
Applied Mathematics, 2018, 9, 954-974 
http://www.scirp.org/journal/am 

ISSN Online: 2152-7393 
ISSN Print: 2152-7385 

 

DOI: 10.4236/am.2018.98065  Aug. 29, 2018 954 Applied Mathematics 
 

 
 
 

Methodology for Constructing a Short-Term 
Event Risk Score in Heart Failure Patients 

Kévin Duarte1,2*, Jean-Marie Monnez1,2,3, Eliane Albuisson4,5,6 

1CNRS, INRIA, Institut Elie Cartan de Lorraine, Université de Lorraine, Nancy, France 
2CHRU Nancy, INSERM, Université de Lorraine, CIC, Plurithématique, Nancy, France 
3IUT Nancy-Charlemagne, Université de Lorraine, Nancy, France 
4Institut Elie Cartan de Lorraine, Université de Lorraine, CNRS, Nancy, France 
5CHRU Nancy, BIOBASE, Pôle S2R, Université de Lorraine, Nancy, France 
6Faculté de Médecine, InSciDenS, Université de Lorraine, Nancy, France 

 
 
 

Abstract 
We present a methodology for constructing a short-term event risk score in 
heart failure patients from an ensemble predictor, using bootstrap samples, 
two different classification rules, logistic regression and linear discriminant 
analysis for mixed data, continuous or categorical, and random selection of 
explanatory variables to build individual predictors. We define a measure of 
the importance of each variable in the score and an event risk measure by an 
odds-ratio. Moreover, we establish a property of linear discriminant analysis 
for mixed data. This methodology is applied to EPHESUS trial patients on 
whom biological, clinical and medical history variables were measured. 
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1. Introduction 

In this study, we focus on the problem of constructing a short-term event risk 
score in heart failure patients based on observations of biological, clinical and 
medical history variables. 

Numerous event risk scores in heart failure patients have been proposed in 
recent years, but one aspect is particularly important to consider in the con-
struction of a score and in the relevance of the results obtained. This concerns 
the choice of classification models whose conditions of use may be restrictive. 
The most currently used classification models in these studies are logistic regres-
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sion and Cox proportional hazard model. Quoting for example the Seattle Heart 
Failure Model (SHFM) risk score [1] and the Seattle Post Myocardial Infarction 
Model (SPIM) risk score [2] which allow respectively predicting survival in 
chronic and post-infarction heart failure patients: 
 SHFM risk score was derived in a cohort of 1153 patients with ejection frac-

tion < 30% and New York Heart Association (NYHA) class III to IV and va-
lidated in 5 other cohorts of patients with similar characteristics. Area under 
ROC curve (AUC) at 1 year was 0.725 in resubstitution and ranged from 
0.679 to 0.810 in the 5 validation cohorts. 

 SPIM risk score was derived in a cohort of 6632 patients from the Eplerenone 
Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study 
(EPHESUS) trial [3] and validated on a cohort of 5477 patients. AUC at 1 
year was 0.742 in derivation and 0.774 in validation. 

These two risk scores were developed using Cox proportional hazard model 
and characteristics available at baseline as explanatory variables. Overall, there 
are several limitations to using these risk scores. They were constructed using 
only data available at baseline. However, as many studies include inclusion crite-
ria based on clinical or biological parameters measured at baseline, it is possible 
that some variables are not present in the score due to these inclusion criteria. 
For example, patients were included in the EPHESUS trial only if their potas-
sium level at baseline was less than 5 mmol/L. This is a reason why potassium is 
not present in the SPIM score although this is an important parameter which 
moreover may evolve considerably over time. Concerning the model, the Cox 
proportional risk model assumes the proportionality of risks, an important con-
dition not always obtained and verified. 

In this study, we used a new approach: 
• we develop a methodology for constructing a short-term event (death or 

hospitalization) risk score, taking into account the most recent values of the 
parameters and therefore the closest values of an event, in order to generate 
alerts and eventually immediately modify drug prescription; using EPHESUS 
trial data, we could only construct a score at 1 month in order not to have too 
few patients with event in the learning sample; but with the same methodol-
ogy, a score could be constructed at a closer time; 

• we use an ensemble predictor, that is more stable than a predictor built on a 
single learning sample, using bootstrap samples; this allows an internal vali-
dation of the score using AUC out-of-bag (OOB); moreover, we use two classi-
fication methods, logistic regression and linear discrimination analysis, and, 
in order to avoid overlearning, for each predictor we use a random selection 
of explanatory variables, after testing other methods of selection that did not 
give better results, the number of drawn variables being optimized after test-
ing all possible choices; 

• furthermore, our method of construction can be adapted to data streams: 
when patient data arrives continuously, the coefficients of variables in the 
score function can be updated online. 
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In the next section, we present how we defined the learning sample using the 
available data from EPHESUS trial and the list of explanatory variables used. In 
the third section, we state a property of linear discriminant analysis (LDA) for 
mixed data, continuous or categorical. In the fourth section, after presenting the 
methodology used to build a risk score and to reduce its variation scale from 0 to 
100, we define a measure of the importance of variables or groups of correlated 
variables in the score and a measure of the event risk by an odds-ratio. In the 
fifth section, we describe the results obtained by applying our methodology to 
our data. The paper ends with a conclusion. 

2. Data 

The database at our disposal was EPHESUS, a clinical trial that included 6632 
patients with heart failure (HF) after acute myocardial infarction (MI) compli-
cated by left ventricular systolic dysfunction (left ventricular ejection fraction < 
40%) [3]. All patients were randomly assigned to treatment with eplerenone 25 
mg/day or placebo. 

In this trial, each patient was regularly monitored, with visits at the inclusion 
in the study (baseline), 1 month after inclusion, 3 months later, then every 3 
months until the end of follow-up. At each visit, biological, clinical parameters 
or medical history were observed. In addition, all adverse events (deaths, hospi-
talizations, diseases) that occurred during follow-up were collected. 

To define the learning sample used to construct the short-term event risk 
score, we made the following working hypothesis: based on biological, clinical 
measurements or medical history on a patient at a fixed time, we sought to assess 
the risk that this patient has a short-term HF event. The individuals considered 
are couples (patient-month) without taking into account the link between sever-
al couples (patient-month) concerning the same patient. Therefore, it was as-
sumed that the short-term future of a patient depends only on his current meas-
ures. 

Firstly, we did a full review of the database in order to: 
• identify the biological and clinical variables that were regularly measured at 

each visit, 
• determine the medical history data that we could update from information 

collected during the follow-up. 
We were thus able to define a set of 27 explanatory variables whose list is pre-

sented in Figure 1. Estimated plasma volume derived from Strauss formula 
(ePVS) was defined in [4]. Estimated glomerular filtration rate (eGFR) was as-
sessed using three formulas [5] [6] [7]. The different types of hospitalization 
were defined in supplementary material of [3]. 

Then, we defined the response variable as the occurrence of a composite 
short-term HF event (death or hospitalization for progression of HF). In order to 
have enough events, we defined the short term as being equal to 30 days. Pa-
tient-months with a follow-up of less than 30 days and no short-term HF event 
during this incomplete follow-up period, were not taken into account. 
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Figure 1. List of variables. 

 
There were finally 21,382 patient-months from 5937 different patients whose 

317 with short-term HF event and 21,065 with no short-term event. 

3. Property of Linear Discriminant Analysis of Mixed Data 

Denote A' the transposed of a matrix A. 
In case of mixed data, categorical and continuous, a classical method to per-

form a discriminant analysis is: 
1) perform a preliminary factorial analysis according to the nature of the data, 

such as multiple correspondence factorial analysis (MCFA) [8] for categorical 
data, multiple factorial analysis (MFA) [9] for groups of variables, mixed data 
factorial analysis (MDFA) [10], ... ; 

2) after defining a convenient distance, perform a discriminant analysis from 
the set of values of principal components, or factors. 

See for example the DISQUAL (DIScrimination on QUALitative variables) 
method of Saporta [11], which performs MCFA, then LDA or quadratic discri-
minant analysis (QDA). 

Denote as usual T the total inertia matrix of a dataset partitioned in classes, W 
and B respectively its intraclass and interclass inertia matrix. 

We show hereafter that when performing LDA with metrics T−1 or W−1, it is 
not necessary to perform a preliminary factorial analysis and LDA can be direct-
ly performed from the raw mixed data. 

Metrics W−1 will be used in the following but can be replaced by T−1. 
Let { }1,2, ,I n=   a set of n individuals, partitioned in q disjoint classes 

1, , qI I . Denote ( )k kn card I= , kip  the weight of ith individual of class kI  
( )1, , ; 1, ,ki n k q= =   and 

1

kn

k ki
i

P p
=

= ∑  the weight of kI , with 
1

1
q

k
k

P
=

=∑ . p 
quantitative variables or indicators of modalities of categorical variables, de-
noted 1, , px x , are observed on these individuals. Suppose that there exists no 
affine relation between these variables, especially for each categorical variable an 
indicator is removed. 

For 1, ,j p=  , denote j
kix  the value of jx  for ith individual of class kI . 
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Denote kix  the vector ( )1 p
ki kix x ′
  and kg  the barycenter of the elements kix  

for ki I∈ : 
1 .

k
k ki ki

i Ik

g p x
P ∈

= ∑                           (1) 

Intraclass inertia ( ),p p  matrix W is supposed invertible: 

( )( )
1 1

.
knq

ki ki k ki k
k i

W p x g x g
= =

′= − −∑∑                   (2) 

A currently used distance in LDA ( )1 ,
W

d a b−  between two points a and b in 
p  is such that: 

( ) ( ) ( )1
2 1, .
W

d a b a b W a b−
−′= − −                   (3) 

Suppose we want to classify an individual knowing the vector a of values of 
1, , px x . Principle of LDA is to classify it in kI  such that ( )1

2 , kW
d a g−  is mi-

nimal. 
Consider now new variables 1, , my y  affine combinations of 1, , px x , 

with m p≥ , such that: 
,ki kiy Ax β= +                          (4) 

with ( )1 m
ki ki kiy y y ′=  , A a ( ),m p  matrix of rank p and β  a vector in m . 

Denote kh  the barycenter of vectors kiy  in m  for ki I∈ : 

( )1 1 ,
k k

k ki ki ki ki k
i I i Ik k

h p y p Ax Ag
P P

β β
∈ ∈

= = + = +∑ ∑           (5) 

( ).ki k ki ky h A x g− = −                      (6) 

Let Z the intraclass inertia ( ),m m  matrix of { }, 1, , ; 1, ,ki ky i n k q= =  : 

( )( )
1

.
k

q

ki ki k ki k
k i I

Z p y h y h AWA
= ∈

′ ′= − − =∑∑             (7) 

The rank of Z is equal to the rank of A, p m≤ . For m p> , the ( ),m m  ma-
trix Z is not invertible. Then use in this case the pseudoinverse (or Moore-Penrose 
inverse) of Z, denoted Z+, which is equal to the inverse of Z when m p= , to de-
fine the pseudodistance denoted 

Z
d +  in m . The denomination pseudodis-

tance is used because Z+ is not positive definite. Remind the definition of a 
pseudoinverse and two theorems [12]. 

Definition Let A a ( ),k l  matrix of rank r. The pseudo-inverse of A is the 
unique ( ),l k  matrix A+ such that: 

1) AA A A+ = , 

2) A AA A+ + += , 

3) ( )AA AA+ +′ = , 

4) ( ) .A A A A+ +′ =  

Theorem 1 Maximal rank decomposition 
Let A a ( ),k l  matrix of rank r. Then there exist two full-rank (r) matrices, F 

of dimension ( ),k r  and G of dimension ( ),r l  ( ( ) ( )rg F rg G r= = ) such that 
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A FG= . 
Theorem 2 Expression of A+ 
Let A FG=  a full-rank decomposition of A. Then ( ) 1A G F AG F−+ ′ ′ ′ ′= . 
Prove now: 
Proposition 1 ( ) ( )1

2 2, ,Z W
d Aa Ab d a bβ β −+ + + = . 

Proof. ( )Z AW A′= . AW and A' are of full-rank p. Applying theorem 2 
yields: 

( )( ) ( )
1

Z A AW AWA A AW
−

+ ′ ′′=                (8) 

( ) ( ) ( )1 1A A A WA AW AW− − ′′ ′=                 (9) 

( ) ( )1 11 .A A A W A A A− −−′ ′ ′=                  (10) 
1.A Z A W+ −′ =                       (11) 

Note that, when m p= , A is invertible and ( ) 1 1Z AWA Z−+ −′= = . 

( ) ( )( ) ( )( ) ( ) ( )2 1, .
Z

d Aa Ab A a b Z A a b a b W a bβ β+
+ −′ ′+ + = − − = − −   □ 

Thus: 
Proposition 2 Let A a ( ),m p  matrix, m p> , of rank p and for 1, ,k q=  , 
1, , ki n=  , ki kiy Ax β= + . The results of LDA of the dataset 

{ }, 1, , , 1, ,ki kx k q i n= =   with the metrics W−1 on p  are the same as those 
of LDA of the dataset { }, 1, , , 1, ,ki ky k q i n= =   with the pseudometrics 

( )Z AWA ++ ′= . 
Applications 
Denote j

ix  the value of the variable jx  for individual i belonging to I, 
1, ,i n=  , 1, ,j p=   and ( )1 p

i i ix x x ′=   the vector of values of ( )1, , px x  
for individual i. Denote ip  the weight of individual i, such that 

1
1

n

i
i

p
=

=∑ . To 
perform a factorial analysis of the dataset { }, 1, ,ix i n=  , the difference be-
tween two individuals i and i' is measured by a distance ( ),d i i′  defined on p  
associated to a metrics M, such that 

( ) ( ) ( )2 , .i i i id i i x x M x x′ ′
′′ = − −                 (12) 

Denote X the ( ),n p  matrix whose element ( ),i j  is j
ix . Denote D the di-

agonal ( ),n n  matrix whose element ( ),i i  is ip . 
Perform a factorial analysis of ( ), ,X M D , for instance principal component 

analysis (PCA) for continuous variables or MCFA for categorical variables or 
MDFA for mixed data. Suppose X of rank p. Denote ( )1 p

j j ju u u ′=   a unit 
vector of the jth principal axis. Denote ( )1

j j j
j nc XMu c c ′= =   the jth principal 

component. Denote U the ( ),p p  matrix ( )1 pu u  and C the ( ),n p  matrix 
( )1 pc c XMU= ; as 1, , pu u  are M-orthonormal, U MU I′ =  and 

for 1, , , i iC XMU X CU i n x Uc′= ⇔ = ⇔ = =         (13) 

for 1, , , .i ii n c U Mx′⇔ = =                (14) 

Using the metrics of intraclass inertia matrix inverse, LDA from C is equiva-
lent to LDA from X. 

Suppose now that the variable 1 1p px x+ = −  is introduced; when px  is the 

https://doi.org/10.4236/am.2018.98065


K. Duarte et al. 
 

 

DOI: 10.4236/am.2018.98065 960 Applied Mathematics 
 

indicator of a modality of a binary variable, 1px +  is the indicator of the other 
modality. Then: 

1 11
1 1

1
1

1

0

0
1

pi
i

p pp
p pi

ip pp
pi

u ux
c

u ux
c

u ux +

              = +              − −     



   








              (15) 

Denote X1 the ( ), 1n p +  matrix whose element ( ),i j  is j
ix . LDA from C 

with the metrics of intraclass inertia matrix inverse is equivalent to LDA from X1 
with the metrics of intraclass inertia matrix pseudoinverse. 

For instance: 
1) If 1, , px x  are continuous variables, LDA from X is equivalent to LDA 

from C obtained by PCA, such as normed PCA, or generalized canonical corre-
lation analysis (gCCA) [13] and MFA which can be interpreted as PCA with 
specific metrics. 

2) If 1, , px x  are indicators of modalities of categorical variables, and if 
MCFA is performed to obtain C, LDA from C with the metrics of intraclass in-
ertia matrix inverse is equivalent to LDA from X with the metrics of intraclass 
inertia matrix pseudoinverse. 

3) Likewise, if 1, , px x  are continuous variables or indicators of modalities 
of categorical variables, and if MDFA [10] is performed to obtain C, LDA from 
C with the metrics of intraclass inertia matrix inverse is equivalent to LDA from 
X with the metrics of intraclass inertia matrix pseudoinverse. In this case, other 
metrics can also be used, such as that of Friedman [14] or that of Gower [15]. 

4. Methodology for Constructing a Score 
4.1. Ensemble Methods 

Consider the problem of predicting an outcome variable y, continuous (in the 
case of regression) or categorical (in the case of classification) from observable 
explanatory variables 1, , px x , continuous or categorical. 

The principle of an ensemble method [16] [17] is to build a collection of N 
predictors and then aggregate the N predictions obtained using: 
• in regression: the average of predictions iy ; 
• in classification: the rule of the majority vote or the average of the estima-

tions of a posteriori class probabilities. 
The ensemble predictor is expected to be better than each of the individual 

predictors. For this purpose [16]: 
• each single predictor must be relatively good, 
• single predictors must be sufficiently different from each other. 

To build a set of predictors, we can: 
• use different classifiers, 
• and/or use different samples (e.g. by bootstrapping, boosting, randomizing 

outputs) [17] [18] [19], 
• and/or use different methods of variables selection (e.g. ascending, stepwise, 
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shrinkage, random) [20] [21] [22] [23], 
• and/or in general, introduce randomness into the construction of predictors 

(e.g. in random forests [24], randomly select a fixed number of variables at 
each node of a classification or regression tree). 

In Random Generalized Linear Model (RGLM) [25], at each iteration, 
• a bootstrap sample is drawn, 
• a fixed number of variables are randomly selected, 
• the selected variables are rank-ordered according to their individual associa-

tion with the outcome variable y and only the top ranking variables are re-
tained, 

• an ascending selection of variables is made using Akaike information crite-
rion (AIC) [26] or Bayesian information criterion (BIC) [27]. 

Tufféry [28] wrote that logistic models built from bootstrap samples are too 
similar for their aggregation to really differ from the base model built on the en-
tire sample. This is in agreement with an assertion by Genuer and Poggi [16]. 
However, Tufféry suggests the use of a method called “random forest of logistic 
models” introducing an additional randomness: at each iteration, 
• a bootstrap sample is drawn, 
• variables are randomly selected, 
• an ascending variables selection is performed using AIC [26] or BIC [27] cri-

teria. 
Note that this method is in fact a particular case of RGLM method. 
Present now the method used in this study to check the stability of the pre-

dictor obtained on the entire learning sample. 

4.2. Method of Construction of an Ensemble Predictor 

The steps of the method for constructing an ensemble predictor are presented in 
the form of a tree (Figure 2). 

At first step, n1 classifiers are chosen. 
At second step, n2 bootstrap samples are drawn and are the same for each 

classifier. 
At third step, for each classifier and each bootstrap sample, n3 modalities of 

random selection of variables are chosen, a modality being defined either by a 
number of randomly drawn variables or by a number of predefined groups of 
correlated variables, which are randomly drawn, inside each of which a variable 
is randomly drawn. 

At fourth step, for each classifier, each bootstrap sample and each modality of 
random selection of variables, one method of selection of variables is chosen, a 
stepwise or a shrinkage (LASSO, ridge or elastic net) method. 

This yields a set of 1 2 3n n n× ×  predictors, which are aggregated to obtain an 
ensemble predictor. 

4.3. Choices Made 

To assess accuracy of the ensemble predictor, the percentage of well-classified is 
currently used. But this criteria is not always convenient, especially in the  
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Figure 2. General methodology for the construction of a score. 

 
present case of unbalanced classes. We decided to use AUC. AUC in resubstitu-
tion being usually too optimistic, we used AUC OOB [29]: for each patient, con-
sider the set of predictors built on the bootstrap samples that do not contain this 
patient, i.e. for which this patient is “out-of bag”, then aggregate the corres-
ponding predictions to obtain an OOB prediction. 

Two classifiers were used: logistic regression and LDA with metrics W−1. Oth-
er classifiers were tested but not retained because of their less good results, such 
as random forest-random input (RF-RI) [24] or QDA. The k-nearest neighbors 
method (k-NN) was not tested, because it was not adapted to this study due to 
the presence of very unbalanced classes with a too small class size. 

1000 bootstrap samples were randomly drawn. 
Three modalities of random selection were retained, firstly a random draw of 

a fixed number of variables, secondly and thirdly a random draw of a fixed 
number of predefined groups of correlated variables followed by a random draw 
of one variable inside each drawn group. The number of variables or of groups 
drawn was determined by optimization of AUC OOB. 

Fourth step did not improve prediction accuracy and was not retained. 

4.4. Construction of an Ensemble Score 

Denote n the total number of patient-months and p the number of variables. 
Denote j

ix  the value of variable jx  for patient-month i, 1, ,i n=  , 
1, ,j p=  . Each patient-month i is represented by a vector ( )1  p

i i ix x x ′=   in 
p . 

4.4.1. Aggregation of Predictors 
In the case of two classes 1Ω  and 0Ω , whose barycenters are respectively de-
noted 1g  and 0g , Fisher linear discriminant function 

( ) ( )11 0
1 1 0 1 12

g gS x x W g g xα β−
′+  ′= − − = + 

 
            (16) 
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can be used as score function. For logistic regression, the following score func-
tion can be used: 

( ) ( )
( )

1
2 2 2

0

|
ln .

|
P X x

S x x
P X x

α β
Ω =

′= = +
Ω =

              (17) 

Remind that, in the case of a multinormal model with homoscedasticity (co-
variance matrices within classes are equal), when ( ) ( )1 0P PΩ = Ω , logistic model 
is equivalent to LDA [17]; indeed: 

( ) ( )
( )

( )
( ) ( ) ( )1 1

2 1 1
0 0

|
ln ln .

|
P X x P

S x S x S x
P X x P

Ω = Ω
= = + =

Ω = Ω
      (18) 

So we used the following method to aggregate the obtained predictors: 
1) the score functions obtained by LDA are aggregated by averaging; denote 

now S1 the averaged score; 
2) likewise the score functions obtained by logistic regression are aggregated 

by averaging; denote S2 the averaged score; 
3) a combination of the two scores, ( )1 21S Sλ λ+ −  is defined, 0 1λ≤ ≤ ; a 

value of λ  that maximizes AUC OOB is retained; denote S0 the optimal score 
obtained by this method. 

If s is an optimal cut-off, the ensemble classifier is defined by:  

If ( )0S x s> , x is classified in 1Ω ;              (19) 

if not, x is classified in 0Ω .                   (20) 

4.4.2. Definition of a Score from 0 to 100 
The variation scale of the score function ( )0S x  was reduced from 0 to 100 us-
ing the following method. Denote: 

( )0 0 0 0 0
1

.
p

j j

j
S x x xα β α β

=

′= + = +∑                   (21) 

Denote for 1, ,j p=  : 

( )0 11
max minj j j

j i ii ni n
P x xα

≤ ≤≤ ≤
= −                     (22) 

and 

( )0 111 1
max min .

p p
j j j

j i ii ni nj j
P P x xα

≤ ≤≤ ≤= =

= = −∑ ∑                (23) 

Let jm  the minimal value of the variable jx  if 0 0jα > , or its maximal val-
ue if 0 0jα < . 

Denote ( )S x  the “normalized” score function, with values from 0 to 100, 
defined by: 

( ) ( )0
1

100 p
j j j

j
S x x m

P
α

=

= −∑                   (24) 

( )
( )

0

1 0 1 11

100
max min

j j jp

p k k k
j i n i i n ik

x m

x x

α

α= ≤ ≤ ≤ ≤=

−
=

−
∑
∑

           (25) 
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xα β′= + , with 

01

1
0

1

0

100

100
.

100

p j j
j

p p

m
P

P

P

α
β

αα

α
α

=

 − 
  

   
   =   
       

  
 

∑





          (26) 

4.4.3. Measure of Variables Importance 
Explanatory variables are not expressed in the same unit. To assess their impor-
tance in the score, we used “standardized” coefficients, multiplying the coefficient 
of each variable in the score by its standard deviation. These coefficients are 
those associated with standardized variables and are directly comparable. For all 
variables, the absolute values of their standardized coefficient, from the greatest 
to the lowest, were plotted on a graph. The same type of plot was used for groups 
of correlated variables, whose importance is assessed by the sum of absolute val-
ues of their standardized coefficients. 

4.4.4. Risk Measure by an Odds-Ratio 
Define a risk measure associated to a score s by an odds-ratio ( )1OR s : 

( ) ( )
( )

( )
( )

( )
( )

( )
( )1

1| 0 | 1
.

0 | 1 | 0 1
P Y S s P Y P S s Y Se s

OR s
P Y S s P Y P S s Y Sp s

= > = > =
= = =

= > = > = −
    (27) 

An estimation of ( )1OR s , also denoted ( )1OR s , is 01

0 1

Nn
n N
×  with  

{ } { }#kn S s Y k= > =  and { }#kN Y k= = , 0,1k = . 

Note that: 
• ( )1OR s  decreases when ( )Se s  decreases and ( )Sp s  is constant. In prac-

tice, the decrease will be much smaller when there are many observations; 
 ( )1OR s  is not defined when ( )Sp s  is equal to 1. 

For these reasons, the following definition can also be used: 

( )
( )

( )
1

2 1: 
max .

t s OR t
OR s OR t

≤ <∞
=                   (28) 

Note that 1OR  is the slope y/x of the line joining the origin to the point 
( ),x y  of the ROC curve. In the case of an “ideal” ROC curve, supposed conti-
nuous above the diagonal line, assuming that there is no vertical segment in the 
curve, this slope increases from point ( )1,1 , corresponding to the minimal value 
of score, to point ( )0,0 , corresponding to its maximal value; the case of a ver-
tical segment (Se decreases, Sp is constant), occurring when the score of a patient 
with event is between those of two patients without event, is particularly visible 
in the case of a small number of patients and also justifies the definition of 2OR , 
whose curve fits that of 1OR . 

For very high score values, when n0 or n1 are too small, the estimation of 1OR  
is no longer reliable. A reliability interval of the score could be defined, depend-
ing on the values of n0 and n1. 
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5. Results 
5.1. Pre-Processing of Variables 
5.1.1. Winsorization 
To avoid problems related to the presence of outliers or extreme data, all conti-
nuous variables were winsorized using the 1st percentile and the 99th percentile of 
each variable as limit values [30]. We chose this solution because of the large 
imbalance of the classes (317 patients with event against 21,065 with no event, so 
there is a ratio of about 1 to 66). The elimination of extreme data would have led 
to decrease the number of patients with event. 

5.1.2. Transformation of Variables 
Among qualitative variables, two are ordinal: the NYHA class with 4 modalities 
and the number of myocardial infarction (no. MI) with 5 modalities. In order to 
preserve the ordinal nature of these variables, we chose to use an ordinal encod-
ing. For NYHA, we therefore associated 3 binary variables: NYHA ≥ 2, NYHA ≥ 
3 and NYHA ≥ 4. In the same way, for the no. MI, we considered 4 binary va-
riables: no. MI ≥ 2, no. MI ≥ 3, no. MI ≥ 4 and no. MI ≥ 5. 

On the other hand, continuous variables were transformed in the context of 
logistic regression. For each continuous variable, a linearity test was performed 
using the method of restricted cubic splines with 3 knots [31]. A cubic spline re-
stricted with 3 knots is composed of a linear component and a cubic component. 
Linearity testing is to test, under the univariable logistic model, the nullity of the 
coefficient associated with the cubic component. To do this, we used the likelih-
ood ratio test. The results of linearity tests are given in Table 1 (p-value 1). 

 
Table 1. Linearity tests and transformation of continuous variables. 

Variable p-value 1 Transformation function ( )f x  p-value 2 

Hemoglobin 0.090   

Hematocrit 0.007 2x−  1.00 

ePVS 0.69   

Creatinine 0.21   

eGFR Cockroft-Gault <0.0001 ( )ln x  0.40 

eGFR MDRD <0.0001 0.5x−  0.79 

eGFR CKD-EPI 0.005 ( )ln x  0.90 

Sodium 0.056   

Potassium <0.0001 ( )24.6x −  0.47 

Heart rate <0.0001 ( )260x −  0.91 

Systolic BP <0.0001 ( )2140x −  0.34 

Diastolic BP <0.0001 ( )284x −  0.49 

Mean BP <0.0001 ( )2102x −  0.66 

Weight 0.090   

BMI 0.060   

Age 0.64   
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At 5% level, linearity was rejected for 9 of 16 continuous variables. For each of 
these 9 variables, we represented graphically the relationship between the logit 
(natural logarithm of the ratio probability of event/probability of non-event) and 
the variable. An example of graphical representation is given for potassium: we 
observe a quadratic relationship between the logit and the potassium (Figure 3). 
In agreement with the relationship observed, we applied a simple, monotonous 
or quadratic transformation function to each of the 9 variables. The transforma-
tion function applied to each variable is given in Table 1. 

For hematocrit and the three variables of eGFR, the relationship is clearly 
monotonous. So we considered some simple monotonic transformation func-
tions as ( ) af x x=  with { }2, 1, 0.5,0.5,1,2a∈ − − −  or ( ) ( )lnf x x= , then we 
retained for each variable the transformation for which the likelihood under un-
ivariable logistic model was maximal (minimal p-value). 

For other variables not checking linearity, namely potassium, the three blood 
pressure measures (systolic, diastolic and mean), and heart rate, the relationship 
between the logit and the variable was rather quadratic. We therefore applied a 
quadratic transformation function ( )2*X k−  with k∗  an optimal value de-
termined by maximizing likelihood under univariable logistic model. To com-
pare, we also used the criterion of maximal AUC to determine an optimal value. 
These results are presented in Table 2. Notice that the optimal values deter-
mined by the two methods are the same for systolic BP, diastolic BP and heart 
rate and are very close for potassium and mean BP. 

Also note that the transformation applied to potassium allows to take into ac-
count both hypokalemia and hyperkalemia, two different clinical situations 
pooled here that may increase the risk of death and/or hospitalization measured 
by the score. 

 

 
Figure 3. Relationship between potassium and logit of probability of event. 
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Table 2. Quadratic transformations. 

Variable 
“Raw” variable 

X 

Criterion 1 Maximizing  

likelihood for ( )2*X k−  

Criterion 2 Maximal  

AUC for ( )2*X k−  

 AUC k* AUC k* AUC 

Systolic BP 0.5818 140 0.5995 140 0.5995 

Diastolic BP 0.5834 84 0.5970 84 0.5970 

Mean BP 0.5915 102 0.6091 101 0.6094 

Potassium 0.5312 4.6 0.5665 4.7 0.5676 

Heart rate 0.6473 60 0.6521 60 0.6521 

 
To verify that the transformation of the variables was good, a linearity test for 

each transformed variable was performed according to the previously detailed 
principle. All tests are not significant at the 5% level (see Table 1, p-value 2). 

5.2. Ensemble Score 
5.2.1. Ensemble Score by Logistic Regression 
As a first step, we applied our methodology with the following parameters: 
 use of a single classification rule, logistic regression ( 1 1n = ), 
 draw of 1000 bootstrap samples ( 2 1000n = ), 
 random selection of variables according to a single modality ( 3 1n = ).  

Three modalities for the random selection of variables were defined: 
• 1st modality: random draw of m variables among 32, 
• 2nd modality: random draw of m groups among 18, then one variable from 

each drawn group, 
• 3rd modality: random draw of m groups among 24, then one variable from 

each drawn group. 
The groups of variables considered for each modality are presented in Table 3. 

For modalities 2 and 3, we formed groups of variables based on correlations be-
tween variables. For the second modality, we gathered for example in the same 
group hemoglobin, hematocrit and ePVS because of their high correlations. For 
the third modality, the same groups were used, except for the two variables 
linked to hospitalization for HF, the four variables linked to the no. MI and the 
three variables related to the NYHA class, for which each binary variable was 
considered as a single group. 

For each modality, an ensemble score was built for all possible values of m and 
the one that gave maximal AUC OOB was selected. In Table 4 are reported the 
results obtained for each modality with the optimal m. The best result was ob-
tained for the third modality, with AUC OOB equal to 0.8634. 

The ensemble score by logistic regression, denoted ( )2S x , obtained by aver-
aging the three ensemble scores that we constructed, gave slightly better results, 
with AUC OOB of 0.8649. 

5.2.2. Ensemble Score by LDA for Mixed Data 
The same methodology was used by simply replacing the classification rule (lo-
gistic regression) by LDA for mixed data and keeping the same other settings.  
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Table 3. Composition of groups of variables. 

Variables Modality 1 Modality 2 Modality 3 

Systolic BP - 

Blood pressure Blood pressure Diastolic BP - 

Mean BP - 

Heart rate - - - 

Weight - 
Obesity Obesity 

BMI - 

NYHA ≥ 2 - 

NYHA 

- 

NYHA ≥ 3 - - 

NYHA ≥ 4 - - 

Age - - - 

Gender - - - 

Caucasian - - - 

Hemoglobin - 

Hematology Hematology Hematocrit - 

ePVS - 

Creatinine - 

Renal function Renal function 
eGFR Cockroft-Gault - 

eGFR MDRD - 

eGFR CKD-EPI - 

Potassium - - - 

Sodium - - - 

Hypertension - - - 

Diabetes - - - 

Hosp. for HF - Previous hosp.  
for HF 

- 

Hosp. for HF the previous month - - 

Hosp. for CV cause the previous month - - - 

Hosp. for other CV cause the previous month - - - 

Hosp. for non CV cause the previous month - - - 
No. MI ≥ 2 - 

No. MI 

- 
No. MI ≥ 3 - - 
No. MI ≥ 4 - - 
No. MI ≥ 5 - - 

 
Table 4. Results obtained by logistic regression. 

Parameters AUC in resubstitution AUC OOB 
Modality 1 m = 19 0.8716 0.8616 
Modality 2 m = 14 0.8688 0.8611 
Modality 3 m = 8 0.8691 0.8634 
Ensemble score 0.8728 0.8649 

 
Again, for each modality, we searched the optimal m parameter. The obtained 
results are presented in Table 5. 

As for logistic regression, the best results were obtained for the third modality, 
with AUC OOB equal to 0.8638. 
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Table 5. Results obtained by LDA for mixed data. 

Parameters AUC in resubstitution AUC OOB 
Modality 1 m = 12 0.8679 0.8614 
Modality 2 m = 5 0.8673 0.8631 
Modality 3 m = 7 0.8690 0.8638 
Ensemble score 0.8707 0.8654 

 
The ensemble score by LDA, denoted ( )1S x , yielded better results with AUC 

OOB equal to 0.8654. 

5.2.3. Ensemble Score Obtained by Synthesis of Logistic Regression and 
LDA 

The final ensemble score denoted ( )0S x , obtained by synthesis of the two en-
semble scores ( )1S x  and ( )2S x  presented previously, provided the best re-
sults with AUC equal to 0.8733 in resubstitution and 0.8667 in OOB. 

This ensemble score corresponds to the one obtained by applying our metho-
dology with the following parameters: 
• two classification rules are used, logistic regression and LDA for mixed data 

( 1 2n = ), 
• 1000 bootstrap samples are drawn ( 2 1000n = ), 
• m variables are randomly selected according to three modalities ( 3 3n = ).  

The scale of variation of the score function ( )0S x  was reduced from 0 to 100 
according to the procedure described previously. We denote this “normalized” 
score ( )S x . 

In Table 6, we present the “raw” and “standardized” coefficients associated 
with each of the variables in the score function ( )0S x  and the “normalized” 
score function ( )S x . 

5.2.4. Importance of Variables in the Score 
To have a global view of the importance of the variables in the “normalized” 
score, we represented on a graph the absolute value of standardized coefficient 
associated with each variable, from the largest value to the smallest (see Figure 
4). Note that the most important variables are heart rate, NYHA class ≥ 3 and 
history of hospitalization for HF in the previous month. On the other hand, va-
riables such as weight, no. MI ≥ 5 or BMI do not play a large part in the presence 
of others. 

The same type of graph was made to represent the importance of the groups 
of variables in configuration 2 defined by the sum of the absolute values of the 
“standardized” coefficients associated with the variables of the group, from the 
largest sum to the smallest (see Figure 4). Note that the two most influential 
groups are “NYHA” (NYHA ≥ 2, NYHA ≥ 3 and NYHA ≥ 4) and “History of 
hospitalization for HF” (hospitalization for HF in the previous month and hos-
pitalization for HF during life). Three important groups follow: “Hematology” 
(ePVS, hemoglobin, hematocrit), “Heart rate” and “Renal function” (creatinine 
and three formulas of eGFR). The least important groups of variables are “Obes-
ity” (weight, BMI) and “Gender”. 
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Table 6. Ensemble score. 

Variables Ensemble score ( )0S x  Ensemble score “normalized” ( )S x  

 coefficient 
Standardized 

coefficient 
coefficient 

Standardized 
coefficient 

Constant −0.210 −0.210 44.60 44.60 

Hemoglobin −0.0580 −0.0871 −0.478 −0.717 

Hematocrit−2 314.00 0.0442 2590.00 0.364 

ePVS 0.131 0.107 1.07 0.877 

Creatinine 0.00349 0.0964 0.0287 0.794 

Ln (eGFR Cockroft-Gault) −0.0940 −0.0396 −0.774 −0.326 

eGFR MDRD−0.5 −0.892 −0.0183 −7.34 −0.151 

Ln(eGFR CKD-EPI) −0.175 −0.0590 −1.44 −0.486 

Sodium −0.0232 −0.0861 −0.191 −0.709 

(Potassium-4.6)2 0.301 0.0889 2.48 0.732 

(Heart rate-60)2 0.000696 0.221 0.00572 1.82 

(Systolic BP-140)2 0.000125 0.0729 0.00103 0.600 

(Diastolic BP-84)2 0.0000985 0.0220 0.000810 0.181 

(Mean BP-102)2 0.000201 0.0545 0.00165 0.448 

Weight 0.0000258 0.000374 0.000212 0.00308 

BMI 0.00196 0.00844 0.0161 0.0695 

Age 0.00449 0.0506 0.0370 0.416 

Caucasian −0.162 −0.0455 −1.33 −0.374 

Male 0.0434 0.0195 0.357 0.161 

Hypertension 0.136 0.0665 1.12 0.547 

Diabetes 0.0904 0.0422 0.744 0.347 

Hosp. for HF 0.549 0.175 4.52 1.44 
Hosp. for HF the  
previous month 

1.53 0.185 12.60 1.52 

Hosp. for CV cause the 
previous month 

0.403 0.168 3.31 1.38 

Hosp. for non-CV cause 
the previous month 

0.361 0.0486 2.97 0.400 

Hosp. for other CV cause 
the previous month 

0.104 0.0205 0.852 0.169 

No. MI ≥ 2 0.0840 0.0377 0.692 0.310 

No. MI ≥ 3 0.118 0.0323 0.973 0.266 

No. MI ≥ 4 0.242 0.0342 1.99 0.281 

No. MI ≥ 5 0.0443 0.00370 0.365 0.0304 

NYHA ≥ 2 0.309 0.150 2.54 1.23 

NYHA ≥ 3 0.612 0.194 5.04 1.60 

NYHA ≥ 4 1.65 0.142 13.60 1.16 

5.2.5. Risk Measure by an Odds-Ratio 
We represented the variation of 0n , 1n , ( )Se s , ( )1 Sp s− , ( )1OR s  and 

( )2OR s  according to the score s (Table 7). For score values 49.1933s > , 1n  
is less than or equal to 30. Thus, beyond this threshold value 49.1933, 1OR  is 
no longer very reliable. We therefore defined as reliability interval of the 1OR  
and 2OR  functions [ ]0;49.1933 . 
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Figure 4. Importance of variables and groups of variables. 

 
Table 7. Variation of 0n , 1n , ( )Se s , ( )1 Sp s− , ( )1OR s  and ( )2OR s  according to 

the values of score s. 

s 0n  1n  ( )Se s  ( )1 Sp s−  ( )1OR s  ( )2OR s  

s* = 23.7094 4527 250 0.7918 0.2149 3.6844 3.6844 

11.8489 19683 317 1.0000 0.9344 1.0702 1.0702 

13.7320 17684 316 0.9968 0.8395 1.1874 1.1874 

15.1105 15684 316 0.9968 0.7446 1.3388 1.3388 

16.3630 13686 314 0.9905 0.6498 1.5245 1.5245 

17.6044 11689 311 0.9811 0.5549 1.7679 1.7679 

18.9050 9697 303 0.9558 0.4604 2.0762 2.0762 

20.4525 7709 291 0.9180 0.3660 2.5081 2.5081 

22.3007 5729 271 0.8549 0.2720 3.1428 3.1428 

24.7670 3766 234 0.7382 0.1788 4.1278 4.1278 

28.8573 1822 178 0.5615 0.0865 6.4884 6.4884 

33.2656 872 128 0.4038 0.0414 9.7431 9.8363 

38.2403 414 86 0.2713 0.0197 13.7706 13.7706 

49.1933 70 30 0.0978 0.0033 29.4283 31.5217 

55.1424 28 22 0.0694 0.0014 50.4112 50.4112 

58.0352 14 16 0.0505 0.0007 70.8812 74.7575 

 
We represented the variation of odds-ratio 1OR  and 2OR  in this reliability 

interval (Figure 5). By reading the graph, for a patient with a score of 40 for  

example, ( )
( )

1| 40
0 | 40

P Y S
P Y S

= >
= >

 is about 15 times higher than ( )
( )

1
0

P Y
P Y

=
=

. 

6. Conclusions and Perspectives 

In this article, we presented a new methodology for constructing a short-term 
event risk score in heart failure patients, based on an ensemble predictor built 
using two classification rules (logistic regression and LDA for mixed data), 1000 
bootstrap samples and three modalities of random selection of variables. This 
score was normalized on a scale from 0 to 100. AUC OOB is equal to 0.8667. Note  
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Figure 5. Risk measure by an odds-ratio. 

 
that an important variable such as potassium that does not appear in other 
scores (as SPIM risk score) is taken into account in this score. 

Moreover, we defined a measure of the importance of each variable and 
each group of variables in the score and defined an event risk measure by an 
odds-ratio. 

Due to the nature of the data available (data obtained from the EPHESUS 
study), we had to define the short term to 30 days in order to have enough pa-
tients with HF event. It would be better to have data of patients with shorter in-
tervals, in order to have data the closest possible of an event and eventually im-
prove the quality of the score. When such data will be available, it will be inter-
esting to apply the same methodology to construct a new score. 

Furthermore, we proved a property of linear discriminant analysis for mixed 
data. 

Finally, this methodology can be adapted to the case of a data stream. Suppose 
that new data for heart failure patients arrives continuously. Data can be allo-
cated to bootstrap samples using Poisson bootstrap [32]. The coefficients of each 
variable in each predictor based on logistic regression or binary linear discrimi-
nant analysis can be updated online using a stochastic gradient algorithm. Such 
algorithms are presented in [33] for binary LDA and [34] for logistic regression; 
they use online standardized data in order to avoid a numerical explosion in the 
presence of extreme values. Thus the ensemble score obtained by averaging can 
be updated online. To the best of our knowledge, it is the first time that this 
problematics is studied in this context. 
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