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Abstract 
Proteins are the workhorse molecules of the cell, which are obtained by fold-
ing long chains of amino acids. Since not all shapes are obtained as a folded 
chain of amino acids, there should be global geometrical constraints on the 
shape. Moreover, since the function of a protein is largely determined by its 
shape, constraints on the shape should have some influence on its interaction 
with other proteins. In this paper, we consider global geometrical constraints 
on the shape of proteins. Using a mathematical toy model, in which proteins 
are represented as closed chains of tetrahedrons, we have identified not only 
global geometrical constraints on the shape of proteins, but also their influ-
ence on protein interactions. As an example, we show that a garlic-bulb like 
structure appears as a result of the constraints. Regarding the influence of 
global geometrical constraints on interactions, we consider their influence on 
the structural coupling of two distal sites in allosteric regulation. We then 
show the inseparable relationship between global geometrical constraints and 
protein interactions; i.e. they are different sides of the same coin. This finding 
could be important for the understanding of the basic mechanisms of allos-
teric regulation of protein functions. 
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1. Introduction 

In this paper, we consider global geometrical constraints on the shape of 
proteins, using the mathematical toy model of proteins proposed in [1]. Proteins 

How to cite this paper: Morikawa, N. 
(2018) Global Geometrical Constraints on 
the Shape of Proteins and Their Influence 
on Allosteric Regulation. Applied Mathe-
matics, 9, 1116-1155. 
https://doi.org/10.4236/am.2018.910076 
 
Received: September 14, 2018 
Accepted: October 21, 2018 
Published: October 24, 2018 
 
Copyright © 2018 by author and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/am
https://doi.org/10.4236/am.2018.910076
http://www.scirp.org
https://doi.org/10.4236/am.2018.910076
http://creativecommons.org/licenses/by/4.0/


N. Morikawa 
 

 

DOI: 10.4236/am.2018.910076 1117 Applied Mathematics 
 

are the workhorse molecules of the cell, which are obtained as a complex of 
folded chains of amino acids. Since the function of proteins depends primarily 
on their shape, structural studies are essential for understanding proteins. In our 
approach, protein molecules are represented as a complex of closed trajectories 
of tetrahedrons. Then, the surface of proteins is obtained as the intersection of a 
pair of four-dimensional cones [2]. Interactions between proteins are defined (or 
mimicked) as “fusion and fission” of closed trajectories. 

Previously, two types of geometrical constraints are known in the study of 
protein structures. One is a set of constraints on the backbone conformation due 
to collisions between atoms [3]. The backbone conformation is determined by 
torsion angle pairs ( ),φ ψ  along the backbone, and their allowed values are 
shown in the Ramachandran map [4]. The other is a set of constraints on relative 
distances between certain pairs of atoms, which are obtained from either 
physical experiments or theoretical estimates. The determination of protein 
structures which satisfy a set of constraints on inter-atomic distances, known as 
the distance geometry problem, is an important problem in structural biology 
[5]. 

In virology, another type of geometrical constraints, the symmetry of the virus 
structure, is also considered. Viruses are metastable macromolecular assemblies 
composed of the viral genome enclosed within the protein shells, called viral 
capsids [6]. Virus capsids are highly specific assemblies that are formed from a 
large number of often identical subunits. Formulated in [7] is a set of structural 
constraints on the subunit arrangements, using an extension of the underlying 
symmetry group. On the other hand, [8] finds that some viruses allow their 
representation as two-dimensional monohedral tilings of a bound surface, where 
each tile represents a subunit. Note that viral molecules consist of separeated 
parts. Protein molecules are obtained by folding a chain of linked parts and it is 
impossible to describe the shape of proteins by symmetry alone nor to describe 
their surface by tiling of basic subunits. 

What we will consider below are global constraints on the shape of a complex 
of folded chains of basic blocks, such as triangles and tetrahedrons. One of the 
advantages of our model is the correspondence between “the shape of molecules” 
and “interaction between molecules”. Since a protein’s function is largely 
determined by its shape, constraints on the shape of a protein should have some 
influence on its interaction with other proteins. In our model, the geometrical 
constraints on the shape of a molecule correspond to the constraints on the 
interaction between three molecules, such as allosteric regulations. In the section 
before the conclusion, we will explain the correspondence between geometrical 
constraints on the shape and allosteric regulations using an example. An 
introduction to allosteric regulation is also given there. 

Finally, Genocript (http://www.genocript.com) is the one-man bio-venture 
started by Naoto Morikawa in 2000 which is developing software tools for 
protein structure analysis. 
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2. Discrete Differential Geometry of Triangles 

Now, let us consider the case of closed trajectories of triangles to explain the 
basic ideas behind our approach. For detailed description, see [1] and [2]. 

In the following, the coordinates of points in the N-dimensional Eucledean 
space NE  ( 3N =  or 4) are represented by a monomial in N indeterminates 

0 1 1, , , Nx x x −  for space saving purposes. For example, point ( ) 3 3, ,l m n E∈ ⊂  
is represented by 0 1 2

l m nx x x , where   denotes the set of all integers. ( )0,0,0 , 
( )0, ,m n , ( ),0,l n , and ( ), ,0l m  are denoted by 1, 1 2

m nx x , 1
0 2

nx x , and 1
0 1

mx x , 
respectively. Let 0 1 2

l m np x x x= . Then, points ( ), ,l k m n+  , ( ), ,l m k n+  and 
( ), ,l m n k+  are represented by monomials 0

kpx , 1
kpx  and 2

kpx , respectively. 
Note that i j j ix x x x=  for all pairs of i and j. 

2.1. Flows of Triangles 

Flows of triangles are defined using unit cubes in E3. As shown in Figure 1(a), 
unit cubes are piled-up in the direction of ( )1, 1, 1− − −  in E3, where each of the 
three upper faces is divided into two triangles by the vertical diagonal (thick 
line). Then, a flow of triangles is obtained along the diagonals (Figure 1(b)). 
That is, the piled-up cubes form a mountain range-like structure and the vertical 
diagonals on its surface determine a flow of “slant” triangles on the slope. 

As an example, let us consider the unit cube with the eight corner points 0, 

0x , 0 1x x , 1x , 2x , 0 2x x , 0 1 2x x x , and 1 2x x  (Figure 1(c)). Let 0 1P = , 1 0P x= , 

2 0 1P x x= , and 3 1P x= . Then, the upper face 0 1 2 3P PP P  is divided into two “slant” 
triangles 0 1 2P PP  and 0 3 2P P P . The triangle flow goes down (or up) along the 
edge 0 2P P  at 0 1 2P PP  and 0 3 2P P P . 

In the following, we give the mathematical definition of the mountain 
range-like structure and the associated flow of triangles. 

Definition 1 (Standard Lattice) The three-dimensional standard lattice L3 is 
the three-dimensional lattice generated by three vectors ( )1,0,0 , ( )0,1,0 , and 
( )0,0,1 . Using the monomial representation, L3 is defined by 

{ }3 3
0 1 2: | , , .l m nL x x x l m n E= ∈ ⊂  

Let 0p , 1p , and 3
2p L∈ . We denote the convex hull of 0p , 1p , and 2p  

by [ ]0 1 2, ,p p p , i.e., 

[ ] { }0 1 2 0 1 2, , : | , , , , , 0, 1 ,a b cp p p p p p a b c a b c a b c= ∈ ≥ + + =  

where   is the set of all real numbers. The group of all permutations of the 
three-element set { }0,1,2  is denoted by Sym3. For example, ( )0 2ρ = , 
( )1 1ρ = , and ( )2 0ρ =  for ( ) 302 Symρ = ∈ , where ρ  is written in cyclic 

notation. 
Definition 2 (Slant Triangles) Let 3a L∈  and 3Symρ ∈ . A slant triangle 

( ) ( )0 1a x xρ ρ
 
   is the triangle defined by three points a, ( )0axρ , and ( ) ( )0 1ax xρ ρ , 

i.e., 

( ) ( ) ( ) ( ) ( )0 1 0 0 1: , , .a x x a ax ax xρ ρ ρ ρ ρ
   =     

https://doi.org/10.4236/am.2018.910076


N. Morikawa 
 

 

DOI: 10.4236/am.2018.910076 1119 Applied Mathematics 
 

 
Figure 1. Flow of triangles: (a) A mountain range-like structure obtained by piling up 
unit cubes in the direction of ( )1, 1, 1− − − , whose peaks are ( )2, 0, 0aP = , ( )1, 0,1bP = , 

( )1, 2,1cP = − , ( )1,3, 0dP = , and ( )3, 2, 1eP = − . The diagonal edges of “slant” triangles 

are drawn with thick lines. Shown above is the top view of the structure; (b) The flow of 
triangles determined by the mountain range-like structure of (a); (c) A unit cube and its 
top view (above), where ( )0 0, 0, 0P = , ( )1 1, 0, 0P = , ( )2 1,1, 0P = , and ( )3 0,1, 0P = . 

 
The line segment joining vertex a and vertex ( ) ( )0 1ax xρ ρ  is called the diagonal 

edge of the slant triangle. The set 2S  of all slant triangles is defined by: 

( ) ( ){ }3 3
2 0 1: : , .S a x x a L Symρ ρ ρ = ∈ ∈   

Example 1 In the case of Figure 1(c), 

[ ] ( )( )
[ ] ( )( )

0 1 2 0 1

0 3 2 1 0

1and 012 ,

1and 102 .

P PP x x a

P P P x x a

ρ

ρ

= = =

= = =
 

Their diagonal edges are the line segment 0 2P P . 
By abuse of notation, we denote the vectors ( )0,1,1 , ( )1,0,1 , and ( )1,1,0  

by the monomial 1 2x x , 0 2x x , and 0 1x x  respectively in the following definition. 
Definition 3 (Gradient of Slant Triangles) Let ( ) ( ) 30 1s a x x Sρ ρ

 = ∈  , the 
gradient Ds of s is defined by 

( ) ( )0 1: .Ds x xρ ρ=  

Example 2 In the case of Example 1, the slope of 0 1 2P PP  is given by 

( ) [ ]0 1 2 0 1 0 1.D P PP D x x x x= =  

Flows of slant triangles along the diagonal edges are defined as follows. 
Definition 4 (Local Trajectories of Slant Triangles) Let 2s S∈ . The local 

trajectory of slant triangles at s is a set of three consecutive slant triangles, 
consisting of s and two adjacent slant triangles which do not include the 
diagonal edge of s. By patching “consistent” local trajectories together, we will 
obtain a flow of slant triangles as shown in Figure 1(a). 
Let ( ) ( ) 20 1s a x x Sρ ρ

 = ∈  . The local trajectory of slant triangles at s is either 

{ } { } { } { }, , or , , or , , or , , ,DD UU DD UD DU UU DU UDs s s s s s s s s s s s  

where 
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( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

20 1 0

1
20 2 2 1

20 2

1
21 1 0

: ,

: ,

: ,

:

DD

DU

UD

UU

s ax x x S

s ax x x x S

s a x x S

s ax x x S

ρ ρ ρ

ρ ρ ρ ρ

ρ ρ

ρ ρ ρ

−

−

  = ∈ 
  = ∈  


 = ∈  
  = ∈ 

 

(Figure 2(a)). 
A flow of “flat” triangles is defined on the hyperplane 2DH  using the 

projection ptπ  of E3 onto 2DH , where 

{ }

( ) ( ) ( ) ( )

3
2 0 1 2

3
2

2 3 2 3 2 3
0 1 2 0 1 2

: | , , , 0 ,

: ,

: .

l m n
D

pt D

l m n l m n l m nl m n
pt

H x x x l m n l m n E

E H

x x x x x x

π

π − − − + − − − +

 = ∈ + + = ⊂
 →


=



 

Definition 5 (Flat Triangles) Let ( ) ( ) 20 1s a x x Sρ ρ
 = ∈  . The projection Hπ  

of s on 2DH  is defined by 

( ) ( ) ( )( ) ( ) ( )( ) 20 0 1: , , .H pt pt pt Ds a ax ax x Hρ ρ ρπ π π π = ⊂   

( )H sπ  is called a flat triangle. The line segment joining ( )pt aπ  and 

( ) ( )( )0 1pt ax xρ ρπ  is called the diagonal edge of the flat triangle (Figure 1(c)). The 
set 2B  of all flat triangles on 2DH  is defined by: 

( ){ }2 2: | .HB s s Sπ= ∈  

Remark ( )H sπ  is a projection of triangles and ( )pt pπ  is a projection of 
points. 

By projecting slant triangles onto 2DH , we obtain a two-dimensional flow of 
flat triangles on 2DH . 

Definition 6 (Local Trajectories of Flat Triangles) Let 2t B∈ . The local 
trajectory of flat triangles at t is a projection image of a local trajectory of slant 
triangles at 2s S∈  by Hπ , where ( )H s tπ = . That is, there exists some 2s S∈  
such that ( )H s tπ =  and the local trajectory at s is given by either 

( ) ( ) ( ){ } ( ) ( ) ( ){ }
( ) ( ) ( ){ } ( ) ( ) ( ){ }

, , or , ,

or , , or , , ,
H DD H H UU H DD H H UD

H DU H H UU H DU H H UD

s s s s s s

s s s s s s

π π π π π π

π π π π π π
 

where the definition of DDs , DUs , UDs , and UUs  are given above 
(immediately after Definition 4). Note that ( ) ( )H DD H DUs sπ π=  and 

( ) ( )H UD H UUs sπ π=  (Figure 2(a)). By patching “consistent” local trajectories 
together, we will obtain a flow of flat triangles as shown in Figure 1(a). 

2.2. Vector Fields of Triangles 

As shown in Figure 1(a), a mountain range-like structure induces a flow of 
triangles on 2B . We can define a “tangent space” structure on the space 2B  of 
flat triangles, where each flat triangle assume one of the three gradient vectors 

1 2x x , 0 2x x , and 0 1x x . 

https://doi.org/10.4236/am.2018.910076
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Figure 2. Slant triangles: (a) The four local trajectories of slant triangles at 2s B∈ . Shown 
above is the top view of the trajectory; (b) Positional relationship of the slant triangles of 

[ ]( )1
1 2H x xπ −  and the 2-face ( ) ( ) ( ){ }2

1 2 0 2 0 1 | 0 ,m nx x x x x x m n− ≤ ∈  of the cotangent cone 

( ) ( ){ }2*
1 2 0 2Cone x x x x −

, where slant triangles shown are A: [ ]2 2 2
0 1 2 1 2x x x x x , B: 

[ ]2 2
0 1 2 0 1x x x x x , C: [ ]2

0 1 2 2 0x x x x x , D: [ ]0 1 2 1 2x x x x x , E: [ ]1 2 0 1x x x x , F: [ ]1 2 0x x x , and G: 

[ ]1 2x x . Shown above is a schematic diagram of the relationship between the three vertices 

of a slant triangle and a 2-face of ( ) ( ){ }2*
1 2 0 2Cone x x x x − . In the diagram, the diagonal 

edges of slant triangles are drawn with thick line, where the diagonal edges on the 2-face 
are colored black and the others are colored grey. Note that all slant triangles are 
projected onto the same flat triangle [ ]( )1 2H x xπ  by Hπ . Triangles A, B, and C are 

included in ( ) ( ){ }2*
1 2 0 2Cone x x x x −

. Triangle D intersects the 2-face of the cotangent 

cone. Triangles E, F,and G are located outside the cotangent cone. 

 
Definition 7 (Tangent Space) The tangent space 2TB  on 2B  is defined by 

{ }
( )( )

2 2 1 2 0 2 0 1

2 2

: , , ,

: , , : .i j

TB B x x x x x x

TB B t x x tπ π

 = ×


→ =
 

Let 2t B∈ . The tangent space at t is denoted by [ ]2TB t . Note that there 
exists a one-to-one correspondence  

[ ] { }2 1 2 0 2 0 1~ , , .TB t x x x x x x  

An inverse function of the projection π , i.e., a vector field of 2TB  on 2B , is 
induced by a mountain range-like structure consisting of piled-up unit cubes. 

Definition 8 (Tangent Cones) Let 3A L⊂ , the three-dimensional tangent 
cone ConeA  is defined by 

{ } 3
0 1 2: | ,0 , , .l m nConeA ax x x a A l m n L= ∈ ≤ ∈ ⊂  

Roughly speaking, ConeA  is the triangular cone whose top vertices are given 
by 3A L⊂ . The set of all the top vertices of a tangent cone c is denoted by 

( )top c . In general, ( )top ConeA A⊂ . 
Definition 9 ( ( )t top c∂ ) Let c be a three-dimensional tangent cone. The peaks 
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on the boundary of c is defined by 

( ) ( ) { } ( ) ( ) { }( ){
}

: | 0,1, 2 s.t. \

for ,

N
t itop c p top c i p x Cone top c p

N

∂ = ∈ ∃ ∈ ∈/

∀ ∈
 

where   denotes the set of all natural numbers. 
Example 3 Let c be the tangent cone corresponds to the mountain range-like 

structure of Figure 1(a). Then, 

{ }
( ) ( ) { }

2 1 2 3 3 2 1
0 0 2 0 1 2 0 1 0 1 2

2 1 2 3 3 2 1
0 0 2 0 1 2 0 1 0 1 2

, , , , ,

, , , , .t

c Cone x x x x x x x x x x x

top c top c x x x x x x x x x x x

− −

− −

 =


= ∂ =
 

Definition 10 ( ( )pt c∂ ) Let c be a three-dimensional tangent cone. The 
surface lattice points ( )pt c∂  of c is the set of all the L3 lattice points on the 
surface of c, i.e., 

( ) { } { }{
{ } ( )} 3

0 1 2

: | ( ), , 0,1, 2 , 0 , s.t.

for .

l m
pt i j

l m
i j

c ax x a top c i j l m

ax x Cone bx x x b top c L

∂ = ∈ ⊂ ≤ ∈

∈ ∀ ∈ ⊂/


 

Example 4 The surface lattice points of the three-dimensional tangent cone 
{ }1Cone  are given by 

{ }( ) 3
0 0 01 ,pt l m nCone U U U L= = =∂ = ⊂   

where 

{ }
{ }
{ }

0 1 2

0 0 2

0 0 1

: | 0 , ,

: | 0 , ,

: | 0 , .

m n
l

l n
m

l m
n

U x x m n

U x x l n

U x x l m

=

=

=

 = ≤ ∈

 = ≤ ∈


= ≤ ∈







 

That is, { }( )1pt Cone∂  is the union of the three 2-faces of { }1Cone . 
Definition 11 ( Sd c ) Let c be a three-dimensional tangent cone. Then, Sd c  

is the set of all the slant triangles on the surface of c, i.e. 

( ){ }2: | all the vertices of are included in .S ptd c s S s c= ∈ ∂  

Definition 12 (Vector Fields) Let c be a three-dimensional tangent cone. The 
vector field cV  induced by c on 2B  is defined by 

( ) ( )2: ,cV t Ds t B= ∈  

where Ss d c∈  such that ( )Ht sπ=  (Note that s is uniquely determined for 
each 2t B∈ ). The flow of triangles determined by cV  is called the flow of 
triangles induced by c. 

Example 5 In the case of Figure 1(c), 

[ ]( )( ) [ ]0 1 0 1 0 1,cV x x D x x x xπ = =  

where { }1c Cone=  (Recall that [ ]0 1 2 0 1P PP x x= ). 

2.3. Contour of Closed Trajectories of Triangles 

The ridge lines of tangent cones are given by three vectors ( )1,0,0 , ( )0,1,0 , 
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and ( )0,0,1 . To compute the contour of the region of 2DH  swept by a set of 
closed trajectories of flat triangles, we will consider another type of triangular 
cones whose ridge lines are given by the slopes of slant triangles, i.e., ( )0,1,1 , 
( )1,0,1 , and ( )1,1,0 . 

Definition 13 (Conjugate Lattice) The conjugate lattice 3L∗  is the 
three-dimensional lattice generated by three vectors ( )0,1,1 , ( )1,0,1 , and 
( )1,1,0 . Using the monomial representation, 3L∗  is given by 

{ }3 3
0 1 2: | , , .m n l n l mL x x x l m n L∗ + + += ∈ ⊂  

Definition 14 (Cotangent Cones) Let 3A L∗⊂ . The three-dimensional 
cotangent cone *Cone A  is defined by 

( ) ( ) ( ){ }* *3
1 2 0 2 0 1: | ,0 , , .m nlCone A a x x x x x x a A l m n L= ∈ ≤ ∈ ⊂  

We denote the top vertices of a cotangent cone c by ( )top c . Note that we 
define cotangent cones only for 3A L∗⊂ . 

For a given cotangent cone, we can put a “roof” on the cone. 
Definition 15 (Cotangent Roofs) Let 3A L∗⊂ . The three-dimensional 

cotangent roof *Roof A  is defined by 

( ){
( ) ( ) }

* 3
1 2

*
0 2 0 1

: | s.t. 0 and ,

, .

N

N N

Roof A p L N N p x x

p x x p x x Cone A

∗= ∈ ∃ ∈ >

∈


 

Roughly speaking, *Roof A  is obtained by putting as many unit cubes of 3L∗  
as possible on *Cone A . 

Example 6 In the case of Figure 3(a), 

( )
{ }
{ }

*
0

* 2 1 2 3 3 2 1
0 0 2 0 1 2 0 1 0 1 2

* 1 1
0 2 0 1

, , , ,

,1, .

tRoof top c
Roof x x x x x x x x x x x

Cone x x x x

− −

− −

∂

=

=

 

Definition 16 ( )( )pt w∂ . Let w be a three-dimensional cotangent cone. The 
surface lattice points ( )pt w∂  of w is the set of all the 3L∗  lattice points on the 
surface of w, i.e., 

( ) ( ) ( ) ( ) { } { }{
( ) ( ) { } ( )}

3 3

* 2 3
3 3 3

: | , , 0,1, 2 ,0 , ,

for ,

ml
pt i j

ml
i j

w a e x e x a top w i j l m

a e x e x Cone be b top w L∗

∂ = ∈ ⊂ ≤ ∈

∈ ∀ ∈ ⊂/


 

where 3 0 1 2:e x x x=  (For example, 3 1 0 2e x x x=  and 2 2 2 2
3 0 1 2e x x x= ). 

Example 7 The surface lattice points of the three-dimensional cotangent cone 
{ }* 1Cone  are given by 

{ }( )* 3
0 0 01 ,pt l m nCone V V V L∗= = =∂ = ⊂   

where 

( ) ( ){ }
( ) ( ){ }
( ) ( ){ }

0 0 2 0 1

0 1 2 0 1

0 1 2 0 2

: | 0 , ,

: | 0 , ,

: | 0 , .

m n
l

nl
m

ml
n

V x x x x m n

V x x x x l n

V x x x x l m

=

=

=

 = ≤ ∈

 = ≤ ∈

 = ≤ ∈







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Figure 3. The closed trajectory of Figure 1 (a) and the associated contour pair: (a) 
Tangent cone { }0 , , , ,a b c d ec Cone P P P P P=  and the associated cotangent roof  

( ) { }*
0 , ,c a b cw c Cone K K K= ; (b) Inverted cotangent roof  

( ) { }* *
0 ,t d eIRoof c ICone K Kφ = ; (c) The region ( ),cR w iv  for the contour pair  

( ) { } { }( )* *, , , , ,a b c d ew iv Cone K K K ICone K K=  associated with 0c . In the figure,  
2
0aP x= , 0 2bP x x= , 1 2

0 1 2cP x x x−= , 3
0 1dP x x= , 3 2 1

0 1 2eP x x x−= , 4 2
0 1fP x x= , 2

0 1 2gP x x x= , 
2 3

0 1 2hP x x x= , 4
0 1 2iP x x x= , 2 3

0 1 2jP x x x= , 2 2
0 1kP x x= , 3 3

0 1lP x x= , 1
0 2aK x x−= , 1bK = , 

1
0 1cK x x−= , 4 3

0 1 2dK x x x= , and 3 4 3
0 1 2eK x x x= . 

 
Let c be a tangent cone and w be a cotangent cone. Then, we can divide all the 

slant triangles of the flow induced by c into three groups: 1) inside w, 2) outside 
w, and 3) on the surface of w (Figure 2(b)). In particular, we can compute the 
contour of closed trajectories induced by a tangent cone using a cotangent cone 
as shown below. 

Definition 17 ( )( )0cw c . Let 0c  be a three-dimensional tangent cone. 
Suppose that ( ) 3

0ttop c L∗∂ ⊂ . The three-dimensional cotangent roof ( )0cw c  
associated with 0c  is defined by 

( ) ( )*
0 0: .c tw c Roof top c= ∂  

Definition 18 ( )( )0t cφ . Let 0c  be a three-dimensional tangent cone. 
Suppose that ( ) 3

0ttop c L∗∂ ⊂ . The contour vertices ( )0t cφ  with respect to 0c  
is defined by 

( ) ( ) ( )( ) 3
0 0 0: .t pt pt cc c w c Lφ ∗= ∂ ∂ ⊂  

That is, ( )0t cφ  is the set of 3L∗  lattice points on the intersection of the 
surface of 0c  and the surface of ( )0cw c . 

Definition 19 ( )( )0t cΦ . Let 0c  be a three-dimensional tangent cone. 
Suppose that ( ) 3

0ttop c L∗∂ ⊂ . Let ( ) 3
0t c EΦ ⊂  be the polygonal line obtained 

by joining the adjacent 3L∗  lattice points of ( )0t cφ . Since all the points of 
( )0t cφ  are on the surface of ( )0cw c , the points of ( )0t cφ  are connected along 

the surface of the associated cotangent roof. Note that ( )0t cΦ  forms a closed 
polygonal line if ( )0top c  is finite (Figure 3(a)). 
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Definition 20 ( )( )0tm c . Let 0c  be a three-dimensional tangent cone. The 
one-dimensional surface mesh ( )0tm c  with respect to 0c  is defined by 

( ) ( )( )0 0 2: .t pt t Dm c c Hπ= Φ ⊂  

We also call ( )0tm c  the (one-dimensional) contour with respect to 0c . 
Definition 21 Let 0c  be a three-dimensional tangent cone. Set 

( ) ( ){ }
( ) ( ){ }

( ) ( ){ }

0 0 0

0 0 0

0 0 0

: | is contained inside ,

: | is contained outside ,

: | intersects with the surface of .

t S c

t S c

t S c

IN c s d c s w c

OUT c s d c s w c

BD c s d c s w c

 = ∈
 = ∈


= ∈

 

Theorem 1 Let c be a three-dimensional tangent cone. Suppose that ( )top c  is 
finite and ( ) 3

ttop c L∗∂ ⊂ . Then, ( )cw c  divides all the slant triangles of Sd c  
(i.e., slant triangles on the surface of c) into two groups: inside the roof and 
outside the roof. That is, ( )tBD c =∅  and ( )( )H tIN cπ  exactly corresponds to 
the region swept by all the closed trajectories of cV . 

Proof. ( )t cΦ  forms a closed polygonal line because ( )t cφ  contains only a 
finite number of points. Note that ( )t cΦ  consists of the diagonal edges of slant 
triangles on the surface of c. Since flows of slant triangles go along the diagonal 
edge at each slant triangle, there is no slant triangle crossing ( )t cΦ . That is, 

( )t cΦ  divides the flow of the slant triangles on the surface of c into two parts: 
the inside ( )t cΦ  and the outside ( )t cΦ .                            □ 

Definition 22 ( )( )tR c . Let c be a three-dimensional tangent cone. Let cV  
be the vector field induced by c. We define the region ( )tR c  of 2DH  by 

( ) ( )( ) 2: .
tt H Ds IN c

R c s Hπ
∈

= ⊂


 

By Theorem 1, ( )tR c  corresponds to the region of 2DH  swept by all the 
closed trajectories of cV  if ( )top c  is finite and ( ) 3

ttop c L∗∂ ⊂ . 
We can compute the contour of ( )tR c  instantly. 
Corollary 1 (“Contour” of ( )tR c ). Let c a three-dimensional tangent cone. 

Suppose that ( )top c  is finite and ( ) 3
ttop c L∗∂ ⊂ . Then, ( )tm c  gives the 

“contour” of ( )tR c . 
Proof. It follows immediately from the theorem.                      □ 
Example 8 In the case of Figure 3(a), the closed polygonal line ( )0tm c  

consists of 12 vertices and 12 line segments, where 

{ }
( ) { }
( ) { }

0

*
0

0

, , , , ,

, , ,

, , , , , , , , , , , , , , , ,

a b c d e

c a b c

t a g b bh h hc c ci i d j k l c f fa

c Cone P P P P P

w c Cone K K K

c P P P P P P P P P P P P P P P Pφ

 =
 =


=

 

and 2
0 1 2bhP x x x= , 2

1 2hcP x x= , 3
1 2ciP x x= , and 3

0 1faP x x= . 

2.4..Constraints on the Contour of Closed Trajectories 

Let c be a three-dimensional tangent cone. We have computed the contour of 
( )tR c  using c and the associated cotangent roof ( )cw c  (the upper row of 
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Figure 4). Now, we will compute regions of 2DH  without using tangent cones 
(the lower row of Figure 4). 

Definition 23 (Inverted Cotangent Cones) Let 3A L∗⊂ . The three-dimensional 
inverted cotangent cone *ICone A  is defined by 

( ) ( ) ( ){ }* *3
1 2 0 2 0 1: | , 0 , , .m nlICone A a x x x x x x a A l m n L= ∈ ≥ ∈ ⊂  

We denote the top vertices of an inverted cotangent cone iv  by ( )itop iv . 
Definition 24 (Inverted Cotangent Roofs) Let 3A L∗⊂ . The three-dimensional 

inverted cotangent roof *IRoof A  is defined by 

( ){
( ) ( ) }

* 3
1 2

*
0 2 0 1

: | s.t. 0 and ,

, .

N

N N

IRoof A p L N N p x x

p x x p x x ICone A

∗= ∈ ∃ ∈ <

∈


 

Example 9 In the case of Figure 3(b), 

( )
{ }
{ }

*

* 4 2 2 3 4 3 3
0 1 0 1 2 0 1 2 0 1

* 4 3 3 4 3
0 1 2 0 1 2

, , ,

, .

tIRoof c

IRoof x x x x x x x x x x

ICone x x x x x x

φ

=

=

 

Definition 25 ( )( )pt iv∂ . Let iv be a three-dimensional inverted cotangent 
cone. The surface lattice points ( )pt iv∂  of iv is the set of all the 3L∗  lattice 
points on the surface of iv, i.e., 

( ) ( ) ( ) ( ) { } { }{
( ) ( ) { } ( )}

3 3

* 2 *3
3 3 3

: | , , 0,1, 2 ,0 , ,

for .

ml
pt i j

ml
i j

iv a e x e x a itop iv i j l m

a e x e x ICone be b itop iv L−

∂ = ∈ ⊂ ≥ ∈

∈ ∀ ∈ ⊂/


 

Recall that 3 0 1 2e x x x= . For example, 3 1 0 2e x x x=  and 2 2 2 2
3 0 1 2e x x x− − − −= . 

 

 
Figure 4. Schematic diagram showing the procedure for computing the contour of a 
region of 2DH . The upper row shows the procedure for a region ( )tR c  specified by a 

tangent cone c. The lower row shows the procedure for a region ( ),cR w iv  specified by a 

contour pair ( ),w iv . 
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Definition 26 (Contour Pairs) Let w be a three-dimensional cotangent cone. 
Let iv be a three-dimensional inverted cotangent cone. A pair ( ),w iv  of w and 
iv is called a three-dimensional contour pair. 

Definition 27 ( )( ),c w ivφ . Let ( ),w iv  be a three-dimensional contour pair. 
The contour vertices ( ),c w ivφ  with respect to ( ),w iv  is defined by 

( ) ( ) ( ) 3, : .c pt ptw iv w iv Lφ ∗= ∂ ∂ ⊂  

That is, ( ),c w ivφ  is the set of 3L∗  lattice points on the intersection of the 
surface of w and the surface of iv. 

Definition 28 ( )( ),c w ivΦ . Let ( ),w iv  be a three-dimensional contour pair. 
Let ( ) 3,c w iv EΦ ⊂  be the polygonal line obtained by joining the adjacent 3L∗  
lattice points of ( ),c w ivφ  (Figure 3(c)). Since all the points of ( ),c w ivφ  are 
on the surface of w (or iv), the points of ( ),c w ivφ  are connected along the 
surface of w (or iv). Note that ( ),c w ivφ  forms a closed polygonal line if 

( )top w  or ( )itop iv  is finite (Figure 3(c)). 
Definition 29 ( )( ),cm w iv . Let ( ),w iv  be a three-dimensional contour pair. 

The one-dimensional surface mesh ( ),cm w iv  with respect to ( ),w iv  is 
defined by 

( ) ( )( ) 2, : , .c pt c Dm w iv w iv Hπ= Φ ⊂  

We also call ( ),cm w iv  the (one-dimensional) contour with respect to 
( ),w iv . 

Remark Note that we have two types of one-dimensional surface meshes, i.e., 
the contour ( )tm c  with respect to a tangent cone c and the contour ( ),cm w iv  
with respect to a contour pair ( ),w iv . 

Definition 30 ( )( ),cR w iv . Let ( ),w iv  be a three-dimensional contour pair. 
( ) 2,c DR w iv H⊂  is the region enclosed by ( ),cm w iv  (Figure 3(c)). 

Definition 31 ( ) ( )( )( )0 0,c cw c iv c . Let 0c  be a three-dimensional tangent 
cone. Suppose that ( )0top c  is finite and ( ) 3

0ttop c L∗∂ ⊂ . The 
three-dimensional contour pair ( ) ( )( )0 0,c cw c iv c  associated with 0c  is a pair 
of the associated cotangent roof ( )0cw c  and the inverted cotangent roof 

( )0civ c  which is defined by 

( ) ( )*
0 0: .c tiv c IRoof cφ=  

Theorem 2 Let c be a three-dimensional tangent cone. Suppose that ( )top c  
is finite and ( ) 3

ttop c L∗∂ ⊂ . Then, 

( ) ( ) ( )( ), .t c c cR c R w c iv c=  

Proof. Recall that 

( ) ( ) ( )( )
( ) ( )( ) ( )( ) ( )( )

,

, .
t pt pt c

c c c pt c pt c

c c w c

w c iv c w c iv c

φ

φ

= ∂ ∂

= ∂ ∂





 

Note that ( ) ( )c tiv c cφ⊃ , which implies ( )( ) ( )pt c tiv c cφ∂ ⊃  because the 
slope inclination of cotangent cones is steeper than that of tangent cones. On the 
other hand, ( )( ) ( )pt c tw c cφ∂ ⊃  by definition. Therefore,  
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( ) ( )( ) ( ),c c c tw c iv c cφ φ⊃ . Suppose that ( ) ( )( ) ( ),c c c tw c iv c cφ φ≠ . Let p be an 
3L∗  lattice point of ( ) ( )( ),c c cw c iv cφ  not included in ( )t cφ . Then, 

( )( )pt cp iv c∈∂  and ( )ptp c∈∂/ . That is, p resides on the part of the surface of 
( )civ c  which is expanded by the “roof” operation. But the expanded part of 
( )civ c  is strictly contained in ( )cw c , i.e., ( )( )pt cp w c∈∂/ , which is a 

contradiction. Therefore, ( ) ( ) ( )( ),t c c cc w c iv cφ φ= . In particular,  
( ) ( ) ( )( ),t c c cR c R w c iv c= .                                          □ 
Example 10 In the case of Figure 3, 

{ }
( ) { }
( ) { }

{ }
{ }

0

*
0

*
0

*

*

, , , , ,

, , ,

, , , , , , , , , , ,

, , ,

, .

a b c d e

c a b c

c a b c d e f g h i j k l

f h i k

d e

c Cone P P P P P

w c Cone K K K

iv c IRoof P P P P P P P P P P P P

IRoof P P P P

ICone K K

 =

 =
 =


=


=

 

In Theorem 2, we have computed the “contour” of ( )tR c  for a give tangent 
cone c (Figure 5(a)). Now, we will compute the “contour” of ( ),cR w iv  for a 
given contour pair ( ),w iv  (Figure 5(b)). 

Definition 32 Let ( ),w iv  be a three-dimensional contour pair. The tangent 
cone ( ),tc w iv  associated with ( ),w iv  is defined by 

( ) ( ), : , .t cc w iv Cone w ivφ=  

Note that ( )( ) 3,ttop c w iv L∗⊂ . 
Theorem 3 Let ( ),w iv  be a three-dimensional contour pair. Then, 

( ) ( )( ), , .c t tR w iv R c w iv⊃  

Proof. Suppose that 2Dq H∃ ∈  such that ( )( ),t tq R c w iv∈  and 
( ),cq R w iv∈/ . Then, there exists an 3L∗  lattice point p of ( )( ),t tc w ivφ  (i.e., 

points on the contour) such that ( ) ( ),pt cp R w ivπ ∈/  ( ( )pt pπ  is on the contour 
of ( )( ),t tR c w iv .) It follows that p is outside iv because ( )ptp w∈∂ . However, 
the part of the surface of w not included in iv is strictly contained in c. Therefore, 

( )( ),pt tp c w iv∈∂/ , which is a contradiction.                            □ 
Remark In general, ( ) ( ), ,t cc w iv w ivφ⊃  does not imply  

( )( ) ( ), ,pt t cc w iv w ivφ∂ ⊃  because the slope inclination of tangent cones is 
gentler than that of cotangent cones. Therefore, there exists a contour pair 
( ),w iv  s.t. 

( )( ) ( )( ) ( )( )( )
( )( ) ( )

( )

, , ,

,

, .

t t pt t pt c t

pt t pt

c

c w iv c w iv w c w iv

c w iv w

w iv

φ

φ

= ∂ ∂

= ∂ ∂

⊃/



  

In particular, ( )( ) ( ), ,t t cc w iv w ivφ φ≠ , i.e., ( )( ) ( ), ,t t cR c w iv R w iv≠ .  
Starting with some definitions, we will consider the correspondence between 

the two types of regions of 2DH , i.e., ( )tR c s and ( ),cR w iv s. 
Definition 33 Sets of there-dimensional cones are defined by 

https://doi.org/10.4236/am.2018.910076


N. Morikawa 
 

 

DOI: 10.4236/am.2018.910076 1129 Applied Mathematics 
 

 
Figure 5. Maps between ,t nR  and ,c nR  and the relevant maps between sets of 1n +

-dimensional cones ( 2n =  or 3): (a)  , ,:n t n c nR Rι  and the relevant maps; (b) 

, ,:n c n t nR Rτ →  and the relevant maps. The SECT denotes the set of all self-eclipsed 

closed trajectory complexes. 

 

{ }
{ }
{ }

3
2

* 3
2

* 3
2

: | and is finite ,

: | and is finite ,

: | and is finite .

TC ConeA A L A

CC Cone A A L A

ICC ICone A A L A

∗

∗

∗

 = ⊂

 = ⊂


= ⊂

 

Note that ( ) 3top c L∗⊂  for 2c TC∀ ∈ . 
Definition 34 ( ,2tR  and ,2cR ) Sets of regions of 2DH  are defined by 

( ){ }
( ) ( ){ }

,2 2

,2 2 2

: | ,

: , | , .
t t

c c

R R c c TC

R R w iv w iv CC ICC

 = ∈


= ∈ ×
 

Definition 35 ( 2ι  and 2τ ) Maps between regions of 2DH  are defined by 

 ( ) ( ) ( )( )
( ) ( )( )

2 ,2 ,2

2 ,2 ,2

: , , ,

: , , , .
t c t c c c

c t c t t

R R R c R w c iv c

R R R w iv R c w iv

ι

τ




→





 
It is not difficult to show that the maps are well-defined. By Theorem 2, we 

have 

( )( ) ( )2 .t tR c R cι =  

See Figure 5 for the correlation between the relevant maps. 
Theorem 4 2ι  is not surjective. 
Proof. Let us consider the case of Figure 6(a). We have 

{ }
{ }

( ) { }

*
0

*
0

0 0

,
,

, , , , , , , , , , ,

a

b

c a ab b c cd d de e f fa

w Cone K
iv ICone K

w iv P P P P P P P P P Pφ

 =
 =
 =

 

where 1 1
0 2aK x x− −= , 2 4 2

0 1 2bK x x x= , 1aP = , 1 2abP x x= , 2 2
1 2bP x x= , 1 2

0 1 2cP x x x−= , 
3
1 2cdP x x= , 4

0 1 2dP x x x= , 3
0 1deP x x= , 2 1

0 1 2eP x x x−= , 2 2
0 1fP x x= , and 0 1faP x x= . 

Then, ( )0 0,cR w iv  forms a flattened hexagon as shown in the figure. 
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Figure 6. Self-eclipsed close trajectories: (a) Contour pair ( )0 0,w iv  and ( )0 0,cR w iv ; (b) 

The tangent cone ( )0 0 0: ,cc c w iv=  and the self-eclipsed region ( )0tR c ; (c) The contour 

pair ( ) ( )( )0 0,c cw c iv c  associated with 0c . 

 
On the other hand, the tangent cone ( )0 0,tc w iv  and its associated cotangent 

roof is given by 

( ) { } { }
( )( ) { } { }
( )( ) { }

0 0

*
0 0

0 0

, , , , , , , , ,

, , , ,

, , , , , , , , , ,

t a b c d e f a c e

c t a c e a

t t a ab b c g h i e f fa

c w iv Cone P P P P P P Cone P P P

w c w iv Roof P P P Cone K

c w iv P P P P P P P P P Pφ

 = =
 = =


=

 

(Figure 6(b)). Then, the region ( )( )0 0,t tR c w iv  gets dented on the bottom, 
where 3

1 2gP x x= , 2
1hP x= , and 3

0 1iP x x= . That is, 

( )( ) ( )2 0 0 0 0, , .c cR w iv R w ivτ ≠  

It follows immediately that ( ) ( )0 0 2 ,2,c tR w iv Rι∉ . 
Corollary 2 (Self-eclipse of Rc(w, iv)) There exists a contour pair ( ),w iv  

such that ( )( ) ( )2 , ,c cR w iv R w ivτ ≠ . 
That is, not all closed polygonal lines defined by contour pairs correspond to a 

closed trajectory of triangles induced by a tangent cone. In other words, there 
exist global geometrical constraints on the contour of closed trajectories of 
triangles. 

Definition 36 (Self-eclipsed closed trajectory complexes) A contour pair 
( ),w iv  is called a self-eclipsed contour pair if ( )( ) ( )2 , ,c cR w iv R w ivτ ≠ . The 
complex of closed trajectories of triangles induced by a three-dimensional 
tangent cone c is called a self-eclipsed closed trajectory complex (abbreviated as 
SECT) if there exists a self-eclipsed contour pair ( ),w iv  such that ( ),tc c w iv= . 

Example 11 In the case of Figure 6(b), 

{ } { }( )( )
{ }( )
{ } { }( )
{ } { }( )

* *
2

* *

* *

,

, ,

, ,

, ,

c a b

t a c e

c a c d

c a b

R Cone K ICone K

R Cone P P P

R Cone K ICone K K

R Cone K ICone K

τ

=

=

≠

 

where 2 3
0 1 2cK x x x=  and 3 2

0 1 2dK x x x=  (Figure 6(c)). That is, the closed 
trajectory of Figure 6(b) is a self-eclipsed closed trajectory complex. 
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In the next section, we will consider geometrical constraints on the shape of 
closed trajectories of tetrahedrons. As an example, it will be shown that a garlic 
bulb-like structure appears as a result of the constraints, where a flattened 
dodecahedron gets dented on the bottom and has vertical linear grooves on the 
side (Figure 11). 

3. Mathematical Toy Model of Protein Molecules 
3.1. Flows of Tetrahedrons 

Now let us consider the case of tetrahedrons. To define a flow of tetrahedrons, 
we use unit cubes in the four-dimensional Euclidean space E4. By piling up unit 
cubes in the direction of ( )1, 1, 1, 1− − − − , we will obtain a flow of “slant” 
tetrahedrons as in the case of flows of triangles. 

Definition 37 (Standard Lattice) The four-dimensional standard lattice L4 is 
defined by 

{ }4 4
0 1 2 3: | , , , .l m n kL x x x x l m n k E= ∈ ⊂  

Let 0p , 1p , 2p , and 4
3p L∈ . We denote the convex hull of four points 0p , 

1p , 2p , and 3p  by [ ]0 1 2 3, , ,p p p p , i.e., 

[ ] { }0 1 2 3 0 1 2 3, , , : | 0 , , , , 1 ,a b c dp p p p p p p p a b c d a b c d= ≤ ∈ + + + =  

We denote the group of all permutations of the four-element set { }0,1,2,3  
by 4Sym . 

Definition 38 (Slant Tetrahedrons) Let 4a L∈  and 4Symρ ∈ . A slant 
tetrahedron ( ) ( ) ( )0 1 2a x x xρ ρ ρ

 
   is the tetrahedron defined by four points a, 

( )0axρ , ( ) ( )0 1ax xρ ρ , and ( ) ( ) ( )0 1 2ax x xρ ρ ρ , i.e., 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 0 0 1 0 1 2: , , , .a x x x a ax ax x ax x xρ ρ ρ ρ ρ ρ ρ ρ ρ
   =     

The line segment joining vertex a and vertex ( ) ( ) ( )0 1 2ax x xρ ρ ρ , i.e., the 
cube-diagonal, is called the diagonal edge of the slant tetrahedron. Then, the 
four upper faces of each unit cube are divided into six tetrahedrons along the 
diagonal edge as shown in Example 12. The set 3S  of all slant tetrahedrons is 
defined by: 

( ) ( ) ( ){ }4 4
3 0 1 2: | , .S a x x x a L Symρ ρ ρ ρ = ∈ ∈   

Example 12 Shown in Figure 7(a) is a four-dimensional unit cube at the 
origin 1P . The upper face 1 y yz z x xy xyz xxPP P P P P P P  of the cube is divided into six 
tetrahedrons along the cube-diagonal 1 xyzPP : 

[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ]

1 0 1 2 0 0 1 0 1 2

1 1 0 2 1 1 0 1 0 2

1 1 2 0 1 1 2 1 2 0

1 2 1 0 2 2 1 2 1 0

1 2 0 1 2 2 0 2 0 1

1 0 2 1

1, , , ,
1, , , ,
1, , , ,
1, , , ,
1, , , ,
1

x xy xyz

y xy xyz

y yz xyz

z yz xyz

z xz xyz

x xz xyz

PP P P x x x x x x x x x
PP P P x x x x x x x x x
PP P P x x x x x x x x x
PP P P x x x x x x x x x
PP P P x x x x x x x x x
PP P P x x x

= =
= =
= =
= =
= =
= = [ ]0 0 2 0 2 1, , , .x x x x x x










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Figure 7. Slant tetrahedrons: (a) A four-dimensional unit cube shown in the Schlegel 
diagram (below) and its projection image on hyperplane 3DH  (above), where 

4
0 1 2 3l m n k
l m n k

x y z w
P x x x x L= ∈  and ( )0 1 2 3 3l m n k

l m n k
pt Dx y z w

Q x x x x Hπ= ∈ ; (b) All the local 

trajectories at 1 3x xy xyzs PP P P B= ∈ . The diagonal edges of tetrahedrons are drawn with 

thick lines. 

 
Definition 39 (Gradient of Slant Tetrahedrons) Let ( ) ( ) ( ) 40 1 2s a x x x Sρ ρ ρ

 = ∈  . 
The gradient Ds of s is defined by 

( ) ( ) ( )0 1 2: .Ds x x xρ ρ ρ=  

By abuse of notation, we denote vector ( ), , ,l m n k  by monomial 0 1 2 3
l m n kx x x x  

in the definition. 
Example 13 In the case of Example 12, 

( ) [ ]1 0 1 2 0 1 2.x xy xyzD PP P P D x x x x x x= =  

Flows of slant tetrahedrons along the diagonal edges are defined as follows. 
Definition 40 (Local Trajectories of Slant Tetrahedrons) Let 3s S∈ . A local 

trajectory of slant tetrahedrons at s is a set of three consecutive slant 
tetrahedrons, consisting of s and two adjacent slant tetrahedrons which do not 
include the diagonal edge of s. By patching “consistent” local trajectories 
together, we obtain a flow of slant tetrahedrons. 

Let ( ) ( ) ( ) 30 1 2s a x x x Sρ ρ ρ
 = ∈  . Then, the local trajectory of slant tetrahedrons 

at s is either 

{ } { } { } { }, , or , , or , , or , , ,DD UU DD UD DU UU DU UDs s s s s s s s s s s s  

where  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

30 1 2 0

1
30 3 3 1 2

30 1 3

1
32 2 0 1

: ,

: ,

: ,

: .

DD

DU

UD

UU

s ax x x x S

s ax x x x x S

s a x x x S

s ax x x x S

ρ ρ ρ ρ

ρ ρ ρ ρ ρ

ρ ρ ρ

ρ ρ ρ ρ

−

−

  = ∈ 
  = ∈  


 = ∈  
  = ∈ 
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Example 14 In the case of Example 13, the four local trajectories at 

1 x xy xyzPP P P  ( [ ]0 1 2x x x= ) are shown in Figure 7(b). 
A flow of “flat” tetrahedrons is defined on the hyperplane 3DH  using the 

projection ptπ  of 4E  onto 3DH , where 

{ }
( )

( ) ( ) ( ) ( )

4
3 0 1 2 3

4
3 0 1 2 3

3 4 3 4 3 4 3 4
0 1 2 3

: | , , , , 0 ,

: ,

: .

l m n k
D

l m n k
pt D pt

x y z w x y z w x y z w x y z w

H x x x x l m n k l m n k E

E H x x x x

x x x x

π π
− − − − + − − − − + − − − − +

 = ∈ + + + = ⊂

 →

=



 

Definition 41 (Flat Tetrahedrons) Let ( ) ( ) ( ) 30 1 2s a x x x Sρ ρ ρ
 = ∈  . The 

projection Hπ  of s on 3DH  is defined by 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) 30 0 1 0 1 2: , , , .H pt pt pt pt Ds a ax ax x ax x x Hρ ρ ρ ρ ρ ρπ π π π π = ⊂   

( )H sπ  is called a flat tetrahedron. The line segment joining ( )pt aπ  and 

( ) ( ) ( )( )0 1 2pt ax x xρ ρ ρπ  is called the diagonal edge of the flat tetrahedron. The set 

3B  of all flat tetrahedrons on 3DH  is defined by: 

( ){ }3 3: | .HB s s Sπ= ∈  

Example 15 In the case of Example 12 (Figure 7(a)), the projection image 

1 x xy y z xz xyz yzQ Q Q Q Q Q Q Q  of the upper face 1 x xy y z xz xyz yzPP P P P P P P  by Lπ  is 
divided into six flat tetrahedrons: 

[ ]( )
[ ]( )
[ ]( )
[ ]( )
[ ]( )
[ ]( )

1 0 1 2

1 1 0 2

1 1 2 0

1 2 1 0

1 2 0 1

1 0 2 1

,

,

,

,

,

.

x xy xyz H

y xy xyz H

y yz xyz H

z yz xyz H

z xz xyz H

x xz xyz H

Q Q Q Q x x x

Q Q Q Q x x x

Q Q Q Q x x x

Q Q Q Q x x x

Q Q Q Q x x x

Q Q Q Q x x x

π

π

π

π

π

π

 =


=


=


=
 =
 =

 

Remark. Note that each tetrahedron has two long edges and four short edges, 
where the diagonal edge correspond to a short edge. Flows of tetrahedrons go 
along the diagonal edge at each tetrahedron. 

By projecting slant tetrahedrons onto 3DH , we obtain a three-dimensional 
flow of flat tetrahedrons on 3DH . 

Definition 42 (Local Trajectories of Flat Tetrahedrons) The local trajectory of 
flat tetrahedrons at 3t B∈  is a projection image of a local trajectory of slant 
tetrahedrons at 3s S∈  by Hπ , where ( )H s tπ = . The local trajectory at s is 
given by either 

( ) ( ) ( ){ } ( ) ( ) ( ){ }
( ) ( ) ( ){ } ( ) ( ) ( ){ }

, , or , ,

or , , or , , .
H DD H H UU H DD H H UD

H DU H H UU H DU H H UD

s s s s s s

s s s s s s

π π π π π π

π π π π π π
 

Note that ( ) ( )H DD H DUs sπ π=  and ( ) ( )H UD H UUs sπ π= . By patching 
“consistent” local trajectories together, we obtain a flow of flat tetrahedrons as 
shown in Figure 8. 
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Figure 8. Flows of tetrahedrons: (a) Closed trajectories of flat tetrahedrons induced by 

{ }0 , ,xyz xzw xywc Cone Q Q Q= , where 0 1 2xyzQ x x x= , 0 2 3xzwQ x x x= , and 0 1 3xywQ x x x= . 

Thick polygonal lines (black and grey) indicate the diagonal edges of flat tetrahedrons, 
where the black line indicate the polygonal line passing through xyzQ , xzwQ , and xywQ . 

Note that there exist infinitely many closed trajectories of length six and length twelve; (b) 

Closed trajectories of flat tetrahedrons induced by { }1 , , ,xyz xzw xyw yzwc Cone Q Q Q Q= , where 

1 2 3yzwQ x x x= . Thick polygonal lines (black and grey) indicate the diagonal edges of flat 

tetrahedrons. Black lines indicate the polygonal lines passing through xyzQ , xzwQ , xywQ , 

or yzwQ . Grey polygonal lines correspond to closed trajectories of length six and length 

twelve. 

3.2. Vector Fields of Tetrahedrons 

The tangent space on the space 3B  of flat tetrahedrons is defined in the same 
way as the tangent space 2TB  on 2B . 

Definition 43 (Tangent Space) The tangent space 3TB  on 3B  is defined by 

{ }
( )( )

3 3 1 2 3 0 2 3 0 1 3 0 1 2

3 3

: , , , ,

: , , : .i j k

TB B x x x x x x x x x x x x

TB B t x x x tπ π

 = ×


→ =
 

Let 3t B∈ . The tangent space at t is denoted by [ ]3TB t . Note that there exists 
a one-to-one correspondence 

[ ] { }3 1 2 3 0 2 3 0 1 3 0 1 2~ , , , .TB t x x x x x x x x x x x x  

Tangent cones are also defined similarly for 4A L⊂ . 
Definition 44 (Tangent Cones) Let 4A L⊂ . The four-dimensional tangent 

cone ConeA  is defined by 

{ } 4
0 1 2 3: | , 0 , , , .l m n kConeA ax x x x a A l m n k L= ∈ ≤ ∈ ⊂  

The set of all the top vertices of a cone c is denoted by ( )top c . 
Definition 45 ( )ttop c∂ . Let c be a four-dimensional tangent cone. The peaks 

on the boundary of c is defined by 

( ) ( ) { }{
( ) ( ) { }{ } }

: | 0,1, 2,3 s.t.

\ for .

t

N
i

top c p top c i

p x Cone top c p N

∂ = ∈ ∃ ∈

∈ ∀ ∈/ 
 

Example 16 In the case of Figure 8, 
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( ) { }
( ) { }

0

1

, , ,

, , , .

t xyz xzw xyw

t xyz xzw xyw yzw

top c Q Q Q

top c Q Q Q Q

∂ =

∂ =
 

Definition 46 ( )( )pt c∂ . Let c be a four-dimensional tangent cone. The 
surface lattice points ( )pt c∂  of c is the set of all the L4 lattice points included in 
the 3-faces of c, i.e., 

( ) ( ) { } { }{
{ } ( )} 4

0 1 2 3

: | , , , 0,1, 2,3 ,0 , , ,

for .

l m n
pt i j k

l m n
i j k

c ax x x a top c i j k l m k

ax x x Cone bx x x x b top c L

∂ = ∈ ⊂ ≤ ∈

∈ ∀ ∈ ⊂/


 

Example 17 The surface lattice points of the four-dimensional tangent cone 
{ }1Cone  are given by 

{ }( ) 4
0 0 0 01 ,pt l m n kCone U U U U L= = = =∂ = ⊂    

where 

{ }
{ }
{ }
{ }

0 1 2 3

0 0 2 3

0 0 1 3

0 0 1 2

: | 0 , , ,

: | 0 , , ,

: | 0 , , ,

: | 0 , , .

m n k
l

l n k
m

l m k
n

l m n
k

U x x x m n k

U x x x l n k

U x x x l m k

U x x x l m n

=

=

=

=

 = ≤ ∈

 = ≤ ∈


= ≤ ∈


= ≤ ∈









 

That is, { }( )1pt Cone∂  is the union of the four 3-faces of { }1Cone . 
Definition 47 (dSc) Let c be a four-dimensional tangent cone. Then, Sd c  is 

the set of all the slant tetrahedrons included in the 3-faces of c, i.e. 

( ) ( ) ( ) ( ){ }30 1 2: | all the vertices are included in .S ptd c a x x x S cρ ρ ρ
 = ∈ ∂   

Definition 48 (Vector Fields) Let c be a four-dimensional tangent cone. The 
vector field cV  induced by c on 3B  is defined by 

( ) ( )3: ,cV t Ds t B= ∈  

where ( )1
S Hs d c tπ −∈   (Note that s is uniquely determined for each 3t B∈ ). 

The flow of tetrahedrons determined by cV  is called the flow of tetrahedrons 
induced by c. 

Example 18 In the case of Figure 7(a), 

( ) ( )1 1 0 1 2 ,c x xy xyz x xy xyzV Q Q Q Q D PP P P x x x= =  

where { }1c Cone= , ( )1 1x xy xyz H x xy xyzQ Q Q Q PP P Pπ= , and [ ]1 0 1 2x xy xyzPP P P x x x= . 
Unlike the case of flows of triangles, infinitely many closed trajectories are 

induced by a tangent cone. 
Example 19 Shown in Figure 8(a) is the closed trajectories of the flow 

induced by { }0 1 2 0 2 3 0 1 3, ,Cone x x x x x x x x x . Two types of closed trajectories, one is 
length 6 and the other is length 12, are alternately stacked infinitely. 

Example 20 By putting another top vertex 1 2 3x x x  on the tangent cone of 
Figure 8(a), we obtain a decomposition of a rhombic dodecahedron into four 
closed trajectories of tetrahedrons (Figure 8(b)). Then, each triplet of the four 
top vertices of { }0 1 2 0 2 3 0 1 3 1 2 3, , ,Cone x x x x x x x x x x x x  induces infinitely many closed 
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trajectories outside the rhombic dodecahedron (grey polygonal lines). 

3.3. Shape of Closed Trajectories of Tetrahedrons 

To compute the surface (2-faces) of the region of 3DH  swept by a set of closed 
trajectories of flat tetrahedrons, we will consider another type of cones whose 
ridge lines are given by the “slopes” of slant tetrahedrons, i.e., ( )0,1,1,1 , 
( )1,0,1,1 , ( )1,1,0,1 , and ( )1,1,1,0 . 

Definition 49 (Conjugate Lattice) The four-dimensional conjugate lattice 
4L∗  is defined by 

{ }4 4
0 1 2 3: | , , , .m n k l n k l m k l m nL x x x x l m n k L∗ + + + + + + + += ∈ ⊂  

Definition 50 (Cotangent Cones) Let 4A L∗⊂ . The four-dimensional 
cotangent cone *Cone A  is defined by 

( ) ( ) ( ) ( ){
}

*
1 2 3 0 2 3 0 1 3 0 1 2

4

: | ,

0 , , , .

l m n kCone A a x x x x x x x x x x x x a A

l m n k L∗

= ∈

≤ ∈ ⊂
 

We denote the top vertices of a cotangent cone c by ( )top c . 
Definition 51 (Cotangent Roofs) Let 4A L∗⊂ . The four-dimensional 

cotangent roof *Roof A  is defined by 

( ){
( ) ( ) ( ) }

* 4
1 2 3

*
0 2 3 0 1 3 0 1 2

: | s.t. 0 and ,

, , .

N

N N N

Roof A p L N N p x x x

p x x x p x x x p x x x Cone A

∗= ∈ ∃ ∈ >

∈


 

Example 21 In the case of Figure 8, 

( ) { }
{ }

* *
0 0 1 2 0 2 3 0 1 3

*
0 1 2 0 2 3 0 1 3

, ,

, , ,
tRoof top c Roof x x x x x x x x x

Cone x x x x x x x x x

∂ =

=
 

( ) { }
{ }

* *
1 0 1 2 0 2 3 0 1 3 1 2 3

*

, , ,

1 .
tRoof top c Roof x x x x x x x x x x x x

Cone

∂ =

=
 

Definition 52 ( )( )pt w∂ . Let w be a four-dimensional cotangent cone. The 
surface lattice points ( )pt w∂  of w is the set of all the 4L∗  lattice points 
included in the 3-faces of w, i.e., 

( ) ( ) ( ) ( ) ( ) { } { }{
( ) ( ) ( ) { }

( )}

4 4 4

* 3
4 4 4 4

*4

: | , , , 0,1, 2,3 ,

0 , , ,

for ,

ml n
pt i j k

ml n
i j k

w a e x e x e x a top w i j k

l m n a e x e x e x Cone be

b top w L

∂ = ∈ ⊂

≤ ∈ ∈/

∀ ∈ ⊂

  

where 4 0 1 2 3:e x x x x=  (For example, 4 1 0 2 3e x x x x=  and 3 3 3 3 3
4 0 1 2 3e x x x x= ). 

Example 22 The surface lattice points of the four-dimensional cotangent cone 
{ }* 1Cone  are given by 

{ }( )* 4
0 0 0 01 ,pt l m n kCone V V V V L∗= = = =∂ = ⊂    

where 
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( ) ( ) ( ){ }
( ) ( ) ( ){ }
( ) ( ) ( ){ }
( ) ( ) ( ){ }

0 0 2 3 0 1 3 0 1 2

0 1 2 3 0 1 3 0 1 2

0 1 2 3 0 2 3 0 1 2

0 1 2 3 0 2 3 0 1 3

: | 0 , , ,

: | 0 , , ,

: | 0 , , ,

: | 0 , , .

m n k
l

l n k
m

l m k
n

l m n
k

V x x x x x x x x x m n k

V x x x x x x x x x l n k

V x x x x x x x x x l m k

V x x x x x x x x x l m n

=

=

=

=

 = ≤ ∈



= ≤ ∈

 = ≤ ∈

 = ≤ ∈









 

As in the case of slant triangles, all the slant tetrahedrons of the flow induced 
by a tangent cone are divided into three groups by a cotangent cone: 1) inside 
the cotangent cone, 2) outside the cotangent cone, and3) on the surface (3-faces) 
of the cotangent cone (Figure 9). Unlike the case of triangles, multiple types of 
slant tetrahedrons are on the surface (3-faces) of the cotangent cone 
(tetrahedrons B, C, D, E, F in Figure 9). Among them, only two types of 
tetrahedrons (B and F) flow through the surface (2-faces). 

Definition 53 ( )( )0cw c . Let 0c  be a four-dimensional tangent cone. 
Suppose that ( ) 4

0ttop c L∗∂ ⊂ . The four-dimensional cotangent roof ( )0cw c  
associated with 0c  is defined by 

( ) ( )*
0 0: .c tw c Roof top c= ∂  

Definition 54 ( )( )0t cφ . Let 0c  be a four-dimensional tangent cone. 
Suppose that ( ) 4

0ttop c L∗∂ ⊂ . The surface vertices ( )0t cφ  with respect to 0c  
is defined by 

( ) ( ) ( )( ) 4
0 0 0: .t pt pt cc c w c Lφ ∗= ∂ ∂ ⊂  

That is, ( )0t cφ  is the set of 4L∗  lattice points on the intersection of the 
3-faces of 0c  and the 3-faces of ( )0cw c . 

Definition 55 ( )( )0t cΦ . Let 0c  be a four-dimensional tangent cone. 
Suppose that ( ) 4

0ttop c L∗∂ ⊂ . Let ( ) 4
0t c EΦ ⊂  be the set of the polygonal 

lines obtained by joining the adjacent 4L∗  lattice points of surface vertices 
( )0t cφ . Since all the points of ( )0t cφ  are included in the 3-faces of ( )0cw c , the 

points of ( )0t cφ  are connected along the 3-faces of the associated cotangent 
roof. 

Definition 56 ( )( )0tm c . Let 0c  be a four-dimensional tangent cone. The 
two-dimensional surface mesh ( )0tm c  with respect to 0c  is defined by 

( ) ( )( )0 0 3: .t pt t Dm c c Hπ= Φ ⊂  

We also call ( )0tm c  (two-dimensional) surface vein with respect to 0c . 
Definition 57 Let 0c  be a four-dimensional tangent cone. Set 

( ) ( ){ }
( ) ( ){ }

( ) ( ){ }

0 0 0

0 0 0

0 0 0

: |  is contained inside ,

: |  is contained outside ,

: |  intersects with the 3-faces of .

t S c

t S c

t S c

IN c s d c s w c

OUT c s d c s w c

BD c s d c s w c

 = ∈
 = ∈


= ∈

 

Definition 58 ( )( )0tR c . Let 0c  be a four-dimensional tangent cone. We 
define the region ( )0tR c  of 3DH  by 
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Figure 9. Positional relationship of slant triangles of [ ]( )1
0 1 2H x x xπ −  and the 3-face 

( ) ( ) ( ){ }0 2 3 0 1 3 0 1 2 | 0 , ,m n kx x x x x x x x x m n k≤ ∈  of the cotangent cone { }* 1Cone . Slant 

triangles shown are A: [ ]2 2
0 1 2 3 2 3 0x x x x x x x , B: [ ]2

0 1 2 3 1 2 3x x x x x x x , C: [ ]0 1 2 3 0 1 2x x x x x x x , D: 

[ ]0 1 2 3 0 1x x x x x x , E: [ ]0 1 2 3 0x x x x x , F: [ ]0 1 2 3x x x x , and G: [ ]0 1 2x x x . Shown above is a 

schematic diagram of the relationship between the four vertices of a slant tetrahedron and 
the 3-face of { }* 1Cone . In the figure, the diagonal edges of slant tetrahedrons are drawn 

with thick line, where the diagonal edges included in the 3-face are colored black and the 
others are colored grey. Tetrahedron A is included in { }* 1Cone . Tetrahedrons B, C, D, E, 

and F intersect the 3-face of { }* 1Cone . Tetrahedron G is located outside { }* 1Cone . 

Note that the diagonal edges of tetrahedrons B and F cross the 3-face of { }* 1Cone . 

 
( ) ( )( )00 3: .

tt H Ds IN c
R c s Hπ

∈
= ⊂


 

In the case of flows of triangles, ( )tR c  corresponds to all the closed 
trajectories of cV  if ( )top c  is finite and ( ) 3

ttop c L∗∂ ⊂  (Theorem 1). In the 
case of flows of tetrahedrons, we have the following result. 

Theorem 5 There exist a four-dimensional tangent cone c such that ( )tR c  
does not contain all the closed trajectories of cV . 

Proof. For example, set { }*
0 0 1 2 0 2 3 0 1 3, ,c Cone x x x x x x x x x=  (Figure 8(a)). 

Then, 
0cV  induces infinitely many closed trajectories of tetrahedrons. However, 

we can not construct a cotangent cone which covers all the closed trajectories 
because ( )0 0cw c c=  (Note that more than three vertices are required to 
construct a “roof” on a tangent cone.) In particular, ( )0tR c  does not contain all 
the closed trajectories of 

0cV .                                        □ 
As in the case of flows of triangles, we can compute ( )tR c  as the intersection 

of ( )cw c  and c if ( ) 4
ttop c L∗∂ ⊂ . 

Example 23 In the case of Figure 8(b) (or Figure10(a)), 

{ }
( ) { } { }

( ) { }2 2 2 2 2 2 2 2 2 2 2 2

1 0 1 2 0 2 3 0 1 3 1 2 3

* *
1 0 1 2 0 2 3 0 1 3 1 2 3

1

, , , ,

, , , 1 ,

, , , , , , , , , ,

c

t yzw xzw xyw xyz x y zw x yz w x yzw xy z w xy zw xyz w

c Cone x x x x x x x x x x x x

w c Roof x x x x x x x x x x x x Cone

c P P P P P P P P P Pφ

 =
 = =


=

 

where 4
0 1 2 3l m n k
l m n k

x y z w
P x x x x L= ∈ . Then, 
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Figure 10. Rhombic dodecahedrons: (a) Four closed trajectories of the flow induced by 

{ }1 0 1 2 0 2 3 0 1 3 1 2 3, , ,c Cone x x x x x x x x x x x x=  (See also Figure 8 (b)); (b) The closed trajectory 

of length 24 induced by { }2 0 2 1 2 1 3, ,c Cone x x x x x x= ; (c) The closed trajectory of length 24 

induced by { }3 0 2 1 2 2 3 0 1 3, , ,c Cone x x x x x x x x x= . Thick polygonal lines (black and grey) 

indicate the diagonal edges of flat tetrahedrons, where the black lines indicate the 
polygonal lines included in ( )c iw c  ( 1, 2,3i = ). 

 

( )1tR c  is the rhombic dodecahedron surrounded by the black thick lines, 
which consists of four closed trajectories of length six, i.e., consists of 24 
tetrahedrons. 

All the 24 tetrahedrons of ( )1tR c  are type D of Figure 9: 
1) 1Q  is inside ( )1cw c , 
2) 2 2 2, ,

x yzw xy zw xyz w
Q Q Q  and 2xyzw

Q  are outside ( )1cw c , 
3) all the diagonal edges of the tetrahedrons ( )( )1pt cw c⊂ ∂ , 
where ( )0 1 2 3 3l m n k

l m n k
pt Dx y z w

Q x x x x Hπ= ∈ . Other closed trajectories of the vector 
field are outside ( )1cw c . 

In the case of flows of tetrahedrons, we should also consider the case of 
( ) 4

ttop c L∗∂ ⊂/ . 
Example 24 Putting more unit cubes on the tangent cone 1c  of Figure10(a), 

we obtain rhombic dodecaherons consisting of a closed trajectory of length 24 
(Figure 10(b) and Figure 10(c)). However, we can not compute the shape of the 
rhombic dodecaherons using cotangent roofs. Cotangent roofs are not defined 
because 

( ) ( )4 2,3 .t itop c L i∗∂ ⊂ =/  

Remark In the three-dimensional case, ( ) 3
ttop c L∗∂ ⊂/  implies the existence 

of loopholes on the contour, i.e., the existence of the triangles of type D (Figure 
2(b)). On the other hand, in the four-dimensional case, ( ) 4

ttop c L∗∂ ⊂/  implies 
not only the existence of loopholes but also dents and bulges on the surface. That 
is, the tetrahedrons of type B and F correspond to loopholes, the tetrahedrons of 
type C to dents, and the tetrahedrons of type E to bulges (Figure 9). 

To define a four-dimensional cotangent roof *Roof A  for any 4A L⊂ , we 
consider a set of the “closest 4L∗  lattice points to a” for each a A∈ . 

Definition 59 (STAND) Let 4a L∈ . The stand of a is defined by 

( )
{ } ( )
{ } ( )
{ } ( )

if 0mod3,
: | 0 3 if 2mod3,

| 0 , 3 if 1mod3,
i

i j

a deg a
stand a ax i deg a

ax x i j deg a

 ≡
= ≤ ≤ ≡
 ≤ ≤ ≡
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where ( )0 1 2 3 :l m n kdeg x x x x l m n k= + + + . Note that ( ) 4stand a L∗⊂ . 
Let 4A L⊂ . The stand of A is defined by 

( ) ( ) 4: .
a A

STAND A stand a L∗
∈

= ⊂


 

Definition 60 (Extended Cotangent Roofs) Let 4A L⊂  such that 4A L∗⊂/ . 
The four-dimensional extended cotangent roof *Eroof A  is defined by 

( )* *: .Eroof A Roof STAND A=  

Definition 61 (Extended ( )0cw c ) Let 0c  be a four-dimensional tangent 
cone. The four-dimensional (extended) cotangent roof ( )0cw c  associated with 

0c  is defined by 

( ) ( )*
0 0: .c tw c Eroof top c= ∂  

Note that 

( ) ( )* *
0 0t tEroof top c Roof top c∂ = ∂  

if ( ) 4
0ttop c L∗∂ ⊂ . 

Definition 62 (Extended ( )0t cφ ) Let 0c  be a four-dimensional tangent 
cone. The (extended) surface vertices ( )0t cφ  with respect to 0c  is defined by 

( ) ( ) ( )( ) 4
0 0 0: .t pt pt cc c w c Lφ ∗= ∂ ∂ ⊂  

Example 25 In the case of Figure 10(b), 

{ }
( ) { } { }

( ) { }2 2 2 2 2 2

2 0 2 1 2 1 3

* *
2 0 2 1 2 1 3

2

, , ,

, , 1 ,

, , , , , , .

c

t xzw xyw xyz yzwx yzw x y zw xyz w

c Cone x x x x x x

w c Eroof x x x x x x Cone

c P P P P P P Pφ

 =
 = =


=

 

Then, ( )2tR c  is the rhombic dodecahedron surrounded by the black and 
grey thick lines, which consists of a closed trajectories of length 24. 

Note that 0 2x x , 1 2x x , and 1 3x x  are outside { }* 1Cone . The rhombic 
dodecahedron consists of not only type D but also type E tetrahedrons of Figure 
9. In the figure, the tetrahedron with the grey diagonal edge are type E. The 
tetrahedrons with the black diagonal edge are type D. 

Example 26 In the case of Figure 10(c), 

{ }
( ) { } { }

( ) { }2 2 2 2 2 2

3 0 2 1 2 2 3 0 1 3

* *
3 0 2 1 2 2 3 0 1 3

3

, , , ,

, , , 1 ,

, , , , , , .

c

t xzw xyw xyz yzwx yzw x y zw xy zw

c Cone x x x x x x x x x

w c Eroof x x x x x x x x x Cone

c P P P P P P Pφ

 =
 = =


=

 

Then, ( )3tR c  is the rhombic dodecahedron surrounded by the black and 
grey thick lines, which consists of a closed trajectories of length 24. In the figure, 
the tetrahedrons with the grey diagonal edge are type E. The tetrahedrons with 
the black diagonal edge are type D. 

3.4. Constraints on the Shape of Protein Molecules 

In this paper, we consider the shape of complexes of closed trajectories of 
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tetrahedrons as a simplified geometrical model of protein molecules. As in the 
case of flows of triangles, we will specify the shape of regions of 3DH  using a 
pair of cotangent cones. 

Definition 63 (Inverted Cotangent Cones) Let 4A L∗⊂ . The four-dimensional 
inverted cotangent cone *ICone A  is defined by 

( ) ( ) ( ) ( ){
}

*
1 2 3 0 2 3 0 1 3 0 1 2

*4

: | ,

0 , , , .

l m n kICone A a x x x x x x x x x x x x a A

l m n k L

= ∈

≥ ∈ ⊂
 

We denote the top vertices of an inverted cotangent cone iv by ( )itop iv . 
Definition 64 (Inverted Cotangent Roofs) Let 4A L∗⊂ . The four-dimensional 

inverted cotangent roof *IRoof A  is defined by 

( ){
( ) ( ) ( ) }

* 4
1 2 3

*
0 2 3 0 1 3 0 1 2

: | s.t. 0 and ,

, , .

N

N N N

IRoof A p L N N p x x x

p x x x p x x x p x x x ICone A

∗= ∈ ∃ ∈ <

∈


 

Let 4A L⊂ . The four-dimensional extended inverted cotangent roof 
*EIroof A  is defined by 

( )* * 4: .EIroof A IRoof STAND A L∗= ⊂  

Example 27 In the case of Figure 10(a), 

( )
{ }
{ }

*
1

*
0 1 2 0 2 3 0 1 3 1 2 3

* 3 3 3 3
0 1 2 3

, , ,

.

tIRoof top c

IRoof x x x x x x x x x x x x

ICone x x x x

∂

=

=

 

Definition 65 ( )( )pt iv∂ . Let iv be a four-dimensional inverted cotangent 
cone. The surface lattice points ( )pt iv∂  of iv is the set of all the 4L∗  lattice 
points included in the 3-faces of iv, i.e., 

( ) ( ) ( ) ( ) ( ) { } { }{
( ) ( ) ( ) { }

( )}

4 4 4

* 3
4 4 4 4

4

: | , , , 0,1, 2,3 ,

0 , , ,

for .

ml n
pt i j k

ml n
i j k

iv a e x e x e x a itop iv i j k

l m n a e x e x e x ICone be

b itop iv L

−

∗

∂ = ∈ ⊂

≥ ∈ ∈/

∀ ∈ ⊂

  

Recall that 4 0 1 2 3e x x x x= . For example, 4 2 0 1 3e x x x x=  and  
3 3 3 3 3

4 0 1 2 3e x x x x− − − − −= . 
Definition 66 (Surface Pairs) Let w be a three-dimensional cotangent cone. 

Let iv be a three-dimensional inverted cotangent cone. A pair ( ),w iv  of w and 
iv is called a four-dimensional surface pair. 

Definition 67 ( )( ),c w ivφ . Let ( ),w iv  be a four-dimensional surface pair. 
The surface vertices ( ),c w ivφ  with respect to ( ),w iv  is defined by 

( ) ( ) ( ) 4, : .c pt ptw iv w iv Lφ ∗= ∂ ∂ ⊂  

That is, ( ),c w ivφ  is the set of 4L∗  lattice points on the intersection of the 
3-faces of w and the 3-faces of iv. 

Definition 68 ( )( ),c w ivΦ . Let ( ),w iv  be a four-dimensional surface pair. 
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Let ( ) 3,c w iv EΦ ⊂  be the set of the polygonal lines obtained by joining the 
adjacent 4L∗  lattice points of ( ),c w ivφ . That is, ( ),w ivΦ  is the set of all the 
diagonal edges (of slat tetrahedrons) whose end points are included in ( ),c w ivφ . 
Since all the points of ( ),c w ivφ  are on the 3-faces of w (or iv), the points of 

( ),c w ivφ  are connected along the 3-face of w (or iv). 
Definition 69 ( )( ),cm w iv . Let ( ),w iv  be a four-dimensional surface pair. 

The two-dimensional surface mesh ( ),cm w iv  with respect to ( ),w iv  is 
defined by 

( ) ( )( ) 3, : , .c pt c Dm w iv w iv Hπ= Φ ⊂  

We also call ( ),cm w iv  (two-dimensional) surface vein with respect to 
( ),w iv . 

Definition 70 ( ) ( )( )( )0 0,c cw c iv c . Let 0c  be a four-dimensional tangent 
cone. The four-dimensional surface pair ( ) ( )( )0 0,c cw c iv c  associated with 0c  
is a pair of the (extended) cotangent roof ( )0cw c  associated with 0c  and the 
(extended) inverted cotangent roof ( )0civ c  associated with 0c  which is 
defined by 

( ) ( )*
0 0: .c tiv c EIroof top c= ∂  

Definition 71 ( )( ),cR w iv . Let ( ),w iv  be a four-dimensional surface pair. 
The region ( ),cR w iv  of 3DH  is the region covered by the union of all the 
closed trajectories of flat tetrahedrons surrounded by ( ),cm w iv . 

Example 28 In the case of Figure 10(a), 

( ) { } { }
( ) { } { }

( ) ( )( ) {
}

2 2 2 2

2 2 2 2 2 2 2 2

* *
1 0 1 2 0 2 3 0 1 3 1 2 3

* * 3 3 3 3
1 0 1 2 0 2 3 0 1 3 1 2 3 0 1 2 3

1 1

, , , 1 ,

, , , ,

, , , , , , ,

, , , .

c

c

c c c yzw xzw xyw xyz x y zw x yz w

x yzw xy z w xy zw xyz w

w c Roof x x x x x x x x x x x x Cone

iv c IRoof x x x x x x x x x x x x ICone x x x x

w c iv c P P P P P P

P P P P

φ

 = =

 = =

 =




 

Then, the surface vein ( ) ( )( )1 1,c c cm w c iv c  corresponds to the set of the 
diagonal edges colored black. ( ) ( )( )1 1,c c cR w c iv c  is the rhombic dodecahedron 
consisting of four closed trajectories of length four. 

Example 29 In the case of Figure 10(b), 

( ) { } { }
( ) { } { }

( ) ( )( ) { }2 2 2 2 2 2

* *
2 0 2 1 2 1 3

* * 3 3 3 3
2 0 2 1 2 1 3 0 1 2 3

2 2

, , 1 ,

, , ,

, , , , , , , .

c

c

c c c xzw xyw xyz yzwx yzw x y zw xyz w

w c Eroof x x x x x x Cone

iv c EIroof x x x x x x ICone x x x x

w c iv c P P P P P P Pφ


= =

 = =

 =


 

Then, the surface vein ( ) ( )( )2 2,c c cm w c iv c  corresponds to the set of the 
diagonal edges colored black. Unlike the case of flows of triangles, some diagonal 
edges (colored grey) are not included in ( ) ( )( )2 2,c c cm w c iv c .  

( ) ( )( )2 2,c c cR w c iv c  is the rhombic dodecahedron consisting of a closed 
trajectories of length 24. In particular, 
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( ) ( )( ) ( ) ( )( )2 2 1 1, , .c c c c c cR w c iv c R w c iv c=  

Example 30 In the case of Figure 10(c), 

( ) { } { }
( ) { } { }

( ) ( )( ) { }2 2 2 2 2 2

* *
3 0 2 1 2 2 3 0 1 3

* * 3 3 3 3
3 0 2 1 2 2 3 0 1 3 0 1 2 3

3 3

, , , 1 ,

, , , ,

, , , , , , , .

c

c

c c c xzw xyw xyz yzwx yzw x y zw xy zw

w c Eroof x x x x x x x x x Cone

iv c EIroof x x x x x x x x x ICone x x x x

w c iv c P P P P P P Pφ


= =

 = =

 =


 

Then, the surface vein ( ) ( )( )3 3,c c cm w c iv c  corresponds to the set of the 
diagonal edges colored black. The diagonal edges colored grey are not included 
in ( ) ( )( )3 3,c c cm w c iv c . ( ) ( )( )3 3,c c cR w c iv c  is also the rhombic dodecahedron 
consisting of another closed trajectories of length 24. In particular, 

( ) ( )( ) ( ) ( )( )3 3 1 1, , .c c c c c cR w c iv c R w c iv c=  

Example 31 In the case of Figure 8(a), 

( ) { } { }
( ) { } { }

( ) ( )( ) { }2 2 2 2 2 2

* *
0 0 1 2 0 2 3 0 1 3 0 1 2 0 2 3 0 1 3

* *
0 0 1 2 0 2 3 0 1 3 0 1 2 0 2 3 0 1 3

0 0

, , , , ,

, , , , ,

, , , , , , .

c

c

c c c xyz xzw xywx yz w x yzw x y zw

w c Eroof x x x x x x x x x Cone x x x x x x x x x

iv c EIroof x x x x x x x x x ICone x x x x x x x x x

w c iv c P P P P P Pφ

 = =
 = =


=

 

Then, the surface vein ( ) ( )( )0 0,c c cm w c iv c  is empty. 
In the above examples, a tangent cone c is given first. Then, we compute the 

surface vein ( ) ( )( ),c c cm w c iv c  for ( ) ( )( ),c cw c iv c  (Figure 5(a)). Now, let us 
consider the case where a surface pair ),( ivw  is given first (Figure 5(b)). 

Definition 72 Let ( ),w iv  be a four-dimensional surface pair. The tangent 
cone ( ),tc w iv  associated with ( ),w iv  is defined by 

( ) ( ), : , .t cc w iv Cone w ivφ=  

Starting with some definitions, we will consider the vector field induced by the 
tangent cone ( ),tc w iv  associated with the given surface pair ( ),w iv . 

Definition 73 Sets of four-dimensional cones are defined by 

{ }
{ }
{ }

4
3

* 4
3

* 4
3

: | and  is finite ,

: | and  is finite ,

: | and  is finite .

TC ConeA A L A

CC Cone A A L A

ICC ICone A A L A

∗

∗

∗

= ⊂

= ⊂

= ⊂

 

Definition 74 ( ,3tR  and ,3cR ) Sets of regions on 2DH  are defined by 

( ){ }
( ) ( ){ }

,3 3

,3 3 3

: | ,

: , | , .
t t

c c

R R c c TC

R R w iv w iv CC ICC

 = ∈


= ∈ ×
 

Definition 75 ( 3ι  and 3τ ) Maps between regions on 3DH  are defined by 

 ( ) ( ) ( )( )
( ) ( )( )

3 ,3 ,3

3 ,3 ,3

: , , ,

: , , , .
t c t c c c

c t c t t

R R R c R w c iv c

R R R w iv R c w iv

ι

τ




→





 

Theorem 6 3ι  is not surjective. 
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Proof. Let us consider the case of Figure 11(a), where 

( ) { } { }( )
( )

* *, ,

, a flattened dodecahedron.

s s e f

c s s

w iv Cone P ICone P

R w iv

 =


=
 

On the other hand, shown in Figure 11(b) are the closed trajectories of 
( )( ) ( )( )3 , ,c s s t t s sR w iv R c w ivτ = , where 

( ) { }
( )( ) { }
( )( )

*

, , , , ,

, ,

, a garlic bulb-like structure.

t s s a b c d

c t s s e

t t s s

c w iv Cone P P P P

w c w iv Cone P

R c w iv

 =
 =


=

 

Note that pQ  dose not appear because pP  is buried beneath the surface of 
( ),t s sc w iv  due to the difference of slope inclination between tangent cones and 

cotangent cones. The flattened dodecahedron of (a) gets dented on the bottom 
and has vertical linear grooves on the side. That is, we obtain a garlic bulb-like 
structure as a result of the constraints. 

Therefore, 

( )( ) ( )3 , , .c s s c s sR w iv R w ivτ ≠  

It follows immediately that ( ) ( )3 ,3,c s s tR w iv Rι∈/ .                     □ 
Corollary 3 (Self-eclipse of ( ),cR w iv ) There exists a four-dimensional 

surface pair ( ),w iv  such that ( )( ) ( )3 , ,c cR w iv R w ivτ ≠ . 
That is, there exist global geometrical constraints on the shape of complexes of 

closed trajectories of tetrahedrons. 
Definition 76 (Self-eclipsed protein molecules (Toy model)) A surface pair 

( ),w iv  is called a self-eclipsed surface pair if ( )( ) ( )3 , ,c cR w iv R w ivτ ≠ . The 
complex of closed trajectories induced by a tangent cone c is called a 
self-eclipsed protein molecule if there exists a self-eclipsed surface pair ( ),w iv  
such that ( ),tc c w iv= . 

Example 32 In the case of the garlic bulb-like structure obtained in the proof 
of Theorem 6 (Figure 11(a) and Figure 11(b)), 

{ } { }( )( )
{ }( )
{ } { }( )
{ } { }( )

* *
3

* *

* *

,

, , ,

, , ,

, .

c e f

t a b c d

c e g h i

c e f

R Cone P ICone P

R Cone P P P P

R Cone P ICone P P P

R Cone P ICone P

τ

=

=

≠

 

Example 33 Shown in Figure 11(c) is a complex of closed trajectories of 
( )1tR c , where 

{ }
( ) { }
( )

1

*
1

1

, , , , , , , , ,

,

a garlic bulb-like structure.

b c d j k l m n o

c e

t

c Cone P P P P P P P P P

w c Cone P

R c

 =
 =
 =
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Figure 11. Self-eclipsed protein molecules: (a) The surface vein ( ),c s sm w iv  with respect 

to ( ),s sw iv . ( ),c s sm w iv  is indicated by the black thick polygonal lines, where 

( ) { } { }( )* *, ,s s e fw iv Cone P ICone P= ; (b) Closed trajectories of ( ),t s sc w ivV . Shown above is 

the top view. Shown below is the bottom view. ( )( ),t t s sm c w iv  is indicated by the black 

thick polygonal lines. The grey thick polygonal lines are the diagonal edges of type E 
tetrahedrons of Figure 9; (c) Closed trajectories of 

1c
V , where  

{ }1 , , , , , , , ,b c d j k l m n oc Cone P P P P P P P P P= . ( )1tm c  is indicated by the black thick  

polygonal lines. Note that all the tetrahedrons are type D. In the figure, ( )x pt xQ Pπ=  

( , , , ,x a b c p=  ), where 2 0 2 2
0 1 2 3aP x x x x= , 3 2 1 3

0 1 2 3bP x x x x= , 3 2 3 1
0 1 2 3cP x x x x= , 1 2 3 3

0 1 2 3dP x x x x= ,  
1 0 1 1
0 1 2 3eP x x x x= , 6 6 6 6

0 1 2 3fP x x x x= , 5 4 5 4
0 1 2 3gP x x x x= , 4 4 5 5

0 1 2 3hP x x x x= , 5 4 4 5
0 1 2 3iP x x x x= ,  

3 1 2 3
0 1 2 3jP x x x x= , 2 1 3 3

0 1 2 3kP x x x x= , 3 1 3 2
0 1 2 3lP x x x x= , 3 2 2 2

0 1 2 3mP x x x x= , 2 2 2 3
0 1 2 3nP x x x x= ,  

2 2 3 2
0 1 2 3oP x x x x= , and 5 6 5 5

0 1 2 3pP x x x x=  ( pQ  is the diametrically opposite point to aQ ). 

 
( )1tR c  consists of 13 closed trajectories of length six, which sweep the same 

region as ( )( ),t t s sR c w iv  considered in the proof of Theorem 6. 
On the other hand, 

( ) ( )( ) { } { }( )
( ) ( )( ) ( )

* *
1 1

1 1 1

, , , , ,

, ,

c c e q r s

c c c t

w c iv c Cone P ICone P P P

R w c iv c R c

 =


=
 

where 5 4 5 4
0 1 2 3qP x x x x= , 4 4 5 5

0 1 2 3rP x x x x= , and 5 4 4 5
0 1 2 3sP x x x x= . 

Then, ( ) ( )( )1 1 1,t c cc w c iv c c=  and 

( ) ( )( )( ) ( ) ( )( )( )
( ) ( ) ( )( )

3 1 1 1 1

1 1 1

, ,

, .

c c c t t c c

t c c c

R w c iv c R c w c iv c

R c R w c iv c

τ =

= =
 

That is, The complex of closed trajectories included in ( ) ( )( )1 1,c c cR w c iv c  is 
not a self-eclipsed protein molecule. 

4. Systems of Simultaneous Equations for Shape 

Protein molecules interact each other and form an intermediate complex to 
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perform their function. In high-throughput proteomics, proteins are characterized 
using a interaction network between proteins and intermediate protein 
complexes. Since the function of a protein is primarily determined by the 
three-dimensional shape, it is the shape of proteins that is characterized by the 
interaction network. 

In this section, we will consider “interaction” between closed trajectories of 
triangles as a simplified geometrical description of protein interactions. Despite 
its simplicity, the closed trajectory model of protein interaction gives a novel 
geometrical interpretation of the difference between direct interactions of two 
proteins and cooperative interactions of three proteins (such as allosteric 
regulation). 

4.1. Fusion and Fission of Closed Trajectories of Triangles 

We have seen in the previous sections that vector fields of triangles are 
associated with three-dimensional tangent cones. Here we will define “fusion 
and fission” of closed trajectories of triangles using the tangent cone structure. 
For the sake of simplicity, we only consider the case of flows of triangles. 

Let 
acV  and 

bcV  be two vector fields of triangles induced by three-dimensional 
tangent cones ac  and bc  respectively. Then, the vector field 

acV  can be 
obtained from the other 

bcV  by “putting unit cubes on” and/or “taking unit 
cubes from” the tangent cone bc . Suppose that the closed trajectories of 

acV  
and 

bcV  sweep the same region, i.e., ( ) ( )t a t bR c R c=  (See Definition 22). Then, 
the two vector fields 

acV  and 
bcV  give two different decompositions of the 

same region into a set of closed trajectories of triangles. 
Definition 77 (Addition of closed trajectories) Addition is defined between 

sets of all the closed trajectories of vector fields. Given two three-dimensional 
tangent cones ac  and bc . Let { }| 0i am i N≤ ≤  and { }| 0j bn j N≤ ≤  be the 
set of all the closed trajectories of the vector fields 

acV  and 
bcV  respectively, 

where aN  and bN  is the numbers of the closed trajectories. Then, addition of 
closed trajectories of triangles is defined by 

( ) ( )0 0: if .
a ai j t a t bi N j Nm n R c R c

≤ ≤ ≤ ≤
= =∑ ∑  

Example 34 Shown in Figure 12(a) is a flow of triangles consisting of 36 
closed trajectories of length six and infinitely many open trajectories of various 
lengths, where each closed trajectory sweeps a hexagonal region. By putting unit 
cubes on the associated tangent cone, we obtain another decomposition of the 
same region into a set of closed trajectories as shown in Figure 12(b). Then, we 
have 

4 8 9 14 15 200 35 0 5 0 3

21 22 26 27 28 31 32 35 .
i j ii j i

ii

x m x x x x x x x

x x x x x x x
≤ ≤ ≤ ≤ ≤ ≤

≤ ≤

= + + + + + + +

+ + + + + + +

∑ ∑ ∑
∑

 

By removing the common terms from both sides, we obtain 

5 6 7 10 11 12 13 16 17

18 19 23 24 25 29 30

0 1 2 3 4 5.

x x x x x x x x x
x x x x x x x
m m m m m m

+ + + + + + + +

+ + + + + + +

= + + + + +
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Figure 12. Addition of closed trajectories: (a) A flow of triangles consisting of 36 closed 
trajectories of length six. Shown below is the corresponding tangent cone (top view); (b) 
Closed trajectories of triangles obtained by putting unit cubes on the tangent cone of (a); 
(c) Closed trajectories of triangles obtained by putting unit cubes on the tangent cone of 
(b). 

 
Note that m0 is the closed trajectory given in Figure 1. That is, we obtained m0 

as a result of “fusion and fission” of 16 hexagons. 
Example 35 By putting more unit cubes on the tangent cone of Figure 12(b), 

we obtain another equation 

0 1 2 3 4 5 15 22 28 6.m m m m m m x x x m+ + + + + + + + =  

Then, m0 appears as a “factor” of a longer closed trajectory m6. 
In the above examples, closed trajectories xis (of length six) are given first. 

Then, m0 is obtained as a result of interactions of the xis. The challenge we 
propose is to give a set of equations of m0 on variables xis first, and solve the 
system of simultaneous equations. 

Open Problem 1 (Simultaneous equations for shape) Let { }0 1, , , Nx x x  be a 
finite set of closed trajectories of length six, i.e., hexagons. Let { }0 1, , , Mm m m  
be a finite set of closed trajectories of length longer than six. Suppose that we are 
given a finite set of addition equations with respect to xis and mjs: 

( )
( ) ( )
0 1 0 1

0 1 0 1

, , , , , , ,

, , , , , , , , 0 ,
k N M

k N M

f x x x m m m

g x x x m m m k K= ≤ ≤

 

 

 

where fks and gks are finite sets of terms separated by addition sign (i.e., addition 
expressions with coefficients one). 

Find three-dimensional tangent cones for the variables xis that make the 
addition equations true, where xis are assigned the closed trajectory induced by 
the corresponding tangent cone. Then, mis are obtained as intermediate 
products of the interactions between xis. 

Since the interaction of closed trajectories is primarily determined by their 
contours, it is their contours which are characterized by a set of simultaneous 
equations. In the case of Open Problem 1, a closed trajectory m0 is characterized 
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using interactions between closed trajectories of length six and other closed 
trajectories. Therefore, the set of equations is nothing but a specification of the 
shape of m0 if m0 is uniquely determined. 

4.2. Allosteric Regulation of Interactions 

Now let us consider the difference between direct interactions of two proteins 
and cooperative interactions of three proteins (such as allosteric regulation). In 
our closed trajectory model, allosteric regulation corresponds to the complex of 
self-eclipsed closed trajectories of triangles (Definition 36). We will start with a 
brief introduction to allosteric regulation. 

4.2.1. Introduction to Allosteric Regulation 
In biological systems, all proteins bind to other molecules to carry out their 
functions. For example, enzymes bind to one or more reactant molecules to 
catalyze chemical reactions in our body. The region on the surface to which 
other molecules bind is called the active site. 

The binding of a molecule at an active site is often controlled by the binding 
of another molecule at a distant site other than the active site. This type of 
regulation of protein function is called allosteric regulation. The distant site is 
called an allosteric site. 

Allosteric regulation, which is known as “the second secret of life”’, second 
only to the genetic code [9] [10], is ubiquitous in biological processes. But we 
still lack general understanding of the mechanisms underlying the coupling 
between allosteric and active sites [11] [12]. 

Allosteric regulation is typically triggered by the binding of a small molecule, 
but also triggered by the binding of another protein. When proteins bind to 
other molecules or proteins, changes in conformation and/or dynamics occur 
within the protein. Classically, allosteric regulation was considered to be induced 
through a change in conformation of the protein. Today, it is believed that 
allostery can take place through a change in the dynamic fluctuations (i.e., 
internal motions and vibrations) of the protein even without obvious 
conformational changes [13] [14] [15]. 

Currently almost all the drugs modify the actions of proteins by directly 
binding to their active sites. On the other hand, gaining increasing attention 
recently in drug discovery is another type of drugs, called allosteric drugs, which 
bind to the allosteric sites on their target proteins [16] [17] [18]. This is because 
allosteric drugs have several advantages over traditional drugs, such as higher 
specificity, fewer side effects, and lower toxicity. 

However, allosteric drug discovery is more challenging than traditional drug 
discovery due to difficulties in identification of allosteric sites, prediction of drug 
modulatory effects, and others. For example, allosteric sites may have features 
we are not yet aware of because of our insufficient understanding of how 
coupling between the active site and the allosteric site occurs. 

In the past ten years, various computational approaches have been developed 
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for identification and characterization of allosteric sites as the first step in 
allosteric drug discovery [19] [20] [21]. In a static geometry-based model, 
protein structures are transformed into residue interaction graphs (RIGs), where 
amino acid residues are graph nodes and their interactions are the graph edges 
[22]. Then, allosteric regulation and communication are characterized using a 
local centrality measure (local closeness) and other newly developed quantifiable 
measures (binding leverage and leverage coupling). In normal mode analysis 
(NMA)-based models, proteins are represented by a set of Ca atoms 
interconnected by a network of elastic springs. Then, the structural fluctuations 
of a protein are decomposed into harmonic orthogonal modes and the 
long-range nature of allosteric communication is often well-described by 
low-frequency modes. However, Molecular dynamics (MD) remains the 
standard computational tool for structural analysis when structures are available. 

4.2.2. The SECT Model of Allosteric Regulation 
In this paper, we propose a novel geometrical interpretation of the long-distance 
regulation of protein interactions (with no conformational change). In particular, 
we consider how the coupling between active and allosteric sites occurs using the 
simplified structural description. Analysis of this model has allowed us to 
characterize a novel geometrical aspect of the structural coupling between active 
and allosteric sites. 

Definition 78 (The SECT model of allosteric regulation) The Self-Eclipsed 
Closed Trajectory (SECT) model is a simplified geometrical interpretation of 
protein interactions, where 
 Protein molecules correspond to a complex of closed trajectories of triangles, 
 Protein interactions are represented as additions of the corresponding 

complexes of closed trajectories, 
 Protein molecules with allosteric sites correspond to a complex of self-eclipsed 

closed trajectories, 
 An allosteric site is the region of the contour eclipsed by the active site.  

Note that the SECT model is a purely theoretical model. The SECT model was 
devised in the process of searching the definition formula of the shape of 
proteins. In the model, the constraint on the contour and the coupling between 
two sites are two sides of the same coin as shown in the example below. Roughly 
speaking, active and allosteric sites are closely tied to each other as an entity and 
its shadow. 

Remark. Recall that (slant) triangles are flowing on the slopes of a “tangent” 
cone. On the other hand, the contour of a closed trajectory is drawn on the 
slopes of a “cotangent” cone. Since the “slope inclination” of tangent cones is 
gentler than that of cotangent cones, the existence of a local trajectory of 
triangles at one region (active site) of the contour affect the existence of another 
local trajectory at another region (allosteric site) of the contour. 

Example 36 Shown in Figure 13 is the interactions between the three closed 
trajectories m0, m2, and x22 of Figure 12(b). The interaction between m0 and x22  
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Figure 13. Allosteric regulation and complexes of self-eclipsed closed trajectories: (a) An 
active site and an allosteric site of a self-eclipsed closed trajectory m0. Shown below is the 
corresponding three-dimensional tangent cone (top view); (b) Interaction of m0 and x22, 
i.e., 0 22 6 7m x m m+ = + ; (c) Interaction of m0, m2, and x22, i.e., 0 22 2 8m x m m+ + = . 

 
is obtained by putting two unit cubes on the tangent cone of (a) (Figure 13(b)). 
We also obtain the interaction of the three closed trajectories m0, m2, and x22 by 
putting one more unit cube on the tangent cone of (b) (Figure 13(c)). However, 
m0 and m2 do not interact without the binding of x22 because of the overlap of 
the slopes of the tangent cone, i.e., self-eclipse. That is, 

( )
0 22 6 7

0 2 0 2 22

0 22 2 8

,
, no interaction without 
.

m x m m
m m m m x
m x m m

+ = +
 + = +
 + + =

 

In this case, x22 activates the interaction between m0 and m2. 

5. Conclusions 

We have proposed a novel simplified geometrical description of the shape of 
protein molecules and their interactions. Using the model, we have identified 
not only global geometrical constraints on the shape of proteins, but also their 
influence on protein interactions. As an example of the global constraints, a 
“garlic-bulb like structure” was shown. As an example of their influence on 
interactions, the structural coupling between active and allosteric sites was 
considered. In particular, our model gives a novel geometrical interpretation of 
the long-distance regulation of protein interactions, which could be important 
for the understanding of the basic mechanisms of allosteric regulation of protein 
functions. 

As for future research questions, we have already proposed an open problem 
in the text, i.e., the problem of simultaneous equations for shape. Just as the 
function (i.e., shape) of a protein is determined by its interaction with other 
molecules, the shape of a complex of closed trajectories may be determined 
uniquely by its interaction (i.e., fusion and fission) with other closed trajectories. 
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Another open problem is about the relationship between the shape of a 
complex of closed trajectories of tetrahedrons and the triangle flow induced on 
the surface. How far can we learn about the three-dimensional shape from the 
two-dimensional surface triangle flow? To answer the question, we should 
consider a patchwork of locally overlapping three-dimensional cones that cover 
the surface of the complex because the surface triangle flow has “singular 
points”. 

From the viewpoint of computer engineering, development of a “protein 
description language” will be required if proteins are to be designed 
automatically. The model of the closed trajectories of tetrahedrons (or 
n-simplices) is expected to give the semantics of the language as in the case of 
mathematical semantics and the lambda calculus [23]. 
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List of Symbols 

( ) ( )0 1a x xρ ρ
 
   slant triangle defined by three points a, ( )0axρ  and ( ) ( )0 1ax xρ ρ  (Def.2) 

( ) ( ) ( )0 1 2a x x xρ ρ ρ
 
   

slant tetrahedron defined by four points a, ( )0axρ , ( ) ( )0 1ax xρ ρ  and 

( ) ( ) ( )0 1 2ax x xρ ρ ρ  (Def.38) 

NB  set of all flat triangles/tetrahedrons (Def.5, Def.41) 

( )tBD ConeA  set of slant triangles/tetrahedrons of ( )Sd ConeA  (Def.21, Def.57) 

NCC  set of 1N + -dimensional tangent cones (Def.33, Def.73) 
ConeA  three/four-dimensional tangent cone (Def.8, Def.44) 

*Cone A  three/four-dimensional cotangent cone (Def.14, Def.50) 

( )* *,Cone A ICone B  three/four-dimensional contour/surface pair (Def.26, Def.66) 

( )* *,tc Cone A ICone B  
three/four-dimensional tangent cone associated with ( )* *,Cone A ICone B  

(Def.32, Def.72) 
( )pt ConeA∂  surface lattice points of ConeA  (Def.10, Def.46) 

( )*
pt Cone A∂  surface lattice points of *Cone A  (Def.16, Def.52) 

( )*
pt ICone A∂  surface lattice points of *ICone A  (Def.25, Def.65) 

( )ttop ConeA∂  peaks on the boundary of ConeA  (Def.9, Def.45) 

Ds  gradient of slant triangle/tetrahedron s (Def.3, Def.39) 

( )Sd ConeA  
set of all the slant triangles/tetrahedrons on the surface of ConeA  
(Def.11, Def.47) 

*EIroof A  four-dimensional extended inverted cotangent cone (Def.64) 
NE  N-dimensional Eucledean space 

*Eroof A  four-dimensional extended cotangent roof (Def.60) 

NDH  hyperplane in 1NE +  (above Def.5, above Def.41) 

( )tIN ConeA  set of slant triangles/tetrahedrons of ( )Sd ConeA  (Def.21, Def.57) 

NICC  set of 1N + -dimensional tangent cones (Def.33, Def.73) 
*ICone A  three/four-dimensional inverted cotangent cone (Def.23, Def.63) 

Nι  map from ,t NR  to ,c NR  (Def.35, Def.75) 
*IRoof A  three/four-dimensional inverted cotangent roof (Def.24, Def.64) 

( )*itop ICone A  set of all the top vertices of *ICone A  (Def.23, Def.63) 

( )ciw ConeA  
three/four-dimensional inverted cotangent roof associated with ConeA  
(Def.31, Def.70) 

NL  N-dimensional standard lattice (Def.1, Def.37) 
NL∗  N-dimensional conjugate lattice (Def.13, Def.49) 

( )* *,cm Cone A ICone B  contour/surface vein with respect to ( )* *,Cone A ICone B  (Def.29, Def.69) 

( )tm ConeA  contour/surface vein with respect to ConeA  (Def.20, Def.56) 

  set of all natural numbers 

( )tOUT ConeA  set of slant triangles/tetrahedrons of ( )Sd ConeA  (Def.21, Def.57) 

[ ]0 1 2, ,p p p  convex hull of points p0, p1 and p2 (above Def.2) 
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[ ]0 1 2 3, , ,p p p p  convex hull of points p0, p1, p2 and p3 (above Def.38) 

( )* *,c Cone A ICone Bφ  
contour/surface vertices with respect to ( )* *,Cone A ICone B  

(Def.27, Def.67) 
)( AConetφ  contour/surface vertices with respect to ConeA  (Def.18, Def.54) 

)( AConetφ  extended surface vertices with respect to ConeA  (Def.62) 

( )* *,c Cone A ICone BΦ  
polygonal line (or set of the polygonal lines) obtained by joining the adjacent 

NL∗  lattice points of ( )* *,c Cone A ICone Bφ
 

(Def.28, Def.68) 

( )t ConeAΦ  
polygonal line (or set of the polygonal lines) obtained by joining the 
adjacent NL∗  lattice points of ( )t ConeAφ  (Def.19, Def.55) 

π  projection of NTB  onto NB  (Def.7, Def.43) 

Hπ  projection of NS  onto NDH  (Def.5, Def.41) 

ptπ  projection of 1NE +  onto NDH  (above Def.5, above Def.41) 

+ addition of closed trajectories (Def.77) 

  set of all real numbers 

( )* *,cR Cone A ICone B  region of NDH  (Def.30, Def.71) 

( )tR ConeA  region of NDH  (Def.22, Def.58) 
*Roof A  three/four-dimensional cotangent roof (Def.15, Def.51) 

,c NR  region of NDH  (Def.34, Def.74) 

,t NR  region of NDH  (Def.34, Def.74) 

SECT  self-eclipsed closed trajectory complexes (Def.36) 

SECT  model of allosteric regulation (Def.78) 

Self-eclipsed contour/surface pair (Def.36, Def.76) 

Self-eclipsed protein molecule (Def.76) 

NS  set of all slant triangles/tetrahedrons (Def.2, Def.38) 

DDs  slant triangle/tetrahedron adjacent to s (Def.4, Def.40) 

DUs  slant triangle/tetrahedron adjacent to s (Def.4, Def.40) 

UDs  slant triangle/tetrahedron adjacent to s (Def.4, Def.40) 

UUs  slant triangle/tetrahedron adjacent to s (Def.4, Def.40) 

( )stand a  stand of a (Def.59) 

( )STAND A  stand of A (Def.59) 
NSym  group of all permutations of the N-elements set { }0,1, , 1N −  

Nτ  map from ,c NR  to ,t NR  (Def.35, Def.75) 

NTB  tangent space on NB  (Def.7, Def.43) 

NTC  set of 1N + -dimensional tangent cones (Def.33, Def.73) 

( )top ConeA  set of all the top vertices of ConeA  (Def.8, Def.44) 

ConeAV  vector field induce by ConeA  on NB  (Def.12, Def.48) 

( )cw ConeA  
three/four-dimensional cotangent roof associated with ConeA  
(Def.17, Def.53) 
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( )cw ConeA  
four-dimensional extended cotangent roof associated with ConeA  
(Def.61) 

0 1 2
l m nx x x  point or vector ( ), ,l m n  in 3E  

0 1 2 3
l m n kx x x x  point or vector ( ), , ,l m n k  in 4E  

  set of all integers 
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