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Abstract 
An analytical model, ( )AT t , for the observed outside air temperature change, 

( )aT t , with time is developed using two components: one for the variation 
caused by the Earth’s movement, plus any other quasi-stationary thermody-
namic effects due to industrialization; and one for the random variation 
caused by stochastic and/or chaotic, local environmental changes. The first 
component, ( )RT t , describes a regular trend, expressed by periodic functions 
of time and constants unchanged with time. The second component, ST , is a 
random, stochastic variation. For the observed outside air temperature, the 
analytical model of ( ) ( )A R ST t T t T= +  is such as to give a statistically best 

approximation for the observed time period with ( ) ( ) mina AT t T t− = . Sev-

eral versions for the ( )RT t  functions are defined and tested in the study for 

an example location for 20 years. The best model for ( )RT t  is found as a li-
near function with time plus a variable-coefficient Fourier series with linearly 
changing amplitude with time. It is found that the final analytical tempera-
ture, ( )AT t , can be used not only to represent the historical daily mean tem-
perature but also to predict the future daily mean temperature at the given 
location. The upper and lower boundaries give safety limits for the tempera-
ture prediction. The stochastic component identified in the model is stable 
and stationary. The method of model identification for ( )AT t  can be used 
for determining input temperature functions for supporting engineering de-
sign; or for an unbiased scientific inquiry of temperature change with time in 
climate studies. 
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1. Introduction 

Climate is one of the main elements of the natural environment. Temperature 
has a direct impact on atmospheric stability, evaporation, precipitation, and 
many other conditions of life [1]. Temperature change affects living conditions, 
agriculture, industry, tourism and engineering designs. Atmospheric tempera-
ture is needed for planning and forecasting both in the average and the variation 
components of temperature in order to prevent hazards to life as well as finances 
[2]. 

Based on the long-term trends study of maximum, minimum and mean an-
nual air temperature, e.g., in the northwest Himalayan region during the twen-
tieth century, increasing trends are seen both in the mean and the diurnal range 
of temperature. The daily maximum temperatures have increased more rapidly 
than the decrease in the low temperatures in the last century resulting in a risen 
mean temperature of about 1.6˚C [3]. An extrapolation for the next century 
would give an increase about 3˚C to 5˚C in the global mean annual temperature 
[4]. A more exact forward prediction approach may give different result. It is 
difficult, however, to analyze slowly-changing trends in the outside temperature 
as they are buried within large-amplitude, harmonic, cyclic variations as well as 
stochastic and/or chaotic changes. 

The observed, outside air temperature, ( ),aT t τ , includes both seasonal 
components represented by t (days of the year) and τ  (the hours in day t). 
When tabulated, ( ),aT t τ  is a matrix with t rows (the total number of days) and 
τ  columns (24, the number of hours in a day). The outside air temperature has 
a regular, seasonal variation for the daily average temperature during every year, 
(more exactly, every four years as a true time period) and an hourly variation 
during any given day for the hourly mean temperature. These two components 
are regular and periodic in nature caused by the earth movement in the solar 
system. Other regular changes superimposed to that of the known movement of 
the Earth may also be present, such as caused by the heat balance of the globe by 
industrialization. 

The goal of the paper is to separate the observed outside air temperature into 
variation caused by the Earth’s movement, plus any other quasi-stationary 
thermodynamic effects, and random variation caused by stochastic and/or chao-
tic, local environmental changes. It’s necessary to separate the hourly temperate 
variations from that of the seasonal first. For describing the seasonal tempera-
ture variation, the daily average temperature ( )aT t  must be defined. The 

( )aT t  may be defined as the integral mean value: 

( ) ( )
0

1 , d
T

a aT t T t
T

τ τ= ∫                       (1) 

In (1) t denotes days, τ  is the hours in a day, [ ]0,Tτ ∈  and 24T = . If 
hourly average temperature is available, (1) gives the accurate value for the daily 
average temperature meaning the thermodynamic energy of the air. If the daily 
mean temperature is obtained from weather service, the data may be given 
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pre-calculated from the Standard Model that provides the average of the daily 
maximum and minimum air temperatures, ( ) ( ) ( )max min 2aT t T t T t≅ +   . The 
Standard Model, reviewed by Bilbao et al. [5], may not be accurate if the tem-
perature change is not symmetrical between day and night [6]. Nevertheless, the 
convenience in using the Standard Model instead of using the hourly tempera-
ture data for every day and using the expression (1) may overwhelm the con-
cerns in the accuracy of the mean, daily temperature. 

Two components of the air temperature are distinguished in the present paper 
for modeling daily mean air temperature variation, ( )aT t , with time. The first 
component, ( )RT t , describes a regular trend, expressed by functions of time 
and constants unchanged with time over which the model is defined. The regu-
lar trend is defined as stationary for a long period of time, characteristic to a 
given physical location governed by deterministic causes such as the Earth’s 
movement in the solar system. The second component, ST , is a random, sto-
chastic variation around the regular trend. The ST  component is caused by the 
stochastic and/or chaotic process in the atmosphere, defined as difference be-
tween the observed outside air temperature, ( )aT t , and the temperature from 
the stationary trend model as S a RT T T= − . The daily mean value of the outside 
temperature at any given day is the sum of the regular trend component, RT , 
and a stochastic variation part, ST : 

( ) ( )a R ST t T t T= +                         (2) 

Note that the stochastic component is stationary and irrespective of the sea-
sonal variation, a simplification for model formulation. However, the stochastic 
temperature variation in some part of the year may be more disturbed than in 
another, raising the possibility for improvement of the assumption used in the 
current work, a task left for the interested reader. 

The analytic function for ( )RT t  must be the best fit to the measured outside 
temperature data for a given location. The concept of Fourier’s series approxi-
mation [7] is employed for constructing a model for a mainly periodic ambient 
air temperature, RT . Joseph Fourier, a French mathematician and physicist in-
troduced in 1807 the approximation of any function ( )f x  over a finite interval 
with an infinite sum of sine and cosine functions as  
( ) ( ) ( )0 1 sin cosi iig x a a ix b ix∞

=
= + +  ∑  such that ( ) ( ) 2

minf x g x− = , where 

0 , ,i ia a b  are unknown constants. An equivalent formulation may be used as 
( ) ( )0 1 sini iig x a a ix b∞

=
= + +∑  for brevity. Instead of an infinite series, [ ]0,i n∈  

is used for the approximation of a mainly periodic function, eliminating the 
terms multiplied by the insignificant amplitudes ,ia i n> . 

Applying the concept for RT  with a mean temperature, mT , and a harmonic 
variation component, ( )sin

i i iA tω ω α+∑ , where 
i

Aω  is the amplitude of the 
harmonic variation component of ( ) ( )sini i if t tω α= + . The amplitude, 

i
Aω , 

may be a linear function of time in some models, ( ) 1, 2,i i iA t d d tω = + . 
There are various choices to model the RT  component, listed as M1 through 

M5. The M1-type model is a linear function. It has the least coefficients and can 
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be used to describe the yearly mean temperature change. However, it does not 
have the ability to reflect any periodic temperature variation. The M2-type mod-
el is the general Fourier series function. It assumes that the yearly mean temper-
ature and amplitudes for the pre-selected, finite number of frequencies are con-
stant. It might be accurate for a short period of time, such as one year. The 
problem with the M2-type model is that it cannot reflect the long-term average, 
the maximum and the minimum temperature changes with time as in Bhutiya-
ni’s study [3]. The M3-type model is an updated function from the M2-type 
model. It has the variable yearly mean temperature with time. However, it still 
does not have the ability to reflect the maximum and minimum temperature 
changes with time. The M4-type model is an improved form over the M2-type 
model in terms of allowing the variation of maximum and minimum tempera-
tures, but still using the constant yearly mean temperature. The M5-type model 
combines the advantages of both the M3-type and M4-type of models. 

Therefore, the five different models tested are as follows: 
M1. Variable mean temperature 

( )R mT t T c t= + ⋅                         (3) 

M2. Constant mean temperature and constant amplitude series: 

( ) ( )
iR mT t T A f tω= +∑                      (4) 

M3. Variable mean temperature and constant amplitude series: 

( ) ( ) ( )
iR mT t T t A f tω= +∑                    (5) 

M4. Constant mean temperature and variable amplitude series: 

( ) ( ) ( )
iR mT t T A t f tω= +∑                    (6) 

M5. Variable mean temperature and variable amplitude series: 

( ) ( ) ( ) ( )
iR mT t T t A t f tω= +∑                   (7) 

The M1-type model is used for comparison with other models for the yearly 
mean temperature variation evaluation. Bhutiyani [3] studied the average, 
maximum and minimum temperature trends for 100 years and found them all 
changing with time. Therefore, the M2-type model with a stationary, constant 
mean temperature and constant amplitudes is inferior for practical application 
and not used for comparisons. The M4-type model is not recommended nor 
studied for brevity as the M5-type model gives better result for the same effort. 
Therefore, for comparison purpose, only the M1, M3 and M5 model types are 
used in model testing. 

The first task is to depress the stochastic temperature variation in order to 
find the statistically most significant trend for a base stationary temperature 
model. Second, the stochastic or chaotic deviations must be defined to match the 
observed temperature. Therefore, the designers or analysts may conduct their 
studies or design safely without missing the expected, maximum or minimum 
temperature values for the study time period. Figure 1 shows the components of 
establishing an analytical temperature model. 
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Figure 1. Components of establishing an analytical temperature model. 

2. Measured Temperature Data 

Daily mean temperature measurements are used in the study from a middle-west 
location in North America for 20 years. The data, ( )aT t , are taken for 7305 days 
from 04/01/1996 to 03/31/2016, downloaded from https://www.wunderground.com, 
and plotted in Figures 2(a). Figure 2(b) and Figure 2(c) are enlargement of 
Figure 2(a) for year 1 and year 20, respectively. Although the regular trend, 

( )RT t , is to be discussed in Point 3 of the paper, it is also shown from the 
M5-type model in Figure 2(a). Figure 2(b) and Figure 2(c) for illustrating the 
model concept. The daily mean temperature data, ( )aT t , is taken from the 
Standard Model method in the study as a practical compromise. Three different 
ways of using the measured data are tried for comparison and to find the best 
way of data processing. 

2.1. Single-Year Temperature Cycle Evaluation 

In the first usage of the data, ( )aT t , the measured mean daily temperatures for 
20 years are divided into twenty sets for single year from 1 to 20 to be able to 
analyze the model validity for model type M1 and M3. Individual yearly data, 

( ),a yT t , [ ]1,20y∈ , [ ]1,365t∈  are grouped for 15 regular years and [ ]1,366t∈  
for 5 leap years. 

2.2. Four-Year Temperature Cycle Evaluation 

In the second usage of the data, ( )aT t , the 20 years measured mean daily tem-
peratures are divided into 4-year period sets, giving 5 groups as 1), 2), 3), 4) and 
5). The justification of employing four years as the true solar time period is that 
the yearly time period for regular years is distorted by the deficiency of 0.25 days 
while the time period in leap years is longer by 0.75 days and affecting the aver-
aging. The 4-year time sequence of 1461 days is considered as the repeating time 
period for the ST  stationary temperature component in the model. Therefore, 
properties of temperature (average, etc.) also must be considered distinguished 
when evaluating for the yearly time period. 

1) For year 1 - 4: 

( ) [ ], , 1,1461a a aT T t t∈=                     (8) 

2) For year 5 - 8: 

( ) [ ], , 1462,2922a b aT T t t= ∈                  (9) 

3) For year 9 - 12: 

( ) [ ], , 2923,4383a c aT T t t= ∈                 (10) 
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(a) 

 
(b)                                                          (c) 

Figure 2. (a) Measured 20 years daily mean temperature at middle west of North America; (b) Zoom in Figure 2(a) for the first 
year; (c) Zoom in Figure 2(a) for the last year. 
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4) For year 13 - 16: 

( ) [ ], , 4384,5844a d aT T t t= ∈                     (11) 

5) For year 17 - 20: 

( ) [ ], , 5846,7305a e aT T t t= ∈                    (12) 

2.3. Continuous, Repeating Four-Year Temperature Cycles  
Evaluation 

In the third usage of the data, ( )aT t , the total 20 years 7,305 data, ( )aT t , 
[ ]1,7305t∈ , are used for testing and establishing properties of ( )RT t  in model 

type M4 and M5. 

3. Determination of TR 

To determine the model coefficients, the obvious choice is to use the 
Least-squares (LSQ) fit method. The LSQ method optimally fits the data to a 
given function with unknown constant parameters in such a way that the 
root-mean-square of the error between model and measured data is minimalized. 
The expected, fitted equations represent the significant, regular temperature 
trend, RT . Determining the significant part of the data out of a noisy observa-
tion may also be done by filtering or neural network. The advantage of using the 
LSQ method is to be able to define function RT  in advance, whereas signal 
processing does not give an analytical form of such a function [8]. 

For supporting the ways of using measured data, different fitting function 
may be defined with a number of unknown parameters to be determined by the 
LSQ fitting algorithm. Five different fitting functions may be considered for M1, 
M3 and M5 model types as follows. 

3.1. TR Function for the Entire 20 Years for M1-Type Model 

The LSQ linear function is: 

mt mT T c t= + ⋅                            (13) 

3.2. TR Function for M3-Type Model 

For single year data in the M2-type model, a regular year of 365 days and a leap 
year of 366 days must be distinguished. The LSQ function for regular year is 
written as: 

( ) ( ) ( )
( ) ( )

, 1 1 1 2 2 2

3 3 3 15 15 15

sin 2π sin 2π

sin 2π sin 2π
R y mT t T c t A t a b A t a b

A t a b A t a b

= + × + × × × + + × × × +

+ × × × + + + × × × +

   (14) 

where { } { }{ }1 11 2 ,3 2
365

i j
ka − −= × × ;  for  [ ]1,15k∈ ,  k i j= + ;  [ ]1,8i i= ∈ ; 

[ ]1,7j∈ , all fixed frequency components. Unknown parameters are Tm, c, A1 
through A15, and b1 through b15. 

The LSQ function for leap year is derived from (14) by changing 365 days to 
366 days as: 
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( ) ( ) ( )
( ) ( )

, 1 1 1 2 2 2

3 3 3 15 15 15

sin 2π sin 2π

sin 2π sin 2π
R y mT t T c t A t a b A t a b

A t a b A t a b

= + × + × × × + + × × × +

+ × × × + + + × × × +

  (15) 

where { } { }{ }1 11 2 ,3 2
365

i j
ka − −= × × ;  for  [ ]1,15k∈ ,  k i j= + ;  [ ]1,8i i= ∈ ; 

[ ]1,7j∈ , all fixed frequency components. Unknown parameters are Tm, c, A1 
through A15, and b1 through b15. 

The LSQ function for 4 years data and 20 years data will add the four-year and 
two-year period frequencies, also will change the one-year period to 365.25 days, 
the function is written as: 

( ) ( ) ( )
( ) ( )

1 1 1 2 2 2

3 3 3 17 17 17

sin 2π sin 2π

sin 2π sin 2π
R mT t T c t A t a b A t a b

A t a b A t a b

= + × + × × × + + × × × +

+ × × × + + + × × × +

  (16) 

where { } { }{ }3 11 2 ,3 2
365.25

i j
ka − −= × × ; for [ ]1,17k∈ , k i j= + ; [ ]1,10i i= ∈ ; 

[ ]1,7j∈ , all fixed frequency components. Unknown parameters are Tm, c, A1 
through A17 and b1 through b17. 

3.3. TR Function for M5 Type Model 

With the assumption that the amplitudes may also vary with time, a modified 
LSQ function over (16) is established as: 

( ) ( ) ( )
( ) ( )
( ) ( )

1 1 1 1

2 2 2 2

17 17 17 17

sin 2π

sin 2π

sin 2π

R m c v

c v

c v

T t T c t A A t t a b

A A t t a b

A A t t a b

= + × + + × × × × +

+ + × × × × + +

+ + × × × × +


          (17) 

where { } { }{ }3 11 2 ,3 2
365.25

i j
ka − −= × × ; for [ ]1,17k∈ , k i j= + ; [ ]1,10i i= ∈ ; 

[ ]1,7j∈ , all fixed frequency components. Unknown parameters are Tm, c, 1cA  
through 17cA , 1vA  through 17vA , and b1 through b17. 

4. Evaluation of the Statistically Most Significant, Mean 
Temperature Trends 

The LSQ fitting method is used to determine the mean temperature trend, 
( )RT t , of the measured data, ( )aT t . The LSQ method provides the statistically 

most significant result for ( )RT t  as a regular, deterministic trend, depressing 
the random variation component of temperature around ( )RT t  with assumed, 
normal distribution as a noise due to stochastic or chaotic causes. 

First, the best LSQ fit is determined on all single year data separately. The pa-
rameters of function (14) are applied for the regular years, and (15) is applied for 
the leap years. The fitted results are shown in Figure 3(a), Figure 3(b) and Fig-
ure 3(c). The mean, maximum and minimum values from the fitted result are 
shown in Figure 4. 

Second, the best LSQ fit is found using function (16) for five 4-year tempera-
ture data sets separately. The fitted results are shown in Figure 5(a), Figure 5(b) 
and Figure 5(c) the mean, maximum and minimum values from the fitted  
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(a) 

 
(b)                                                           (c) 

Figure 3. (a) LSQ fitting curves for each year of 20 years; (b) Zoom in Figure 3(a) for the first year; (c) Zoom in Figure 3(a) for 
the last year. 
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Figure 4. The mean, maximum and minimum values for LSQ fitting results for each year. 

 
result are shown in Figure 6. Parameters for the fitted functions ( ) ( ), ,, ,a a a eT t T t , 
are listed in Tables 1-5, respectively. 

Third, the best LSQ fit is determined using the M3-type function (16) for all 
20 years data, ( )aT t , together. The fitted function is depicted in Figure 7(a), 
Figure 7(b) and Figure 7(c). The parameters of the fitted function are listed in 
Table 6. The best LSQ fit is also determined using the improved, M5-type func-
tion (17), applied also for all 20 years data, ( )aT t . The fitted results are depicted 
in Figure 8(a), Figure 8(b) and Figure 8(c); and the parameters of the fitted 
function are listed in Table 7. 

5. Evaluation of the Stochastic Variation and Final Analytical 
Temperature Model 

The stochastic variation must be defined by subtracting the statistic periodic 
function from the measured data. First, the stochastic variation, ( )ST t , is de-
fined by the difference between deterministic function result, ( )RT t  and meas-
ured data ( )aT t  as: 

( ) ( ) ( )S a RT t T t T t= −                        (18) 

The data of (18) is depicted in Figure 9(a), Figure 9(b) and Figure 9(c). The 
density analysis on the (18) data and the MATLAB normal distribution fit of the 
data is shown in Figure 10. From the fit, a mean value 86.33 10 0mu −= − × ≈ , 
and standard deviation of 4.0012σ =  are obtained, where ( )Smu T t n=∑ ,  

( )( )21
ST t mu

n
σ = −∑  and n is the number of days, t. Using 0.00mu =  and  

4.0012σ = , a normally-distributed random noise series is generated to 
represent ( )ST t . The ( ), ,NormRandom mu tσ  function is used in Matlab that  
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(a) 

 
(b)                                                           (c) 

Figure 5. (a) LSQ fitting curves for five 4-year sets; (b) Zoom in Figure 5(a) for the first year; (c) Zoom in Figure 5(a) for the last 
year. 
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Figure 6. The mean, maximum and minimum values for LSQ fitting results for 4-year sets. 

 
Table 1. Parameters for year 1 - 4 data, the LSQ fitted function (16) result, ,a aT . 

Tm c A1 a1 A2 a2 A3 a3 A4 a4 

0.731 −2.48 × 10−4 0.527 0.982 0.282 2.468 10.616 −0.343 2.281 3.248 

A5 a5 A6 a6 A7 a7 A8 a8 A9 a9 

0.257 2.759 0.584 −0.816 0.798 2.985 0.072 −0.525 0.399 4.295 

A10 a10 A11 a11 A12 a12 A13 a13 A14 a14 

0.285 −0.807 0.181 −17.310 0.154 1.797 0.117 0.950 0.092 3.044 

A15 a15 A16 a16 A17 a17     
0.080 1.639 0.142 4.827 0.043 1.059 

    
 
Table 2. Parameters for year 5 - 8 data, the LSQ fitted function (16) result, ,a bT . 

Tm c A1 a1 A2 a2 A3 a3 A4 a4 

9.208 1.038 × 10−3 0.377 −1.097 0.529 3.677 11.764 −0.306 1.836 3.450 

A5 a5 A6 a6 A7 a7 A8 a8 A9 a9 

0.231 2.328 0.723 2.227 0.520 2.349 0.158 0.536 0.496 3.325 

A10 a10 A11 a11 A12 a12 A13 a13 A14 a14 

0.287 0.278 0.116 2.199 0.234 −17.177 0.472 3.009 0.221 3.941 

A15 a15 A16 a16 A17 a17     
0.178 −0.255 0.124 3.226 0.025 10.918 
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Table 3. Parameters for year 9 - 12 data, the LSQ fitted function (16) result, ,a cT . 

Tm c A1 a1 A2 a2 A3 a3 A4 a4 

10.735 −1.715 × 10−3 1.028 3.156 0.756 2.810 11.843 −0.268 1.931 3.252 

A5 a5 A6 a6 A7 a7 A8 a8 A9 a9 

1.239 2.354 0.431 −0.535 0.766 −1.907 0.558 1.876 0.381 −0.040 

A10 a10 A11 a11 A12 a12 A13 a13 A14 a14 

0.372 1.158 0.195 3.605 0.341 −0.427 0.073 4.363 0.157 1.924 

A15 a15 A16 a16 A17 a17     
0.167 2.334 0.036 4.023 0.044 4.296 

    
 
Table 4. Parameters for year 13 - 16 data, the LSQ fitted function (16) result, ,a dT . 

Tm c A1 a1 A2 a2 A3 a3 A4 a4 

9.242 2.539 × 10−4 0.645 0.197 0.427 −0.565 11.355 −0.357 2.566 3.116 

A5 a5 A6 a6 A7 a7 A8 a8 A9 a9 

0.543 3.556 0.790 0.205 0.723 3.246 0.252 2.302 0.482 3.649 

A10 a10 A11 a11 A12 a12 A13 a13 A14 a14 

0.417 2.377 0.592 1.153 0.175 2.700 0.153 2.907 0.084 −7.709 

A15 a15 A16 a16 A17 a17     
0.077 2.546 0.046 0.520 0.100 3.479 

    
 
Table 5. Parameters for year 17 - 20 data, the LSQ fitted function (16) result, ,a eT . 

Tm c A1 a1 A2 a2 A3 a3 A4 a4 

10.289 1.073 × 10−4 0.883 3.050 0.372 0.298 11.798 −0.288 2.138 2.958 

A5 a5 A6 a6 A7 a7 A8 a8 A9 a9 

1.234 3.131 0.412 10.828 0.110 1.318 0.206 4.330 0.308 −0.624 

A10 a10 A11 a11 A12 a12 A13 a13 A14 a14 

0.081 2.438 0.126 2.924 0.125 4.272 0.147 7.643 0.243 2.356 

A15 a15 A16 a16 A17 a17     
0.038 1.193 0.080 3.917 0.063 2.760 

    
 
Table 6. Parameters for year 1 - 20 data, the LSQ fitted function (16) result. 

Tm c A1 a1 A2 a2 A3 a3 A4 a4 

9.489 7.367 × 10−5 0.095 2.478 0.092 3.072 11.489 −0.311 2.113 3.194 

A5 a5 A6 a6 A7 a7 A8 a8 A9 a9 

0.622 2.836 0.222 −0.292 0.418 3.237 0.122 1.909 0.197 4.259 

A10 a10 A11 a11 A12 a12 A13 a13 A14 a14 

0.123 1.122 0.153 1.723 0.041 1.358 0.121 2.682 0.093 2.957 

A15 a15 A16 a16 A17 a17     
0.047 −4.723 0.052 4.109 0.031 3.388 
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Table 7. Parameters for year 1 - 20 data, the LSQ fitted function (17) result. 

Tm c  A1c A1v b1 A2c A2v b2 

9.477 57.367 10−×   0.392 41.254 10−− ×  0.066 0.611 41.409 10−− ×  3.017 

A3c A3v b3 A4c A4v b4 A5c A5v b5 

11.099 41.066 10−×  −0.312 1.953 54.541 10−×  3.196 0.020 41.635 10−×  2.989 

A6c A6v b6 A7c A7v b7 A8c A8v b8 

0.163 51.524 10−×  −0.244 0.731 58.600 10−− ×  3.187 0.216 52.764 10−− ×  1.628 

A9c A9v b9 A10c A10v b10 A11c A11v b11 

0.281 52.284 10−− ×  4.153 0.311 59.252 10−− ×  -0.670 0.134 64.996 10−×  −4.559 

A12c A12v b12 A13c A13v b13 A14c A14v b14 

0.248 55.649 10−− ×  1.295 0.142 55.864 10−− ×  2.677 0.049 51.188 10−×  2.816 

A15c A15v b15 A16c A16v b16 A17c A17v b17 

0.014 68.843 10−×  1.729 0.099 51.302 10−− ×  4.222 0.029 51.647 10−− ×  0.078 

 
 

generates t number of random values from the normal distribution with a mean 
value mu , and standard deviation value σ . Applying it to ( )ST t , it gives: 

( ) ( ), ,ST t NormRandom mu tσ=                 (19) 

For ( )AT t , (19) is added to (17): 

( ) ( ) ( ), ,A RT t T t NormRandom mu tσ= +             (20) 

However, (20) is not an analytical function since it includes an algorithm. To 
overcome this and understanding that the daily variation for random causes is a 
sample of ( )ST t , the maximum and minimum values can be generated with a 
99 per cent confidence by a fluctuating temperature with a 2-day cycle time: 

( ) ( ) ( )3 1 t
A RT t T t σ= + −                  (21) 

Substituting the preferred model in (17), the final analytical temperature 
model, ( )AT t  is: 

( ) ( ) ( )
( ) ( )
( ) ( ) ( )

1 1 1 1

2 2 2 2

17 17 17 17

sin 2π

sin 2π

sin 2π 3 1

A m c v

c v

t
c v

T T c t A A t t a b

A A t t a b

A A t t a b

t

σ

= + × + + × × × × +

+ + × × × × + +

+ + × × × × + + −

       (22) 

Comparison between simulated temperature, ( )AT t , from (20) and measured 
data, ( )aT t , is show in Figure 11(a), Figure 11(b) and Figure 11(c). Using an 
uncertainty interval of 12. 363 00σ =  in the example, safe limits of maximum 
and minimum temperature are show in Figure 12(a), Figure 12(b) and Figure 
12(c). A smaller or wider uncertainty interval may also be selected based on the 
risk to be taken regarding the missing number of days to be in the expected 
temperature range in the outside air temperature. 
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(a) 

 
(b)                                                  (c) 

Figure 7. (a) LSQ function (16) fitting curve for total data; (b) Zoom in Figure 7(a) for the first year; (c) Zoom 

in Figure 7(a) for the last year. 
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(a) 

 
(b)                                                  (c) 

Figure 8. (a) LSQ function (17) fitting curve for total data; (b) Zoom in Figure 8(a) for the first year; (c) Zoom 
in Figure 8(a) for the last year. 
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(a) 

 
(b)                                                         (c) 

Figure 9. (a) Equation 18 result; (b) Zoom in Figure 9(a) for the first year; (c) Zoom in Figure 9(a) for the last year. 
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Figure 10. Data Equation (18) result density analysis and normal distribution fit. 

6. Discussion of the Results 
6.1. Discussion of the Results for the Air Temperature Variation 

as a Regular Trend 

For comparison purposes, the linear regression function (13) for the entire 
20-year data set is applied to various, fitted model results; or original, unprocessed 
data. The fitted model results for the shorter time periods represent the significant 
part of the repeated trends whereas the noise is intentionally depressed in the LSQ 
norm sense. Therefore, a linear regression evaluation for the 20-year long time 
period is assumed to evaluate the most significant, time-average of the linear 
change in the magnitude of ( )aT t . Common expectation dictates that the linear 
regression evaluation for the 20-year long time period of the original data may 
provide an un-biased result for the linear change in the magnitude of ( )aT t . 
The following studied are completed for fitting a longer-time linear regression to 
model results, ( )RT t , of shorter time periods: 

a) Yearly mean temperatures, ( )RT t , (for 15 regular and 5 leap years) eva-
luated from fitted function to single-years data, ( ),a yT t  with M1-type model; 

b) Yearly mean temperatures, ( )RT t , evaluated from fitted function data to 
4-year data sets, ( ) ( ), ,, ,a a a eT t T t  with M1-type model; 

c) Yearly mean temperatures, ( )RT t , from fitted function to continuous 20 
years data, ( )aT t  with M1-type model; 

d) 20 years measured data, ( )aT t , used unprocessed. 
The results from the evaluation are listed in Table 8. As shown, the linear 

trends for the mean value, mT , and the slope, c, are very similar for cases a) and 
b) with b) giving a slightly lower RMS error variation than those of a). The rea-
son lays in the fact that the true time period for the variation of the outside  

https://doi.org/10.4236/am.2018.98069


G. Danko, C. Lu 
 

 

DOI: 10.4236/am.2018.98069 1033 Applied Mathematics 
 

 
(a) 

 
(b)                                                         (c) 

Figure 11. (a) Final analytical temperature model for 20 years; (b) Zoom in Figure 11(a) for the first year; (c) Zoom in Figure 

11(a) for the last year. 

https://doi.org/10.4236/am.2018.98069


G. Danko, C. Lu 
 

 

DOI: 10.4236/am.2018.98069 1034 Applied Mathematics 
 

 
(a) 

 
(b)                                                           (c) 

Figure 12. (a) Upper boundary, lower boundary and measured temperature; (b) Zoom in Figure 12(a) for the first year; (c) Zoom 
in Figure 12(a) for the last year. 
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Table 8. Linear temperature variation trends evaluated from different models and processes. 

Data and Model Type Tm c RMS 

a) Yearly mean temperature evaluated from fitted function data, ( )RT t , using single-years 

data, ( ),a yT t  and M1-type model 
9.456 57.88 10−×  0.603 

b) Yearly mean temperature evaluated from fitted function data, ( )RT t , using 4-year sets, 

( ) ( ), ,, ,a a a eT t T t  and M1-type model 
9.481 57.23 10−×  0.390 

c) Yearly mean temperature from fitted function data,  ( )RT t , using continuous 20 years 

data, ( )aT t  and M1-type model 
9.456 57.88 10−×  0.603 

d) 20 years measured data, ( )aT t , unprocessed; M1-type model 9.929 54.66 10−− ×  (9.206) 

e) 20 years measured data, ( )aT t , unprocessed; M3-type model 9.489 57.37 10−×  (4.026) 

f) 20 years measured data, ( )aT t , unprocessed; M5-type model 9.477 57.42 10−×  (4.001) 

g) 20 years model output data, ( )RT t  from M5-type model 9.929 54.66 10−− ×  (8.291) 

 
temperature is 365.25 days, giving a rounding error with a weight of −0.25/4 
days for the regular years and of +0.75/4 day for the leap year in the single-year 
model fits. The model fit to the 4-year time periods does not have the rounding 
error problem and, therefore, a smoother fit is expected. Indeed, the RMS error 
of 0.39 is lower for case b) than value of 0.603 for case a). 

The results in case c) is identical to those of case a) for obvious reason of using 
the same linear regression repeated two times sequentially, the second time ob-
taining zero RMS value. The result for case d) is very different from those in 
cases a) through c). Why does a 20-year long data set gives an average decrease of 
temperature change negative that would translate to “global cooling” as opposed to 
“global warming” for the example location? The answer is the wrong-type func-
tion choice for the most significant variation trend, ( )RT t , being a linear func-
tion with time. This exercise highlights the importance of the selection for the 
shape of ( )RT t . If a form as inadequate as a linear function is selected for ( )RT t  
for estimating the periodic nature of the outside temperature, the coefficients of 
the function cannot be trusted even for the general slope, as demonstrated with 
case d). 

Two more choices are also studied for comparison for evaluating the linear 
trend which the models already include as the mean value, mT , and the slope, c. 
Due to these built-in components, no additional, linear regression fit is needed 
for determining the values of mT  and c: 

e) 20 years measured data, ( )aT t , unprocessed; M3-type model; 
f) 20 years measured data, ( )aT t , unprocessed; M5-type model. 
The results from the evaluation are listed in Table 8. As shown, the linear 

trends for the mean value, mT , and the slope, 𝑐𝑐, in both cases e) and f) are very 
similar for case b) giving nearly the same average temperature, mT , but a slightly 
lower value for the slope c. The RMS error of fit, shown in parentheses are irre-
levant for comparison as these model fits use the measurement data directly 
without pre-processing as ( )RT t  with an assumed model first. The preferred 
solution for trend analysis is the M5-type model that has a built-in, linear am-
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plitude variation component with time in case f). The preferred solution is to 
directly apply the most relevant model type to raw measurement data for cap-
turing the characteristics of the regular temperature change with time. 

Re-fitting another linear regression model to the model output data, ( )RT t , 
from the M5-type model in case f) for re-capturing the mean value, mT , and the 
slope, c, does not give back the same values as those built in the best-fit model, 
shown in case g) in Table 8. The reason for the mismatch is the inadequate 
function type of a linear variation attempting to evaluate the more complex in-
teractions of periodic and monotonic components in ( )RT t . However, the gen-
eral proof of this mismatch is left to the reader. 

6.2. Discussion of the Results for the Random Component of Air 
Temperature Variation 

The air temperature model component for the description of the random part 
due to stochastic or chaotic causes is simplified to be time-independent. The 
stochastic component, RT , satisfies the zero mean value and zero slope with 
time. No attempt has been made to vary the magnitude of randomness with the 
seasons. Refinement for this component is left for the interested reader. The ob-
served histogram for the example shows a close-to normal distribution, allowing 
to estimate the error limit for daily mean temperature fluctuations from the 
standard deviation, σ, obtained from model identification. 

6.3. Discussion of the Complete Temperature Model for Daily Air 
Temperature Variation 

The complete temperature model is given in (21) and (22). The model predicts 
the daily average temperature variation with time as well as the expected the 
maximum and minimum temperatures due to stochastic process components. 
The comparison between measured data and model prediction with ±3σ ampli-
tude around the ( )RT t  function from the M5-type model in (22) is illustrated 
in Figure 12(a). The graphs in the zoom-in Figure 12(b) and Figure 12(c) con-
vincingly show that the measured values are almost always remain between the 
modeled maximum and minimum values. 

7. Conclusions 
 Analytical functional forms and their numerical algorithms are presented for 

representing the measured time-variable outside air temperature, ( )aT t  for 
engineering design and analysis of the human environment. The algorithms 
for ( )RT t  and ST  are easy to use for processing the available data sets, 

( )aT t , at any physical location from the weather service, typically using sev-
eral tens of thousands of measured values. In the final functional form of the 
outside air temperature function, ( )AT t , only a few dozens of constants are 
needed. 

 The final analytical temperature, ( )AT t , can be used not only to represent 
the historical temperature data but also to predict the future temperature 
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variations at any given location from which the input data is used from mea-
surements. The upper and lower boundaries may be used for safe tempera-
ture prediction.  

 The regular component of temperature change with time, ( )RT t , in the 
M5-type model is described by a linear function plus a time-variable Fourier 
series to represent the long term linear change both in mean temperature and 
amplitude. Only 53 constants are needed, obtainable from the presented me-
thod, to represent the outside mean air temperature at any day of the year as 
long as need over decades of time. 

 The confidence interval for the stochastic variation may be selected by the 
user via the multiplication factor of the standard deviation of the model 
match between measured, time-variable outside air temperature, ( )aT t  and 
the regular component in the analytical mode, ( )RT t . 

 The stochastic component used in the final model, ( )AT t , is stable and sta-
tionary. The variability of the stochastic component over the season of the 
year may be considered in a future study, but presently is omitted for sim-
plicity. 

 The study shows that the prediction of temperature trends such as for cool-
ing or warming in the future can only be evaluated using an M5-type model 
fit to the data. The trend-setting components, such as the annual change of 
the mean temperature or the variation of the amplitude change with time of 
the periodic components can only be evaluated with a model which has these 
components built into the structure of the model. 

 The minimum, adequate time period for building an outside air temperature 
model is 4 years, the periodic cycle time of the solar environment. It is rec-
ommended to use a multiple of the 4-year periods for model-building (e.g., 
the 5 × 4 = 20 years period in present study) preferably for as long a time pe-
riod as data are available. 
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