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Abstract 

Few studies jointly investigate thermal and turbulent effects. In general, these 
subjects are treated separately. The purpose of this paper is to use the Im-
mersed Boundary Method (IBM) coupled with the Virtual Physical Model 
(VPM) to investigate incompressible two-dimensional Newtonian flow 
around a heated square cylinder at constant temperature on its surface with 
forced convection and turbulence. The VPM model dynamically evaluates the 
force that the fluid exerts on the immersed surface and the thermal exchange 
between both in the Reynolds numbers (Re) window 340 Re 5 10≤ ≤ × . For 
simulations of turbulence the Smagorinsky and Spalart-Allmaras models are 
used. The first model uses the Large Eddy Simulation (LES) methodology and 
is based on the local equilibrium hypothesis for small scales associated with 
the Boussinesq hypothesis, such that the energy injected into the spectrum of 
the turbulence balances the energy dissipated by convective effects. The 
second model uses the concept Unsteady Reynolds Averaged Navier-Stokes 
Equations (URANS), with only one transport equation for turbulent viscosity, 
being calibrated in pressure gradient layers. The goal of this work is to analyse 
the combination of the heat-transfer phenomena with the turbulence for the 
thermo-fluid-structure interaction in a square cylinder. For this, it was devel-
oped a C/C++ code that requires low computational costs in regards to mem-
ory and computer facilities. It is observed that, with the increase of the Rey-
nolds number, an increase of the drag coefficient occurs, as well as reinforces 
the influence of the pressure distribution downstream of the cylinder, which is 
strongly influenced by the formation and detachment of vortices on the upper 
and lower sides of the square cylinder. 
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1. Introduction 

The idea of Immersed Boundary Method (IBM) was proposed by [1] and [2] to 
simulate blood flows in mitral valves, and was later introduced to solve problems 
in computational fluid dynamics (e.g., [3] [4] and [5]). This method provides a 
new numerical tool to investigate the flow around the immersed body with 
complex geometry in Cartesian coordinates. The immersed boundary method 
was reviewed in [6], presenting there an extensive list of bibliographic references. 
Problems related to flow around immersed bodies have always been studied in 
many areas, especially in engineering applications such as aerodynamics or even 
in more complex configuration such as in aircraft and automobiles. In such cas-
es, the involvement of complex geometries is inevitable in many problems. Thus, 
the classical simulation methods used have some disadvantages, especially in the 
study of fluid-structure interaction problems, for example, in the simulation of 
mobile or deformable border simulation. In these cases, traditional methods 
produce good results, but in general, with high computational costs. Basically, 
two methodologies are used for this type of problems. 

The first methodology uses unstructured grids to describe complex geometries, 
with the remeshing process for the case of deformable bodies. The second me-
thodology used the immersed boundary method, as proposed by [1]. The latter 
has some advantages, for example, the possibility of simulating complex geome-
tries in Cartesian grids without the need to use the remeshing process in each 
time step of the iterative scheme, during deformation or movement of the bor-
der, without increasing the computational cost. An important work, developed 
by [7], brings a study of a simulation of the flow around rigid bodies. The au-
thors use a forcing term to reach the rigid boundary required to simulate the 
specified boundary conditions: the velocity of the fluid is equivalent to the veloc-
ity of the surface. 

The work [8] proposes the use of a methodology called Virtual Boundary 
Method (VBM): a bilinear interpolation procedure is combined to realize the 
data transmission between grid and boundary points to form the boundary. The 
selection of constant values in the forcing term is discussed based on the error of 
velocity at the boundary. Then, the VBM method is used to simulate the flow 
around bluff bodies, where the qualitative description about this simulation is 
firstly presented by providing the current simulation’s streamlines and pressure 
contours. The phenomena illustrated are the same as others available in the lite-
rature. The VBM feasibility is verified by the good agreement between this si-
mulation’s results and other reference’s outcomes. 
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In this paper, unlike other works, it is presented the Immersed Boundary Me-
thod as a method of capturing interfaces with the Virtual Physical Model 
(IBM/VPM) being used to simulate the flow in two-dimensional space, with the 
presence of immersed geometries in incompressible fluid with forced convection 
around the heated square cylinder (also known as bluff bodies, with its heated 
surface at constant temperature, and where there is no elasticity in the immersed 
body). The VPM was developed by [9], where the model is based on Navi-
er-Stokes equations, the presence of the body and its heating are calculated and 
included as a forcing term in the equations of momentum and energy. This me-
thodology, that does not require high computational cost or facilities, can also be 
adapted to other researcher areas, such as systems involving renewable energy, 
energy converters of sea wave mechanics, solar heating systems, refrigeration 
systems for electronic components, cooling of nuclear reactors, etc. 

The VPM model has the ability to self-adjust to the flow as the force required 
to “stop” the fluid particles near the interface is automatically calculated, without 
the need to adjust variables, unlike the original method developed by [1] and [8]. 
The interfacial force is calculated at Lagrangian points and distributed to neigh-
boring Eulerian points, with the help of a type of Gaussian function. 

In the IBM method, the force f  is introduced into the Navier-Stokes equa-
tions to model the solid-fluid interface. Analogously, the heated body is modeled 
by a forcing term q added to the energy equation. Thus, the method is based on 
a mixed formulation with a grid for the fluid (Eulerian grid) and another for 
fluid-solid interface (Lagrangian grid). The bulk of this paper is to verify the ap-
plicability and potentiality of IBM/VPM to model and simulate a flow over a 
heated square cylinder for 340 Re 5 10≤ ≤ × , considering the aerodynamic coef-
ficients, this is, the drag and lift coefficients, the temperature, the Strouhal and 
Nusselt numbers. For the highest number of Reynolds here considered 

( )3Re 5 10= × , two turbulence models are used, namely, Smagorinsky and Spa-
lart-Allmaras models. 

This paper is organized as follows. In the Section 2, it is presented the IBM 
methodology. Section 3 is devoted to the Virtual Physical Model used to solve 
the Navier-Stokes equations. The turbulence models are in Section 4. In the next 
Section, the numerical method is discussed. The results are in Section 6, and the 
concluding remarks are presented in 7. 

2. The Methodology of Immersed Boundary 

Mathematical Formulation 

The physical phenomena of fluid mechanics are described by a set of partial dif-
ferential equations, describing the conservation of mass (continuity), momen-
tum and energy. For the non-isothermal case, theses equations, in the context 
IBM/VPM, are written under the following hypotheses: 
 The fluid is Newtonian and incompressible with constant properties. The 

buoyancy term, based on the Boussinesq approximation, does not appear 
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since we are only considering the case of forced convection; 
 The immersed body (heated square cylinder) is describe by the VPM model 

instead of by the direct imposition of the boundary conditions of velocity and 
temperature; 

 The energy generation term is neglected, because neither the effects of inter-
nal heat are considered (for example, absorption or emission radiation) nor 
the humidity which could be responsible for the latent heat exchange; 

 There is no Coriolis force nor rotation effects of the coordinate system. 
The equations for Newtonian incompressible flow with forced convection can 

be written, in dimensionless form, as 

( )

( )

1

1

0,

Re ,

Pe ,

p
t

q
t

−

−

∇ ⋅ =
∂ +∇ ⋅ = −∇ + ∆ +
 ∂
∂Θ +∇ ⋅ Θ = ∆Θ+
∂

U
U UU U f

U

                (1) 

where U is the incompressible velocity field, p is the pressure, and Re is the 
Reynolds number. The Eulerian body-force f  is used to mimic the effects of 
the immersed body, Ω, in the flow. The Reynolds number is defined by 
Re UL ν= , where U, L and v are the reference length, the reference velocity, and 
the kinematic viscosity, respectively. Pe is the Péclet number, defined by 
Pe Re Pr= × , where Pr is the Prandtl number, given by Pr pc kµ= . Here, pc  
is the heat capacity and k is the coefficient of thermal conductivity. The dimen-
sonless temperature is defined by ( ) ( )0 c iθ θ θ θΘ = − − , being cθ  and iθ  
the square cylinder temperature and the domain inlet temperature, respectively. 
The immersed boundary is represented by Lagrangian points, where the Lagran-
gian force is defined. The Eulerian and Lagrangian forces are related to each 
other through a regularized delta-function. The Eulerian force f , added to the 
momentum equation, is mathematically represented by 

( ) ( ) ( ), , d ,k k kt t δ
∂Ω

= −∫f x F x x x x                  (2) 

where, x  and kx  are the position vectors of the Eulerian and Lagrangian 
points, respectively; ∂Ω  is the domain of the immersed boundary, f  and 
F  are the Eulerian and Lagrangian forces, respectively. Similarly, in the energy 
equation (3rd equation in system (1)), the dimensionless external heat source q, 
which is the mutual interaction energy between fluid and immersed boundary, is 
expressed as follows 

( ) ( ) ( ), , d ,k k kq t Q t δ
∂Ω

= −∫x x x x x                (3) 

where Q  is the heat source on the Lagrangian point kx  at the immersed 
boundary. In this paper, the boundary conditions of velocity and temperature 
are imposed by integration of the equations of momentum and energy, of the 
system (1). These terms are intended to model the immersed geometry by 

( ) ( ) ( ) ( ) ( ) 2

1
, , d , ,

b

N

k k k k k
k

t t t D sδ
∂Ω

=

= − − ∆∑∫f x F x x x x F x x x     (4) 
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( ) ( ) ( ) ( ) ( ) 2

1
, , d , ,

b

N

k k k k k
k

q t Q t Q t D sδ
∂Ω

=

= − − ∆∑∫x x x x x x x x      (5) 

where N is the number of Lagrangian points and s∆  is the discrete Lagrangian 
distance between two points. The term ( )kD −x x  is the distribution function 
suggested by [1] [10] and [11], being approximated by 

( ) ( ) ( )( )2 1 1
1 1 ,k k i k iD h g h g h− − −   − − −   x x x x y y         (6) 

with 

( ) ( )
2

1 2

( ), 1

0.5 2 , 1 2

0, 2

g r r

g r g r r

r

 <
= − − < <


>

                (7) 

where h is the Euclidian grid size. The function ( )2g r  is given by 

( ) ( )2
2

1 3 2 1 4 4
8

g r r r r= − + + −                (8) 

where r denotes ( ) 1
k i h− − x x  or ( ) 1

k i h− − y y , and ( ),i ix y  are the coor-
dinates of the Eulerian points. In this paper, the domain is discretized by a Car-
tesian grid, as shown in Figure 1. 

3. The Virtual Physical Model 

The Virtual Physical Model (VPM) was proposed by [9] to calculate the Lagran-
gian force field, based only in the momentum equation. All the Navier-Stokes 
terms are calculated over the Lagrangian points, given by 
 

 
Figure 1. Illustration of the Eulerian (for the domain) and Lagrangian grids 
for a square cylinder. 
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( ) ( ) ( ) ( )( ) ( ) ( )1, , , , Re , , ,k k k k k kt t t t t p t
t

−∂
= +∇ ⋅ − ∆ +∇
∂
UF x x U x U x U x x  (9) 

where the r.h.s. parcels, from left to right, are referred to as acceleration force, 
inertial force, viscous force and pressure force, respectively. Similarly, for the 
thermal source of the fluid particle in contact with the interface, an energy bal-
ance is performed as follows: 

( ) ( ) ( ) ( )( ) ( )1,
, , , Pe , ,k

k k k k

t
Q t t t t

t
−∂Θ

= +∇ Θ − ∆Θ
∂

x
x U x x x       (10) 

where the r.h.s. parcels, from left to right, are called local rate of change of tem-
perature, heat dissipation rate due to convection and diffusive transport rate of 
the thermal energy. The terms F  and Q  are calculated in the interface 
points, through interpolation of the pressure, velocity and temperature fields, 
being calculated in the Lagrangian grid. After calculating ( ),kQ x t , the Eulerian 
variable ( ),q x t , in Equation (5), is obtained to finally calculate the new tem-
perature through the 3rd equation in (1). 

3.1. Calculation of Velocity, Pressure and Temperature 

For the calculation of pressure and temperature derivatives at each Lagrangian 
point, it is necessary to obtain the pressure and temperature value on the inter-
face point kx . For the calculation of pressure and temperature, it is necessary to 
use an auxiliary point, here called P, according to Figure 2. 

The derivatives for the calculation of pressure force is performed by the finite 
difference method 

2 1

2 1

4 3

4 3

p pp
x x x

p pp
y y y

−∂
∂ −
 −∂
∂ −





                         (11) 

The pressure and the temperature at the auxiliary point P belong to an Eule-
rian cell. So, to obtain the velocity, pressure and temperature, we use the follow-
ing approximations (for details, see [12]): 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

d d

d d

d d

d d
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k i k i
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k i k i
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k i k i
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k i k i
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k i k i
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
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−


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
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∑

∑

∑

∑

∑

x x x x

x y y x

x x x x

x y y x

x x x x

x y y x













                (12) 

where the quantities ( )ku x  and ( )kv x , in (12), represent the velocities of the 
fluid on the interface, taking into account the internal and external velocities to 
the interface on the Eulerian grid. The terms ( )iu x , ( )iv x , ( )ip x  and  

https://doi.org/10.4236/am.2018.93023


R. D. C. Santos et al. 
 

 

DOI: 10.4236/am.2018.93023 297 Applied Mathematics 

 

 
Figure 2. Illustrative scheme of the interpolation for the pressure and 
temperature and the discretization (zoom) of an Eulerian cell. 

 
( )iΘ x  are, respectively, the velocities in the x- and y-direction, the pressure 

and temperature in the Eulerian grid which will be interpolated; the terms 
( )ku x , ( )kv x , ( )kp x  and ( )kΘ x , are the velocities, pressure and tempera-

ture on the auxiliary points, respectively. The derivative that composes the dif-
ferent terms are calculated using the second-order Lagrange polynomial. 

The systems of Equations (13) and (14), in the variable φ, represent the veloc-
ity and the pressure in the x- and y-direction, respectively. After the interpola-
tion of velocity, pressure and temperature at the interface and in the auxiliary 
points, one determines the derivatives that constitute the terms for the calcula-
tion of the Lagrangian polynomial of the second order. Denoting the velocity or 
temperature components by (φ), the calculation of the first and second deriva-
tives in x and y directions, respectively, is given by 

( ) ( )
( )( )

( ) ( )
( )( )

( ) ( )
( )( )

( )( ) ( )( ) ( )( )

2 1 1 2
1 2

1 2 1 2 1 2 1 2

2

1 22
1 2 1 2 1 2 1 2

2 2 2

i k i i k i i i
k

k k k k

k
k k k k

x

x

φ
φ φ φ

φ
φ φ φ

 − + − − + − − + −∂
= + + ∂ − − − − − −


∂ = + + − − − − − −∂

x x x x x x x x x x x x
x x x x x x x x x x x x

x x x x x x x x x x x x
(13) 

( ) ( )
( )( )

( ) ( )
( )( )

( ) ( )
( )( )

( )( ) ( )( ) ( )( )

4 3 3 4
3 4

3 4 3 4 3 4 3 4

2

3 42
3 4 3 4 3 4 3 4

2 2 2

i k i i k i i i
k

k k k k

k
k k k k

y

y

φ
φ φ φ

φ
φ φ φ

 − + − − + − − + −∂
= + + ∂ − − − − − −


∂ = + + − − − − − −∂

y y y y y y y y y y y y
y y y y y y y y y y y y

y y y y y y y y y y y y
(14) 
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where 1φ , 2φ , 3φ  and 4φ  are obtained by interpolation of the nearest Eule-
rian variables. The coordinates of the auxiliary points (1, 2, 3 and 4) and the 
coordinates of the Lagrangian point kx  are, respectively, the pairs ( ),k kx y , 
( )1 1,x y , ( )2 2,x y , ( )3 3,x y  and ( )4 4,x y . The points 1, 2, 3 and 4 must be lo-
cated outside the interface, in order to calculate the force to be independent of 
the flow properties in the interior. The distance between the points 1, 2, 3 and 4 
is ∆x . Thus, the calculation of the inertial, viscous and pressure forces are in-
dependent of the flow inside the interface. The same process holds for the energy 
equation. The acceleration force, which is one of the terms of the total Lagran-
gian (or interface) force, is obtained by an approximation using the finite dif-
ference method, according to the expression, 

( ), ,k fk
k t

t t
−∂

∂ ∆

U UU x                        (15) 

where kU  represents the interface velocity vector and fkU  represents the ve-
locity vector of the fluid at the same interface position. This acceleration force 
represents the most influential part in the calculation of the total Lagrangian 
force, and can be interpreted as the portion that guarantees the non-slip condi-
tion. Similarly, the time derivative for the temperature is approximated by 

.k fkk

t t
θ θθ −∂

∂ ∆
                         (16) 

3.2. Calculation of Parameter L2 

Another important calculation is the determination of the parameter 2L , which 
provides the difference between the dimensionless velocity of the fluid at the in-
terface and the velocity at the interface itself and its temperature. The numerical 
value is around 10−3, being a coherent and acceptable value, as proposed by [13]. 
The calculation of 2L  is performed by 

( ) ( )( ) ( ) ( )( )2

2 2
1

,
pn

k k fk k k k fk k

k p

L
n= ∞

− + −
∑

u x u x v x v x

U
           (17) 

( ) ( )( )2

2 2
1

,
pn

k k fk k

k p

L
n

θ θ

= ∞

−
∑

x x

U
                   (18) 

where ( ),k fku u , ( ),k fkv v , ( )kθ  and ( )fkθ  are the components of velocities 
and temperatures at the interface, respectively; pn  is the number of Lagrangian 
points in the immersed interface. 

3.3. The Lagrangian Calculation of the Distribution of Force and 
Heat Source 

After calculating the terms of Equations (9) and (10), and obtaining the values 
for F  and Q , the Eulerian terms for f  and q are evaluated in order to ob-
tain the distribution of the interfacial force and the thermal field. The calculation 
process is performed as follows: 
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( ) ( ) ( ) ( ), ,i i j i k k k
k

D s− ∆∑f x x x F x x
              (19) 

( ) ( ) ( ) ( ), ,i i j i k k k
k

q D Q s− ∆∑x x x x x               (20) 

where ( )if x  is the force on each Eulerian node, while ( )kF x  is the force of 
each Lagrangian node being distributed to the Eulerian nodes. Figure 3 illu-
strates the distribution of the interfacial force and the thermal source at each 
Lagrangian node in the body immersed in the flow, resulting in a heated interfa-
cial force field, allowing the fluid particle to recognize the solid boundary and 
the heated body. 

The average distance between two adjacent points is represented by ( )ks∆ x  
and ,i jD  is a distribution function. In Equation (20), it is shown the thermal 
source term, ( )iq x , for each Eulerian node, due to the presence of the heated 
immersed body, and ( )kQ x , the thermal source in each Lagrangian node, being 
distributed to the Eulerian nodes, thus forming an Eulerian thermal field, that 
acts on the particles near the border. 

4. Turbulence Modeling 

In addition to laminar regime flow, we have also simulated (turbulent) flow for 
Reynolds numbers going up to 35 10× . Thus, it is necessary to use turbulence 
models to close the Navier-Stokes equations. Two models were implemented, 
namely the Smagorinsky model, with LES (Large Eddy Simulation) methodology, 
and the Spalart-Allmaras model (S-A), with URANS model (Unsteady Reynold 
Averange Navier-Stokes) (for further details, see [14]). 
 

 
Figure 3. Illustration of the distribution of interfacial and thermal 
force in a heated square cylinder. 

https://doi.org/10.4236/am.2018.93023


R. D. C. Santos et al. 
 

 

DOI: 10.4236/am.2018.93023 300 Applied Mathematics 

 

The URANS model is used to refer to RANS (Reynolds Averaged Navi-
er-Stokes), where in this model, the dependent variables of the Navier-Stokes 
equation are decomposed into filtered components and floating components, 
and then all terms are filtered. In the LES methodology the largest turbulence 
structures (eddy structures) are solved by filtered equations and only the smal-
lest structures are modeled, since they are (statistically) homogeneous and iso-
tropic. The scale of the small structures is calculated by the size of the grid used 
for the solution of the Navier-Stokes filtered equations. In other words, the 
width of the filter becomes a function of the grid. In this way, turbulent struc-
tures that are smaller than the grid solution are modeled by the so-called 
sub-grid models. 

4.1. Smagorinky Model 

The Smagorinsky sub-grid model [15] is based on the balance between the pro-
duction of turbulent kinetic energy and isotropic dissipation of turbulent energy. 
The turbulent viscosity, tν , is calculated as a function of the shear rate, ijS , 
and the length scale,  , given by 

( )2 2 ,t s ij ijC S Sν =                        (21) 

where 0.18SC =  is the Smagorinsky constant and x y= ∆ ∆  is the length of 
the sub-grid scale. 

4.2. Spalart-Allmaras Model 

The Spalart-Allmaras model is a one-equation model that solves the transport 
equation for the kinematic eddy turbulent viscosity [16], without involving tur-
bulent energy, dissipation or vorticity calculations, available in other models. 
Thus, the model Spalart-Allmaras concentrates into a single parameter the beha-
vior of the turbulence, being classified as a closed model. 

The equation for the turbulent viscosity is constructed using mainly flow em-
pirical considerations, dimensional analysis and Galileo’s principle of relativity. 
The model uses a working variable, ν , given by the following transport equa-
tion: 

( ) ( ) ( )1 2 2

21
2 12

11  

,

j b t b
j j j j j

b
w w t t

w

u c f S c
t x x x x x

c
c f f f U

dk

ν ν ν νν ν ν ν
σ

ν

   ∂ ∂ ∂ ∂ ∂ ∂
+ = − + + +    ∂ ∂ ∂ ∂ ∂ ∂   

  − − − ∆     

   



  



  (22) 

where the terms on the right side, respectively, represent: the production of tur-
bulent viscosity, the molecular and turbulent diffusion of ν , the dissipation of 
ν , the destruction of ν , which reduces the turbulent viscosity near the wall and, 
finally, the terms that model the transition effects, indicated by sub-index t. The 
turbulence viscosity, tν , is calculated from the auxiliary variable of the Spa-
lart-Allmaras model and damped by the function 1vf  along the wall, and is 
given by 
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1,t vfν ν=                             (23) 

where 
3

1 3 3
1

,v
v

f
C

χ
χ

=
+

                        (24) 

with 

.νχ
ν

≡


                          (25) 

The production term in the transport Equation (22) also needs a correction, 
which is performed by replacing the parameter S with a modified variable S , 
which also depends on the influence of a damping function 2vf . Thus, S  is 
defined by 

( ) 22 ,v
w

S S f
kd
ν

≡ +


                       (26) 

where wd  is the distance to the nearest wall, and S is the modulus of the strain 
rate given by 

2 .ij ijS S S=                           (27) 

The term of destruction originally formulated by [16] presents problems, and 
this term decreases very slowly in certain regions of the boundary-layer. To cor-
rect this deficiency it is defined a dimensionless function wf , which adjusts the 
term of destruction. The function wf  is adjusted to a unit value of the loga-
rithmic region of the boundary-layer, increasing destruction of the term as it 
approaches the wall and going to zero for more distant regions of the wall, and is 
defined by the formulas 

1 66
3

6 6
3

1
,w

w
w

cf g
g c

 +
=  

+ 
                    (28) 

( )6
2 ,wg r c r r= + −                      (29) 

with 

2 2 .
w

r
S k d
ν

≡




                        (30) 

(Here, k is an empirical constant of the model.) The influence of these terms 
allows the control of the transition in two different aspects: in the maintenance 
of the laminar flow in the desired regions or beginning the transition region. The 
control is performed with the addition of a source term, being controlled by the 
function 1tf  and a reduction in the production term of the turbulent viscosity 
controlled by the function 2tf , being defined as follows 

2
2 2 2

1 1 2 2exp ,t
t t t t w t tf c g c d g d

U
ω 

 = − +  ∆ 
             (31) 

( )2
2 3 4exp exp ,t t tf c c χ= −                   (32) 
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where td  is the distance to the start point of the transition, tω  is the vorticity 
at the point of transition of the boundary-layer, and U∆  is the norm of the 
velocity difference between the flow and the transition point. The function tg  
is defined by ( ){ }min 0.1;  tU xω∆ ∆ , where tx∆  is the size of the grid along 
the wall in the transition region. These terms were neglected, as the simula-
tions were only performed for fully developed turbulence regimes. The other 
constants of the model are 2 3σ = , 1 0.1355bc = , 2 0.622bc = , 0.41k = , 

1 2
1 2

1b b
w

c cc
k σ

+
= + , 2 0.3wc = , 3 2wc =  and 1 7.1vc = . These constants were de-

termined empirically. 
The mean temperature field Θ  is governed by 

( ) ( ) ,j
t

j j j

u

t x x x
α α

 ∂ Θ  ∂Θ ∂ ∂Θ
+ = +   ∂ ∂ ∂ ∂   

             (33) 

where tα  is the turbulent diffusion coefficient, being determined by 

,
Pr

t
t

t

ν
α =                           (34) 

where Prt  is the Prandtl number, which controls the magnitude of the mean 
turbulent diffusion. The turbulent thermal diffusivity value is 0.9 in all simula-
tions. 

5. Numerical Method 

In the order to validate our code, simulations with a single heated square cylind-
er were compared with the results found in the literature. To mimic free boun-
dary conditions, it was considered 55xL d=  and width 30yL d= . The heated 
square cylinder was placed at 16.5x d=  and 15y d= , in order to minimize the 
influence of the boundaries. The grid resolution for these simulations was 
318 164×  points, a non-uniform grid was used to better capture the effects with 
a total of 201 Lagrangian grid points inside the immersed body. The 2nd and 3rd 
equations in (1) were discretized 1) in space, using the method of centered finite 
difference, and 2) in time, by the second order Adams-Bashforth scheme, and 
solved in the two-dimensional domain together with the fractional step method 
for calculating the iterative time step and the coupling between pressure, velocity 
and temperature, respectively. The discretized expression for the pressure cor-
rection results in a linear system that was solved using the MSIP (Modified 
Strongly Implicit Procedure Method), developed in [17], which consists of solv-
ing the following system of equations: 

( ) ( )
1 11 nn n n n

jn n ni i i
i j t i

j i j j i

uu u p uu u f
t x x x x x

ν ν
ρ

+ +     ∂− ∂ ∂ ∂ ∂
+ = − + + + +     ∆ ∂ ∂ ∂ ∂ ∂       

  (35) 

1 2 11 1 ,
n n

i

i j j

u p
t x x xρ

+ +′∂ ∂
=

∆ ∂ ∂ ∂
                         (36) 
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           (39) 

where the calculation of the force field on the interface, and the solution of the 
momentum and energy equations are performed explicitly. The computational 
domain is shown in the schematic illustration of Figure 4, which has length 55d 
and width 30d. 

The grid is uniform in the region of the heated square cylinder, maintaining a 
minimum number of 30 grid inside. The time step used in the calculation 
process is in the range 61.0 10 s−×  to 41.0 10 s−× , which is dynamically calcu-
lated by the Courant-Friedrichs-Lewy condition (CFL condition): 

( )
0.5 0.5,

max
CFL ,j jx x

j
j

u c t

x
− +  

+ ×∆
=

∆
                   (40) 

 

 
Figure 4. Eulerian and Lagrangian grids. 
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which is necessary for the explicit solution over time. To avoid numerical prob-
lems, the maximum ratio of 3% grid expansion was employed in these regions in 
both directions. In the present paper, the ratio between Lagrangian and Eulerian 
grid size was maintained at 0.98. 

6. Results and Discussion 

In this section, the heat-transfer by forced convection and turbulence problems 
are simulated using the IBM/VPM method. The results of the simulations are 
compared with previous results. Isothermal IBM/VPM conditions are imple-
mented and studied. The Reynolds numbers are 40, 50, 100, 500, and 5000. The 
Prandtl number is fixed at 0.7 in all cases. The staggered grid arrangement is ap-
plied in all cases. The square cylinder D is 1, with the center positioned at 16.5d 
from the domain entry and at 15d from top domain wall, and the free-stream 
velocity U∞ . The computational domain is 30 55d d× , with the center of the 
cylinder located at ( )16.5 ,16.5d d . These dimensions were determined numeri-
cally in order to minimize the influence of the domain on the flow around the 
square cylinder and, at the same time, to minimize the total number of nodes 
required. Newman boundary conditions were used. 

The boundary condition were prescribed as follow: 1) uniform flow with ve-
locity ∞U , pressure 0p = , and temperature input 0Θ =  at the entrance of the 
domain (left side); 2) flow fully developed in the output ( )0, / 0u x x∂ ∂ = ∂Θ ∂ = ; 
3) condition of symmetries at the upper and lower boundaries ( )0u y v∂ ∂ = = , 
( )0y∂Θ ∂ = . Concerning the initial condition, 0u v= = , at 0t =  (time), for 
the entire computational domain. The square cylinder is maintained at a con-
stant dimensionless temperature equal to 1, i.e. 1cΘ = , while the fluid has an 
initial temperature equal to zero ( )0fΘ = . Although the boundary condition at 
the output is not a reflexive condition, the simulation results successfully corro-
borate the formation of large (vortex) structures outside the domain without any 
reflection. The current pressure limit conditions at the inlet and outlet limits are 
imposed to be consistent with the equations for velocities due to the arrange-
ment of the staggered grid. 

6.1. Recirculation Bubble for Re = 40 and Re = 50 

Figure 5 shows the streamline patterns around the square cylinder (bluff body) 
for different Reynolds numbers (Re = 40 and Re = 50). At low Reynolds number 
(Re = 40), the flow is laminar, steady, and slightly separated from the cylinder 
depicted. With the increase of the Reynolds number, Re = 50, the flow separates 
and two vortices are arranged symmetrically (according to the Figure 5(a), in 
the center line of the channel). For Re = 40, the fluid is imprisoned in the first 20 
s. For Re = 50, the fluid is released from the recirculation bubble in the first 
10 s. 

6.2. Vorticity Fields for Re = 40 and Re = 50 

Figure 6 shows an extended view of the vorticity fields for these simulations. 
Statistically established regimes are displayed. The formation and detachment of  
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(a)                                                           (b) 

Figure 5. Streamline patterns for a steady flow past a heated square cylinder at different Reynolds numbers. 
 
the vortices for the higher Reynolds numbers is clearly observed, whereas, for Re 
= 40, the flow is stable. 

6.3. Lift and Drag Coefficients for Re = 40 and Re = 50 

The time evolution of the drag, DC , and lift, lC , coefficients are shown in Fig-
ure 7 or Re = 40 and Re = 50, respectively. It is verified that, in DC , does not 
occur amplitude variations, which is a consequence of the periodic detachment 
of vortices of the upper and lower surfaces. The lift coefficient is zero, because 
there is no buoyancy in the flow. In the same figure, lC , despite presenting var-
iations in time, does not present significant oscillation; besides the flow be lami-
nar, Cl is not influenced by the distribution of pressure on the back side of the 
cylinder, which would be strongly influenced by the formation of vortices on the 
upper and lower sides of the square cylinder. 

6.4. Vorticity Fields for Re = 100 and Re = 500 

In Figure 8(a), Figure 8(b) the vorticity fields are shown around a heated 
square cylinder, at different times, for Re = 100 and Re = 500, respectively. The 
square cylinder was maintained at a constant dimensionless temperature, i.e. 
with 1bθ = . (The sub-index b refers to the immersed body.) 

In these figures, the vortex detachment is observed in both cases (time ≈ 70). 
After 1.7 million iterations (≈4 hours of CPU time), the flow is fully developed 
(at low computational cost). In Figure 8(b), for Re = 500, it can be observed the 
total detachment of vortices in the wake (here, the Smagorinsky model was used). 
It is also observed that, with the increase of the Reynolds number, occurs an in-
crease of the drag coefficient. This happens because the vortices collide with 
more intensity behind the cylinder. 

6.5. Lift and Drag Coefficients for Re = 100 and Re = 500 

Contrary to what was observed in Figure 7(a) and Figure 7(b), for Reynolds 
numbers equal to 100 and 500, the time evolution of the drag coefficients, DC ,  
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(a) 

 
(b) 

Figure 6. (a) Time evolution of the vorticity field for Re = 40; (b) Time evolution of 

the vorticity field for Re = 50. 

 
and the lift coefficient, lC , in the square cylinder, varies in time, i.e. occur am-
plitude variations. This is a consequence of the periodic detachment of vortices 
on the upper and lower surfaces of the square cylinder. The lift coefficient, lC , 
also presents oscillation, that is, there is buoyancy in the flow. In Figure 9(b), the 
lift coefficient lC  presents great oscillations, and this is not a numerical problem, 
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(a)                                      (b) 

Figure 7. Flow over a heated square cylinder. Time-dependent lift and drag coefficients 
(CD and Cl) at (a) Re = 40 and (b) Re = 50. 
 

 
(a) 

 
(b) 

Figure 8. (a) Temporal evolution of the vorticity field for Re = 100; (b) Temporal 
evolution of the vorticity field for Re = 500. 
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(a)                                      (b) 

Figure 9. Temporal evolution of the lift (Cl) and drag (CD) coefficients for Re = 100 and 
Re = 500. 

 
but a physical consequence caused by the turbulence. This type of flow is unsta-
ble and contains fluctuations that are dependent on time and position in space. 
These disturbances, shown in Figure 9(b), are strong. A complete description of 
the transitions requires the analysis of nonlinear perturbation amplification 
process. This is a difficult theoretical issue, since we are facing with nonlinear 
problems. These perturbations are indeed physical instabilities, and the transi-
tion from laminar to turbulent flow is verified. Therefore, it was necessary to 
implement a turbulence model. In this case Re = 500, the Smagorinsky model 
was employed. In addition, Figure 9 shows that, from the laminar (Re = 100) to 
turbulent (Re = 500) flow, occurs the influence of the pressure distribution 
downstream of the cylinder, which is strongly influenced by the formation and 
detachment of vortices on the upper and lower sides of the square cylinder. The 
fluctuation value of the supporting force is now directly connected to the forma-
tion and detachment of vortices, and, therefore, their value vary between max-
ima and minima of equal magnitudes. 

6.6. Vorticity Fields for Re = 5000—Spalart-Allmaras and  
Smagorinsky Models 

In Figure 10(a) and Figure 10(b), the Spalart-Allmaras and Smagorinsky tur-
bulence models were used for the energy transfer process between the larger and 
the smaller turbulence scales. The kinetic energy of the physical instabilities ac-
cumulates over the cut-off frequency (given by the discretization loop). 

6.7. Lift and Drag Coefficients for Re = 5000 

In Figure 11, the Reynolds number is 5000. It is observed more pronounced os-
cillations in the drag coefficient, DC , and, therefore, the vortex generation and 
detachment process is totally swirling in the flow. The same happens with the lift 
coefficient, lC . 
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(a) 

 
(b) 

Figure 10. (a) Temporal evolution of the vorticity fields for Re = 5000, modeling of the 
Spalart-Allmaras turbulence; (b) Temporal evolution of the vorticity fields for Re = 5000, 
modeling of the Smagorinsky turbulence. 

6.8. Mean Drag Coefficients 

In Table 1 it is presented the results obtained for the mean value of the drag 
coefficients, for different Reynolds numbers, and compare them with the drag 
coefficients presented in [18] and [19], which were obtained by the Boltzmann 
method and finite volume discretizations. We observe here that, when the Rey-
nolds number increases, the drag coefficient also increases, particularly for vor-
tex spill flows. 
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(a)                                      (b) 

Figure 11. Temporal evolution of the drag, DC , and lift, lC , coefficients for Re = 5000, 
modelled by Spalart-Allmaras (left side) and Smagorinsky (right side) turbulence. 
 
Table 1. Mean drag coefficients for the flow past a square cylinder at different Reynolds 
numbers. 

Authors Re = 40 Re = 50 Re = 100 Re = 500 Re = 5000 

Present work 1.34 1.36 1.36 1.38 1.57 

Breuer [19] - 1.48 1.37 - - 

Perumal et al. [20] - 1.21 1.80 - - 

6.9. Mean Nusselt 

The mean Nusselt numbers are presented in Table 2 and they are compared 
with the numerical values found in [20]. Several correlation can be obtained for 
the mean Nusselt numbers. Here, we used the Hilpert correlation that considers 
the global mean conditions, given by 

1 3Re Pr .m
DNu c= × ×                         (41) 

7. Conclusions 

The immersed boundary method coupled with the virtual physical model was 
used to simulate incompressible two-dimensional flows around a heated square 
cylinder at constant temperature on its surface. In order to validate the code, the 
works [18] [19] and [20] were used. A good numerical convergence was ob-
tained, being the margin of error, with respect to these works, less than 3%. The 
time evolution of the drag and lift coefficients, as well as the Nusselt number 
were obtained with this methodology, being the parameters obtained from the 
Eulerian fields, since the geometry used in this work has singularities, which 
were taken into account in the construction of the algorithm/code. The imple-
mentation process for the calculation of the drag and lift coefficients is simple. 
This fact is important, because it allows its applicability to other (less simple) 
geometries. 

In all simulations, the results show that the influence of the surface of the 
heated body immersed in the flow increases as the Reynolds number increases.  
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Table 2. Comparison between the Reynolds numbers versus the mean Nusselt numbers. 

Authors Re = 40 Re = 50 Re = 100 Re = 500 Re = 5000 

Present work -  5.18 6.13 26.67 

Vieira [19] - - - 8.10 - 

 
For the temporal discretization, the second order Adams-Bashforth scheme was 
used together with the spatial centered scheme. A turbulence model was also 
used for the energy transfer process between the largest and smallest turbulent 
scales. 

For future work, it is planned to extend this work to more complex geome-
tries, more precisely, to simulate tandem cylinder configurations in stationary 
and non-stationary cases. This will allow investigating mixed convection (natu-
ral and forced). 
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