( ) ( )1 1f x y f x f y Cλ λ λ λ+ − − + − ∈−    [ ], , 0,1x y K λ∀ ∈ ∀ ∈  

Lemma 1: If : n lf R R→  is C-convex, then: 

( ) ( ) ( ) }{0
0: int

c
T x K f y f x y x c Cε ε= ∈ − ∉− − −  

Theorem 5.2: Let f be a C-convex function. Assume that 0 intc C∈ , and that 
( )0c

T ε  is bounded for some 0ε > . Then ( ),SVVI f K′  is well-posed. 
Therefore, if f is a C-convex function, the well-posedness of ( ),SVVI f K′  is 

ensured and, namely, by theorem 3.2, substantially coincide with well-posedness 
of ( ),VP f K . 
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6. Main Results 

In this section, the authors, after a review of well-posedness, focus their attention 
on a scalarization procedure that preserve well-posedness of the notions listed 
above and among various scalarization procedures known in the literature, they 
consider the one based on the so called “oriented distance” function from a 
point to a set. This special scalarizing function, introduced by Hiriart-Urruty in 
[29], has been applied to scalarization of vector optimization problem [30]. The 
scalarization method is, namely, a powerful tool for studying vector optimiza-
tion problems. 

This function allows to establish a parallelism between the well-posedness of 
the original vector problem and the well-posedness of the associate scalar prob-
lem. Indeed, the authors show that one of the weakest notions of well-posedness 
in vector optimization is linked to the well-setness of the scalarized problem, 
while some stronger notion of well-posedness in the vector case is related to 
Tykhonov well-posedness of the associated scalarization. 

These results constitute a simple tool to show that, under some additional 
compactness assumptions, quasiconvex vector optimization problems are 
well-posed. Thus, a known result about scalar problems can be extended to vec-
tor optimization and improves a previous result concerning convex vector prob-
lems. 

Throughout this section we assume that : n lf R R→  is differentiable on an 
open set containing the closed convex set nK R⊆ . 

Definition 6.1: For a set lA R⊆ , let }{: l
A R R∆ → ∪ ±∞  be defined as: 

( ) ( ) ( ), , c
A y d y A d y A∆ = −  

where ( ) infA a Ad y y a∈= −  is the distance from the point y to the set A. 
Function ( )A y∆  is called the oriented distance function from the point y to 

the set A and it has been introduced in the framework of nonsmooth scalar op-
timization. 

( ) 0A y∆ <  for inty A∈  (the interior of A), ( ) 0A y∆ =  for y bd A∈  (the 
boundary of A) and positive elsewhere. 

The main properties of function A∆  are gathered in the following theorem 
[30]: 

Theorem 6.1: 
1) if 0A ≠ /  and lA R≠  then A∆  is real valued; 
2) A∆  is 1-Lipschitzian; 
3) ( ) 0A y∆ < , inty A∀ ∈ , ( ) 0A y∆ = , y bd A∀ ∈  and ( ) 0A y∆ > , 

int cy A∀ ∈  
where the notation bd A  denotes  the frontier of the set A and cA  the com-
plementary of set A. 

4) if A is closed, then it holds ( ) }{ : 0AA y y= ∆ ≤ ; 
5) if A is convex, then A∆  is convex; 
6) if A is a cone, then A∆  is positively homogeneous; 
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7) if A is a closed convex cone, then A∆  is non increasing with respect to the 
ordering relation induced by A on lR , i.e. the following is true: 

if 1 2, ly y R∈  then ( ) ( )1 2 1 2A Ay y A y y− ∈ ⇒ ∆ ≤ ∆  
if A has nonempty interior, then ( ) ( )1 2 1 2int A Ay y A y y− ∈ ⇒ ∆ < ∆  
The oriented distance function A∆ , used also to obtain a scalarization of a 

vector optimization problem [12] [26] allows to establish a relationship between 
the well-posedness of the original vector problem and the well posedness of the 
associate scalar problem. More precisely, in [12] it is known that one of notions 
of well-posedness in vector optimization can be rephrased as a suitable 
well-posedness of a corresponding scalar optimization problem, i.e. is linked to 
well-posedness of a suitable scalar variational inequality of differential type. The 
construction of this scalar variational inequality represents on interesting appli-
cation of the “oriented distance function”. 

It has been proved in [31] that when A is closed, convex, pointed cone, then 
we have: 

( ) max ,A A S
y y

ξ
ξ− ′∈ ∩

∆ =  

where }{: | , 0,lA x R x a a A′ = ∈ ≥ ∀ ∈  is the positive polar of the cone of A 
and S the unit sphere in lR . 

The function A−∆  is used in order to give scalar characterizations of some 
notions of efficiency for problem ( ),VP f K . Furthermore, some results cha-
racterize pointwise well-posedness of problem ( ),VP f K  through function 

A−∆  [5]. Given a point *x K∈ , it is considered the function: 

( ) ( ) ( )*
*max ,

x C S
x f x f x

ξ
ϕ ξ

′∈ ∩
= −  

where C′  denotes the positive polar of C and S the unit sphere in lR . Clearly 

( ) ( ) ( )( )*
*

Cx
x f x f xϕ −= ∆ −  

The function *x
ϕ  is directionally differentiable [9] and hence it is can con-

sider the directional derivative 

( )
( ) ( )* *

*
0

; lim x x
x t

x td x
x d

t
ϕ ϕ

ϕ
+→

+ −
′ =  

and the associated scalar problem: find *x K∈ , such that: 

( )* ,
x

SVI Kϕ′  ( )*
* *; 0

x
x y xϕ′ − ≥  y K∀ ∈  

The solutions of problem ( )* ,
x

SVI Kϕ′  coincide with the solutions of 
( ),SVVI f K′ . 

Proposition 6.1: Let K be a convex set. If *x K∈  solves problem 
( )* ,

x
SVI Kϕ′  for some *x K∈ , then *x  is a solution of ( ),SVVI f K′ . Con-
versely, if *x K∈  solves ( ),SVVI f K′ , then *x  solves problem  

( )* ,
x

SVI Kϕ′ . 
The scalar problem associated with the vector problem ( ),VP f K  is: 

( )* ,
x

P Kϕ  ( )*min
x

xϕ  x K∈  
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The relations among the solutions of problem ( )* ,
x

P Kϕ  and those of prob-
lem ( ),VP f K  are refers investigated in [30]. Here it refers only to the charac-
terization of weak efficient solution. 

Proposition 6.2: The point *x K∈  is a weak efficient solution of ( ),VP f K  
if and only if *x  is a solution of ( )* ,

x
P Kϕ . 

The proof is omitted and for it refer to [2] [32], for details. 
Also well-posedness of ( ),VP f K  can be linked to that of ( )* ,

x
P Kϕ  [5] 

[8]. 
Proposition 6.3: Let f be a continuous function and let *x K∈  be an effi-

cient solution of ( ),VP f K . Problem ( ),VP f K  is pointwise well-posed at *x  
if and only if problem ( )* ,

x
P Kϕ  is Tykhonov well-posed. 

The next proposition links the well-posedness of ( )* ,
x

SVI Kϕ′  to pointwise 
well-posedness of ( ),VP f K . It is need to recall Ekeland’s variational principle 
[18]: it say that there is a “nearby point” which actually minimizes a slightly 
perturbed given functional. More precisely it asserts that a particular optimiza-
tion problem can be replaced by other which is near the original and has a 
unique solution [4]. In fact, often the mathematical model of a phenomenon is 
so complicated that is necessary to replace it by other model which has a solu-
tion “near” the original one. 

Proposition 6.4: If ( )* ,
x

SVI Kϕ′  is pointwise well-posed at *x K∈ , then 
problem ( ),VP f K  is pointwise well-posed at *x . 

Proof: By proposition 6.3, it is enough to prove that if ( )* ,
x

SVI Kϕ′  is point-
wise well-posed at *x , then problem ( )* ,

x
P Kϕ  is Tykhonov well-posed. 

In fact, for every 0ε >  and ( )*-arg min ,
x

x Kε ϕ∈ , by Ekeland’s variational 
principle, there exists x  such that: 

x x ε− ≤  and ( ) ( )* *x x
x y x yϕ ϕ ε≤ + −  y K∀ ∈ . 

If it is introduced the set 

( ) ( ) ( ) }{ * *: ,
x x

Z x K x y x y y Kε ϕ ϕ ε= ∈ ≤ + − ∀ ∈  

then, it follows that 

( ) ( )*-arg min ,
x

K Z Bε ϕ ε ε⊆ + . 

It get, then, that ( )*-arg min ,
x

u Kε ϕ∀ ∈ , there exist x such that 
u x ε− ≤  and 

( )( ) ( )* * , 0 1,
x x

x t y x x t y x t y Kϕ ϕ ε+ − ≥ − − < < ∈  

Since ( )* ,
x

x y x y xϕ ε′ − ≥ − − , it follows that ( )*x
x T ε∈  and so: 

( ) ( )* *-arg min ,
x x

K T Bε ϕ ε ε⊆ +  

Since ( )* 0
x

diamT ε →  as 0ε → , then ( )* ,
x

P Kϕ  is Tykhonov well-posed. 
Now, the authors prove that the converse of the previous proposition holds 

under convexity assumptions, namely it is true if f is C-convex. Before, they need 
the following Lemma: 

Lemma 6.1: If : n lf R R→  is C-convex function, then the function ( )*x
xϕ , 
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is convex x K∀ ∈ . 
Then: 
Proposition 6.5: Let f be C-convex and assume ( ),VP f K  is pointwise well 

posed at *x K∈ . ( *x  is an efficient solution). Then ( )* ,
x

SVI Kϕ′  is pointwise 
well-posed at *x . 

Assuming, ab absurdo, that ( )* ,
x

SVI Kϕ′  is not pointwise well-posed at *x , 
it follows that exist 0a >  and 0nε → , with ( )* 2nx

diamT aε >  ( )* intx C∈  
and one can find some ( )*n nx

x T ε∈ , with nx a≥ . 
Without loss of generality, it is possible to put * 0x = . Since *x

ϕ  is convex, 
it follows that: 

( ) ( ) ( )* * *0 ,n n nx x x
y y yϕ ϕ ϕ′− ≥ −  

where n
n

n

x
y a

x
= . The boundedness of ny  implies that it is can assume 

ny y K→ ∈  (here it is need K closed). Further, since ( )*n nx
x T ε∈ , 

( )* ,n n n nx
x x xϕ ε′ − ≥ −  

Since 

( )
( ) ( )

( )( )( ) ( )

( )

* *

*

* *

*

0

0

, lim

lim

,

n n nx x
n nx t

n n nx x

t

n nx

x tx x
x x

t
x t x x

t
x x

ϕ ϕ
ϕ

ϕ ϕ

ϕ

+

+

→

→

− −
′ − =

+ − −
= −

−
′= −

 

and 

( ) ( )* *, ,n n n nx x
y y y yϕ ϕ′ ′− = −  

from the continuity of *x
ϕ , it is possible to obtain 

( ) ( )* * * *, , , ,n n n
n n n n nx x x x

n n n n n

ax ax axa ay y x x x
x x x x x

ϕ ϕ ϕ ϕ
   

′ ′ ′ ′= ≤ ≤      
   

 

The last inequality follows from the convexity of *x
ϕ′  [33]. 

Hence 

( ) ( )* *, ,n n n nx x
n

ay y x x
x

ϕ ϕ′ ′− − ≤  

it follows 

( ) ( )* *, ,n n n nx x
n

a x x y y
x

ϕ ϕ′ ′− ≤ −  

and so 

( ) ( ) ( )* * *0 ,n n n nx x x
n

ay x x a
x

ϕ ϕ ϕ ε′− ≥ − ≥ −  

Sending n to +∞  we obtain ( ) ( )* *0 0
x x

yϕ ϕ− ≥  which contradicts Tykho-
nov well-posedness by Proposition 6.3. So, the thesis is true. 
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7. Concluding Remarks and Future Perspectives for  
Research 

In this paper, the authors have reviewed and studied some properties of 
well-posedness, a field that has attracted attentions of many researchers for var-
ious types of problems and that requests intellectual endeavours. In reality, al-
most all the literature deals with directly specific notions of well-posedness but 
there is no general research to the relations between them for different problems 
and therefore is much needed the research, mostly in this area, to develop and to 
foster new and innovative applications in various branches of pure and applied 
sciences. The authors have given only a brief review of this fast growing field and 
hope that the general theories and results surveyed in this paper can be used to 
formulate and to outline some connections with other mathematical fields. 
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