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Abstract 
We are studying the motion of a random walker in generalised d-dimensional 
continuum with unit step length (up to 10 dimensions) and its projected one 
dimensional motion numerically. The motion of a random walker in lattice or 
continuum is well studied in statistical physics but what will be the statistics of 
projected one dimensional motion of higher dimensional random walker is 
yet to be explored. Here in this paper, by addressing this particular type of 
problem, it shows that the projected motion is diffusive irrespective of any 
dimension; however, the diffusion rate is changing inversely with dimensions. 
As a consequence, it can be predicted that for the one dimensional projected 
motion of infinite dimensional random walk, the diffusion rate will be zero. 
This is an interesting result, at least pedagogically, which implies that though 
in infinite dimensions there is diffusion, its one dimensional projection is mo-
tionless. At the end of the discussion we are able to make a good comparison 
between projected one dimensional motion of generalised d-dimensional 
random walk with unit step length and pure one dimensional random walk 
with random step length varying uniformly between −h to h where h is a “step 
length renormalizing factor”. 
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1. Introduction 

The basis of random walk theory can be described by the irregular motion of in-
dividual pollen particle, famously studied by botanist Brown (1828), now known 
as Brownian motion. It is somewhat quite surprising that it was only at the be-
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ginning of the twentieth century that random walk was described in the litera-
ture but its application is widely spread all over in nature starting from move-
ment of animals, micro-organisms [1], cell migration [1], motion of reagent 
molecules in a solution [2], process of polymerization [3] [4] to today’s stock 
prices [5]. The absorbing phase transition in a conserved lattice gas with random 
neighbor particle hopping [6], quenched averages for self avoiding walks [7] on 
random lattice is also studied. In biology and real life random walk problem has 
a great importance. Apart from opening and closing of cell membrane channels 
[8] it has also a great importance on cell migration leading blood vessel growth 
(angeogenesis) [1]. Very recently the first passage property [5] of a random 
walker has great importance in various aspects; for example, fluorescence 
quenching [5], in which light emission by a fluorescent molecule stops when it 
reacts with a quencher; integrate-and-fire neurons [5], in which a neuron fires 
only when a fluctuating voltage level first reaches a specified level; and the ex-
ecution of buy/sell orders when a stock price [5] first reaches a threshold. The 
statistics of Pearson walker in two dimensions for shrinking step size and the 
transition of the endpoint distribution by varying the initial step size are studied 
in [9]. Studying random walk in lattice (or continuum) with constant step length 
is an age old problem. But how does this motion get affected if the walker be-
comes tired gradually is mentioned in [10]. Random walk for randomly varying 
step length and its return probability have been studied recently [11]. 

Nowadays random walk in higher dimensions is a challenging problem. Study 
of planer motion of a random walker was started with Pearson [12]. Rayleigh 
was apparently the first to have been study random walk in 3 dimensions 
(known as random flight) [13]. Then random walk in higher dimensions has 
been studied by G.N. Watson [14]. Arithmetic properties of short uniform ran-
dom walk in arbitrary dimensions with probability densities in the case of up to 
five steps have been studied in [15]. Diffusion limits of the Random walk in 
higher dimensions by Metropolis algorithm has already been calculated [16]. In 
the classic paper in 1921, Poyla proved that a simple symmetric random walk on 

dZ  was recurrent for 2d ≤  and transient otherwise [17]. Recurrence relation 
for arbitrary dimensions has been studied recently [18]. As an application of all 
these, multidimensional random walk has been studied in polymer with an em-
phasis on natural renormalised renewal structure [19] and in probabilistic Road 
maps for path planning in higher dimensional configuration spaces [20]. 

The study of random walk in higher dimensional continuum and its projected 
one dimensional motion is also an interesting field of research. In this regard it 
is to be mentioned that, though in reality we are mainly concerned about 1, 2 
and 3 dimensions (d), the problem is extended to higher dimensions for peda-
gogical interest and to gain a generalised concept about the statistics of random 
walk problem irrespective of any dimension. In the paper [21] Boguna, Porra, 
Masoliver have generalised the idea of persistent random walk in d-dimensions, 
to show how the telegrapher equation is modifying. They also discussed that 
projected one dimensional motion of higher dimensional persistent random 
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walk may open a new way to address the problem of light propagation through 
thin slabs. But statistical properties of simple random walk in continuum irres-
pective of any dimension and its projected one dimensional motion are yet to be 
explored. In this context it is to be mentioned that according to our knowledge 
in standard textbooks of statistical mechanics one, two and three dimensional 
random walk are exactly solvable. So we address that the study of projected mo-
tion may open a new way to solve the random walk problem analytically irres-
pective of any dimension. Here, in this paper addressing this particular problem 
we have tried to find out the following answers computationally. 

1) What are the characteristics of projected one dimensional motion of gene-
ralised d-dimensional random walk with unit step length? 

2) Is it diffusive? 
3) And finally, can we construct a pure one dimensional random walk with 

which projected motion of generalised d-dimensional random walk can be 
compared? 

The point (3) is important in the context that if we can get equivalent statis-
tical properties of projected motion from pure one dimensional random walk 
which is exactly solvable then the exact solution of higher dimensional random 
walk may be possible. 

In this study by pure 1 dimensional random walk we wanted to say random 
walk in 1 dimensional continuum and projected random walk of higher dimen-
sions means 1 dimensional projection of higher dimensional random walk. The 
numerical results of detailed statistical analysis of random walk in dimensions 1, 
2, 3, 4, 5, 6, 7, 8, 9, 10 and its projected motion are reported here. The manu-
script is organised as follows: In the next section (Section (2)) the model and 
numerical results observed from the numerical simulation are reported and the 
paper ends with a concluding remarks mentioned in Section (3). 

2. Model and Results 

For simple random walk in 2 dimensional regular lattice a random walker can 
move in any one of the four directions (up, down, right, left) with equal proba-
bility. But if we consider random walker moving in a two dimensional conti-
nuum, the walker has infinitely possible directions to choose with equal proba-
bility and equal step length. Here in this paper, we have studied random walk in 
generalised d-dimensional continuum with unit step length and its projected one 
dimensional motion. Here, we have modeled d-dimensional random walk in 
such a way so that the magnitude of step length in the corresponding dimen-
sions is unity irrespective of any direction and it is constant of motion. If the 
step length is unity, then the maximum value of the magnitude of projected step 
length in any co-ordinate is 1 and the minimum value is 0 and every co-ordinate 
has only two possible directions which are equally probable to choose (we have 
used here Cartesian co-ordinate system, as for example in 3 Dimensions, the 
co-ordinates are 1 2 3, ,x x x ) So including both magnitude and direction the pro-
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jected step length in every co-ordinate varies between −1 to +1. The formalism 
of random walk in generalised d-dimensional continuum is as follows. 

Suppose we are considering random walk in d-dimensional continuum with 
unit step length. Let, the projected step lengths in each coordinate are 
( 1 2 3, , , , dr r r r′ ′ ′ ′

 ). Then the step length in d-dimensions is: 

( ) ( ) ( )22 2
1 2 dR r r r′ ′ ′ ′= + + +

                  (1) 

But this not normalised, so the actual projected step length in every 
co-ordinate so that the step length in d-Dimensions is unity are: 

31 2
1 2 3, , , , d

d
r rr rr r r r

R R R R
′ ′′ ′

= = = =
′ ′ ′ ′

                   (2) 

Now the step length in d-dimensions becomes 

2 2 2
1 2 1dR r r r= + + + =                     (3) 

The mathematical rule for a random walker moving in generalised 
d-dimensional continuum can be expressed as: 

( ) ( )
( ) ( )
( ) ( )

( ) ( )

1 1 1

2 2 2

3 3 3

1

1

1

1d d d

x t x t r

x t x t r

x t x t r

x t x t r

+ = +

+ = +

+ = +

+ = +



                   (4) 

where ( ) ( ) ( )( )1 2, , , dx t x t x t  are the positions of the random walker at time t 
and ( ) ( ) ( )( )1 21 , 1 , , 1dx t x t x t+ + +  are the the positions of the random walker 
in the next time step, ( )1 2 3, , , , dr r r r  are the projected step lengths in corres-
ponding coordinates varying between −1 to 1 so that the step length in corres-
ponding dimensions is unity. 

We have classified this method as vector method for generalized d-dimensional 
random walk which can be well understood by selecting some points randomly 
on the surface of a d-dimensional hypersphere of unit radius. 

Now we know random walk is purely diffusive. But still for verification we 
have calculated mean square displacement 2S  for the dimensions (1, 2, 3, 4, 
5, 6, 7, 8, 9, 10) which is proportional to time (t) that reveals diffusive behavior 
(Figure 1). The distribution of absolute displacement after time steps 
( 1000tN = ) in d-dimensional continuum is plotted in (Figure 2) where it is 
seen that the distributions are non-monotonic and unimodal and as we increase 
the dimension, the most probable value i.e. maximum probability of finding the 
walker at a distance ( mS ) from the starting point is shifting towards higher val-
ue. 

Now the question is what are the properties of the projected motion of gene-
ralised d-dimensional random walk. So here we have studied the distribution of 
displacement (after 1000tN =  steps) of one dimensional projection of higher 
dimensional random walk (2 dimensions to 10 dimensions) (in Figure 3).  
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Figure 1. Mean-square-displacement ( )2S  versus time (t) is plotted for 1, 2, 3, 4, 5, 6, 

7, 8, 9, 10 dimensions. Here number of samples Ns = 100,000. 
 

 
Figure 2. Distribution of absolute displacement P(s) after 1000 time steps (Nt = 1000) for 
d-dimensional (d = 2, 3, 4, 5, 6, 7, 8, 9, 10 dimensions) random walk with unit step length. 
here Ns = 100,000. 
 
From this figure it is observed that all the distributions for projected motion are 
Gaussian with zero mean but the widths are getting sharper and sharper as we 
increase the dimensions. From Figure 4 it is observed that projected mean 
square displacement 2x  of higher dimensions (2, 3, ..., 10) is proportional to 
time that reveals pure diffusive nature but the slope of the graphs i.e. diffusion 
rates ( 2d dc x t= ) are different for different dimensions. So we have plotted c  
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Figure 3. Distribution of displacement of 1 dimensional projection of d-dimensional 
random walk (d = 2, 3, 4, 5, 6, 7, 8, 9, 10 dimensions) with unit step length and 
Distribution of displacement for pure one dimensional random walk with unit step length 
after the time step Nt = 1000 for Ns = 100,000. Here it is seen that as dimensions are 
increasing the distributions are getting sharper and sharper. 
 

 

Figure 4. Mean-square-displacement ( )2
1x  of 1 dimensional projection of d-dimensional 

random walk (d = 2, 3, 4, 5, 6, 7, 8, 9, 10 dimensions) versus time t for Ns = 100,000. Here 
it is seen that as we increase the dimension, the slope of the graph i.e. diffusion rate 
decreases. 
 
versus dimension which shows that c varies inversely with dimension (d) ( Fig-
ure 5). 
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Figure 5. Diffusion rate (c) of 1 dimensional projection of d-dimensional random walk (d 
= 2, 3, 4, 5, 6, 7, 8, 9, 10 dimensions) versus dimensions (d). The dotted line is 
( ) 1f x x= . 

 

1c
d

=                               (5) 

From this dependence of c on d it can be predicted that in case of infinite di-
mensions c goes to “0”. This is an interesting result at least pedagogically which 
can be well interpreted as, though there is a motion in infinite dimensions, but 
its one dimensional projection is motionless. 

In the following table numerical values (observed from simulation) of Diffu-
sion rate of projected motion corresponding to dimensions (2 to 10 dimension) 
are mentioned: 
 

 
 

From the above analysis we get some similarities and dissimilarities between 
projected motion of generalised d-dimensional random walk with unit step 
length and pure 1 dimensional random walk with unit step length. 
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1) The distribution of displacement for projected motion is Gaussian like pure 
1 dimensional random walk with zero mean but the width of the distribution is 
not similar rather it is decreasing as the dimension is increasing (Figure 6). 

2) The mean-square displacement of projected motion ( )2x  is proportion-
al to time i.e. diffusive like pure 1 dimensional random walk but the diffu-
sion-rate (c) is not same rather decreasing inversely as we increase the dimen-
sion. 

Now the question is: is there any generalized one dimensional random walk 
from which we can get similar statistical properties (diffusion rate, distribution 
of displacements) of the projected motion of higher dimensional random walk 
with unit step length? The answer can be given by the following analysis. 

From mathematical formalism (discussed above) it is clear that projected mo-
tion of higher dimensions (2, 3, 4, ..., d) is a random walk with random step 
length varying between −1 to +1. But Figure 3 shows that distribution of dis-
placement of projected motion after 1000tN =  time steps are getting sharper 
and sharper as we increase the dimensions. So the possible reason for the distri-
butions getting sharper and sharper may be the decrease of magnitude of pro-
jected step length r1 as d increases. From this consideration we can say that, the 
magnitude of r1 changes along with dimensions and the boundary values of r1 is 
no longer −1 to +1 rather it is different for different dimensions. So the ultimate 
question is how we can modify the pure one dimensional step length so that we 
can get equivalent statistical properties of projected motion from pure one di-
mensional random walk? In this regard we have introduced a factor h named as 
step length renormalizing factor and multiplied r1 by this factor. Now r1 varies 
between −h to +h instead of −1 to +1 and the value of h is different for different 
 

 
Figure 6. Distribution of displacement for 1 dimensional projection of 2 and 6 
dimensions and pure one dimensional random walk for Ns = 100,000, Nt = 1000. 
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dimensions. For every dimension we choose h in such a way so that the average 
mismatching between two distributions (distribution of displacement after Nt 
times for projected motion and pure one dimensional motion) is minimum. We 
define the average mismatching factor by following way. 

Let, the probability density for pure 1 dimensional random walk is ( )1DP x  
and probability density for projected motion is ( )dDpP x  then the average mis-
matching factor Q is defined as 

( ) ( )( )2
1dDp D

x
P x P x

Q
M

−
=
∑

                 (6) 

Q is obviously function of h i.e. ( )Q Q h=  and M is the number of points 
over which we are averaging. But estimating the value of h from (in Figure 7) is 
not precise as the minima is smeared. So we have plotted ( )1 Q h  which is 
named as average overlapping factor, versus h where maxima is sharp and from 
this maxima we have estimated the value of h for every dimension precisely. For 
these values of h corresponding to every dimension, the distributions (men-
tioned earlier) are almost similar i.e. overlap maximally (Figure 8). In this con-
text it is to be mentioned that this definition of overlapping factor is not valid for 
100 percent accuracy (i.e. if difference between ( )dDpP x  and ( )1DP x  is “0”, 
then ( )1 Q h  goes to ∞ ). 
 

 
Figure 7. Average mismatching factor (Q) versus step length renormalizing factor (h) in 
6 dimensions for Ns = 100,000, Nt = 1000. 
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Now in Figure 9 it is seen that the distribution of displacement after time 
steps Nt for 1 dimensional projection of 6 dimensional random walk is almost 
similar with pure 1 dimensional random walk with random step length multip-
lying by h where h = 0.706. Figure 10 proves that estimated value of h is inva-
riant of Nt. We have plotted 2x  versus Nt which is almost similar. So the dif-
fusive nature and the diffusion rate are also similar for these two motions (in 
Figure 11). 

Let us calculate the value of h in other dimensions in the same way. 
In the following table numerical values (observed from simulation) of Step 

length renormalizing factor corresponding to dimensions (2 to 10 dimensions) 
are mentioned. 
 

 
 

Here in this table it is seen that for all dimensions 1h ≤  but in case of 2 di-
mensions it is 1.24 which is greater than 1 (Figure 12). It is a surprising result in 
 

 
Figure 8. Average overlapping factor (1/Q) (y axis in the graph) versus step length 
renormalizing factor (h) in 6 dimensions for Ns = 100,000, Nt = 1000. Here it is seen that 
the average overlapping factor is maximum for h = 0.706 incase of 6 dimensions. 
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Figure 9. Distribution of displacement of 1 dimensional projection of 6 dimensional 
random walk with unit step length and distribution of displacement of pure one 
dimensional random walk with random step length varying uniformly between −h to h 
where h = 0.706 for Ns = 100,000, Nt = 1000. Here it is seen that the two distributions 
overlap maximally for the estimated value of h. 
 

 
Figure 10. Distribution of displacement of 1 dimensional projection of 6 dimensional 
random walk with unit step length and distribution of displacement of pure one 
dimensional random walk with random step length varying uniformly between −h to h 
where h = 0.706 for Ns = 100,000, Nt = 1000 and Nt = 10,000. Here it is seen that 
estimated value of h is invariant of Nt. 
 
the context that, as the walker moves with unit step length in two dimensions 
then its projected step length should be less than or equal to 1. But when we are  
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Figure 11. Diffusion of 1 dimensional projection of 6 dimensional random walk with unit 
step length and pure 1 dimensional random walk with random step length varying 
uniformly between −h to h where h = 0.706 for Ns = 100,000. 
 

 
Figure 12. Distribution of displacement of 1 dimensional projection of 2 dimensional 
random walk with unit step length and distribution of displacement of pure one 
dimensional random walk with random step length varying uniformly between −h to h 
where h = 1.241 for Ns = 100,000, Nt = 1000. Here it is seen that the two distributions are 
almost same. 
 
modifying the pure one dimensional step length so that we can get equivalent 
statistical properties for projected motion from pure one dimensional motion 
then the multiplying factor h is greater than 1. In the following discussion we are 
trying to remove this confusion. 
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In Figure 13 we have plotted the distribution of projected step length r1 for 
different dimensions and pure one dimensional step length. Here it is observed 
that the step length of pure 1 dimensional random walk is uniformly distributed 
between (−h to h) (here it is plotted for h = 1 but this is true for any value of h) 
but the projected step length (r1) are no longer uniformly distributed between −1 
to 1. For example, for 2 dimensions, probability of getting large value of step 
length i.e. near boundary (−1, +1) is high. So to have a comparison between 
projected walk of 2 dimensions and pure 1 dimensional random walk, the mag-
nitude of pure one dimensional step length should be increased. So the value of 
h is greater than 1. But for 2d >  probability of getting large value of step 
length (i.e. near boundary) is low; as we increase the dimension, the boundary 
value of r1 decreases and the most probable value of r1 is shifted towards 0. As a 
comprehensive effect the magnitude of r1 is decreasing. Naturally the value of h 
is also decreasing as dimension is increasing following the relation (Figure 14). 

1.7h
d

≈                               (7) 

It also supports the previous result Equation (5) that for d →∞  there is no 
projected one dimensional random walk. 

Now we are able to establish a generalized one dimensional random walk with 
which the projected random walk can be compared. In all, it can be said that, we 
can get equivalent statistical properties of projected one dimensional motion of 
d-dimensional random walk with unit step length from pure one dimensional 
random walk with random step length varying uniformly between −h to h where 
h is the step length renormalizing factor. In this context it is to be mentioned 
 

 
Figure 13. Distribution of 1 dimensional projected step length of d-dimensional random 
walk (d = 2, 3, 4, 5, 6, 7, 8, 9, 10 dimensions) and distribution of step length of pure 1 
dimensional random walk where h = 1 for Ns = 1000, Nt = 100. 
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Figure 14. Step length renormalizing factor is plotted with different dimensions (d) (d = 
2, 3, 4, 5, 6, 7, 8, 9, 10 dimensions). The dotted line is ( ) 1.7f x x= . 
 
that in the simulation we have taken number of samples 100000sN =  and 

1000tN = . These choices of Ns and Nt in this study are observed to be adequate 
to have stable statistics. 

3. Concluding Remarks 

In this paper we have discussed random walk problem extensively in generalised 
d-dimensional continuum by numerical simulation where we have observed 
how the statistical properties of random walker are changing with dimensions. 
Shifting of most probable value of the distribution of absolute displacement after 
a certain time (Nt) towards higher value with dimension is observed statistically. 
But the study of projected one dimensional motion of higher dimensional ran-
dom walk is our major area of interest where we have found that the width of the 
distribution of displacement of projected motion is getting sharper and sharper 
as we increase the dimensions. The projected motion is still diffusive irrespective 
of any dimension; however, the diffusion rate is changing inversely with dimen-
sions. As a consequence, we can predict that, though in infinite dimensions there 
is diffusion, its one dimensional projection is motionless. And finally we are able 
to make a good comparison between the projected one dimensional random 
walk and pure one dimensional random walk and came to the conclusion that 
one dimensional projection of generalised d-dimensional random walk with unit 
step length is equivalent to one dimensional pure random walk with random 
step length varying uniformly between −h to h where h is the step length renor-
malizing factor. Some more interesting studies can be done in this field like the 
first passage properties of random walker in higher dimensional continuum on 
which we have already started to work. Here we have reported only the numeri-

https://doi.org/10.4236/am.2018.96042


J. Chattopadhyay, M. Acharyya 
 

 

DOI: 10.4236/am.2018.96042 616 Applied Mathematics 
 

cal results of random walk in generalised d-dimensional continuum and its pro-
jected motion, but rigorous mathematical formulations of these are yet to be ex-
plored. And finally, there is a interesting aspect to think that, why for getting 
equivalent statistical properties for the projected motion of three dimensional 
random walk from pure one dimensional random walk, the step length renor-
malising factor h is exactly equal to 1 i.e. and pure one dimensional step length is 
unrenormalised. 
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