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Abstract 
We investigate the generalized partial difference operator and propose a mod-
el of it in discrete heat equation in this paper. The diffusion of heat is studied 
by the application of Newton’s law of cooling in dimensions up to three and 
several solutions are postulated for the same. Through numerical simulations 
using MATLAB, solutions are validated and applications are derived. 
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1. Introduction 

In 1984, Jerzy Popenda [1] introduced the difference operator 
α
∆  defined on 

( )u k  as ( ) ( ) ( )1u k u k u k
α

α∆ = + − . In 1989, Miller and Rose [2] introduced 
the discrete analogue of the Riemann-Liouville fractional derivative and proved 
some properties of the inverse fractional difference operator 1−∆



 ([3] [4]). 
Several formula on higher order partial sums on arithmetic, geometric 
progressions and products of n-consecutive terms of arithmetic progression 
have been derived in [5]. 

In 2011, M. Maria Susai Manuel, et al. [6] [7], extended the definition of α∆  
to 

( )α
∆


 defined as 
( )

( ) ( ) ( )v k v k v k
α

α∆ = + −


  for the real valued function v(k), 
0> . In 2014, the authors in [6], have applied q-difference operator defined as 
( ) ( ) ( )qv k v qk v k∆ = −  and obtained finite series formula for logarithmic  

function. The difference operator 
( )k l
∆  with variable coefficients defined as 

equation 
( )

( ) ( ) ( )
k

v k v k kv k∆ = + −


  equation is established in [6]. Here, we 

extend the operator ∆


 to a partial difference operator. 

Partial difference and differential equations [8] play a vital role in heat 
equations. The generalized difference operator with n-shift values  
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( )1 2 3, , , , 0nl = ≠      on a real valued function ( ) : nv k →   is defined as,  

( )
( ) ( ) ( )1 1 2 2 1 2, , , , , ,n n nv k v k k k v k k k∆ = + + + −



    

         
(1) 

This operator 
( )
∆


 becomes generalized partial difference operator if some 

0i = . The equation involving 
( )
∆


 with at least one 0i =  is called generalized 

partial difference equation. A linear generalized partial difference equation is of 
the form 

( )
( ) ( )v k u k∆ =



, then the inverse of generalized partial difference 
equation is  

( )
( )

( )
1

v k u k
−

= ∆
                          

(2) 

where 
( )
∆


 is as given in (1), 0i =  for some i and ( ) : nu k →   is given 

function. 
A function ( ) : nv k →   satisfying (2) is called a solution of Equation (2). 

Equation (2) has a numerical solution of the form,  

( ) ( ) ( )
1

,
m

r
v k v k m u k r

=

− − = −∑ 

                  
(3) 

where ( )1 1 2 2, , , n nk r k r k r k r− = − − −     , m is any positive integer. Relation  
(3) is the basic inverse principle with respect to 

( )
∆


 [6]. Here we form partial  

difference equation for the heat flow transmission in rod, plate and system and 
obtain its solution. 

2. Solution of Heat Equation of Rod 

Consider temperature distribution of a very long rod. Assume that the rod is so 
long that it can be laid on top of the set ℜ  of real numbers. Let ( )1 2,v k k  be 
the temperature at the real position 1k  and real time 2k  of the rod. Assume 
that diffusion rate γ  is constant throughout the rod shift value 0> . By 
Fourier law of Cooling, the discrete heat equation of the rod is,  

( )
( )

( )
( )

2 1
1 2 1 20, ,0
, , ,v k k v k kγ

±
∆ = ∆
                    

(4) 

where 
( ) ( ) ( )1 1 1,0 ,0 ,0± −
∆ = ∆ + ∆
  

. Here, we derive the temperature formula for ( )1 2,v k k  

at the general position ( )1 2,k k .  
Theorem 2.1. Assume that there exists a positive integer m, and a real 

number 2 0>  such that ( )1 2 2,v k k m−   and 
( )

( ) ( )
1 1

1 2 1 2,0
, ,v k k u k k

± ±
∆ =
 

 are 

known then the heat Equation (4) has a solution ( )1 2,v k k  of the form  

( ) ( ) ( )
11 2 1 2 2 1 2 2

1
, , , .

m

r
v k k v k k m u k k rγ ±

=

= − + −∑


 

           
(5) 

Proof. Taking 
( )

( ) ( )
1

1
1 2 1 2,0
, ,v k k u k k±±

∆ =




 in (4) gives  

( )
( )

( )
1

2

1
1 2 1 20,
, , .v k k u k kγ −

±= ∆


                    
(6) 

The proof of (5) follows by applying the inverse principle (3) in (6).  
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Example 2.2. From (2) we get, 
( )

( )
( ) ( )

( )
1 2 2 1 2

1 2

2

1

0,
2

e ee ,
2 1 cos

i k k i k k
i k k

+ − +−
+ −

∆ =
−







 

whose imaginary parts yield  

( )
( ) ( ) ( )

( )2

1
1 2 2 1 2

1 20,
2

sin sin
sin .

2 1 cos
k k k k

k k
− + − − +
∆ + =

−



           
(7) 

Taking ( ) ( ) ( )
1 1 2 1 2 1 1 2 1, sin sinu k k k k k k± = + + − + −


   in (6), using (7) and 
(5), 

( ) ( )
( )

( )( ) ( )
( )

( )

1 1

1 1

1

1 2 2 1 2

2

1 2 2 1 2 2

2

1 2 2
1

, ,
2 1 cos

, 1 ,
2 1 cos

,
m

r

u k k u k k

u k k m u k k m

u k k r

± ±

± ±

±
=

− −

−

− + − −
=

−

+ −∑

 

 







 





             

(8) 

The matlab coding for verification of (8) for 50m = , 1 2k = , 1 3= , 2 4k = , 

2 5=  as follows,  

( ) ( ) ( ) ( )( ) ( )( )( )
( ) ( ) ( ) ( )( )

( )( )( ) ( ) ( )( )

sin 4 sin 9 sin 2 sin 3 2 1 cos 5

sin 246 sin 241 sin 252 sin 247

/ 2 1 cos 5 symsum sin 9 5 sin 3 5 , ,1,50r r r

− + − − × −

= − − − + − − −

∗ − + − ∗ + − ∗

. 

Theorem 2.3. Consider (4) and denote  
( ) ( ) ( )1 1 1 1 1 1, , ,v k v k v k± ∗ = + ∗ + − ∗    and  
( ) ( ) ( )2 2 2 2 2 2, , ,v k v k v k∗ ± = ∗ + + ∗ −   . Then, the following four types 

solutions of the Equation (4) are equivalent:  

(a)      

 

( ) ( ) ( )

( ) ( )( )
1 2 1 2 2

1

1 1 2 2
0

, 1 2 ,

1 2 , 1

m

m r

r

v k k v k k m

v k k r

γ

γ γ
−

=

= − −

 + − ± − + ∑



            
(9) 

(b)       

 

( )
( )

( )

( )
( )( )

1 2 1 2 2

1 1 2 2
1

1, ,
1 2

, 1
1 2

m

m

r
r

v k k v k k m

v k k r

γ

γ
γ=

= +
−

− ± + −
−

∑



            
(10) 

(c) 

( ) ( ) ( )( )

( )( )

1 2 1 1 2 2 1 1 2 2
1

1

1 1 2 2
0

1 1 2, , , 1

1 2 ,

m

m r
r

m

s
s

v k k v k m k m v k r k r

v k s k s

γ
γ γ

γ

=

−

=

−
= − + − − + −

− − + +

∑

∑

   

 

   

(11) 

(d) 

( ) ( ) ( )( )

( )( )

1 2 1 1 2 2 1 1 2 2
1

1

1 1 2 2
0

1 1 2, , , 1

1 2 ,

m

m r
r

m

s
s

v k k v k m k m v k r k r

v k s k s

γ
γ γ

γ

=

−

=

−
= + + − + + −

− + + +

∑

∑

   

 

   

(12) 
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Proof. (a). From (4), we arrive the relation  

( ) ( ) ( ) ( )1 2 1 2 2 1 1 2 2, 1 2 , , .v k k v k k v k kγ γ= − − + ± −           (13) 

By replacing 2k  by 2 2k r−   in (13) gives expressions for ( )1 2 2,v k k r−   
and ( )1 1 2 2,v k k r± −  . Now proof of (a) follows by applying all these values in 
(13). 

(b). The heat Equation (4) directly derives the relation  

( ) ( ) ( )

( ) ( )

1 2 1 2 2

1 1 2

1, ,
1 2

, .
1 2

v k k v k k

v k k

γ
γ
γ

= +
−

− ±
−



                 
(14) 

Replacing 2k  by 2 2k r+   and substituting corresponding v-values in (14) 
yields (b). 

(c). The proof of (c) follows by replacing 1k  by 1 1k r−   and 2k  by 

2 2k r+   and 

( ) ( ) ( ) ( )1 2 1 1 2 2 1 1 2 1 1 2
1 1 2, , , 2 ,v k k v k k v k k v k kγ
γ γ

−
= − + − − − −    . 

(d). The proof of (d) follows by replacing 1k  by 1 1k r+   and 2k  by 

2 2k r+   and  

( ) ( ) ( ) ( )1 2 1 1 2 2 1 1 2 1 1 2
1 1 2, , , 2 ,v k k v k k v k k v k kγ
γ γ

−
= + + − + − +    .  

Example 2.4. The following example shows that the diffusion rate of rod can 
be identified if the solution ( )1 2,v k k  of (4) is known and vice versa. Suppose 
that ( ) 1 2

1 2, k kv k k a +=  is a closed form solution of (4), then we have the relation  

( ) ( ) ( )
1 2 1 2 1 2

2 1 10, ,0 ,0

k k k k k ka a aγ+ + +

−

 ∆ = ∆ + ∆    

, which yields  

1 2 2 1 2 1 2 1 1 2 1 1 22k k k k k k k k k ka a a a aγ+ + + + + + − + − = + − 
   . Cancelling 1 2k ka +  on both sides 

derives 
2

1 1

1
2

a
a a

γ −

−
=

+ −



 

.  

Theorem 2.5. Assume that the heat difference 
( )

( )
1

1 2,0
,v k k

−
∆


 is proportional 

to 
( )

( )
1

1 2,0
,v k k∆



 i.e., 
( )

( )
( )

( )
1 1

1 2 1 2,0 ,0
, ,v k k u k kδ

−
∆ = ∆
 

. In this case the heat 

Equation (4) has a solution ( )1 2cos k k+  if and only if either ( )1 2cos 0k k+ =  
or 1sin 0= .  

Proof. From the heat Equation (4), and the given condition, we derive 

( )
( ) ( )

( )
( )

2 1
1 2 1 20, ,0
, 1 , .v k k v k kγ δ∆ = + ∆

                 
(15) 

If, ( )
( ) ( )

( )
1 2 1 2

1 2 1 2
e ecos ,

2

i k k i k k

k k v k k
+ − ++

+ = = , then (15) becomes,  

( )
( ) ( ) ( )

( )
( ) ( )1 2 1 2 1 2 1 2

2 10, ,0
e e 1 e ei k k i k k i k k i k kγ δ+ − + + − +   ∆ + = + ∆ +   

 

 which yields,  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2 2 1 2 2 1 2 1 2

1 2 1 1 2 1 1 2 1 2

e e e e

1 e e e e

i k k l i k k l i k k i k k

i k k l i k k l i k k i k kγ δ

+ + − + + + − +

+ + − + + + − +

+ − −

= + + − −
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By rearranging the terms, we get 
( ) ( ) ( ) ( )1 2 1 22 1 2 1e e 1 1 e 1 e e 1 1 e 1i k k i k kil i i iγ δ γ δ+ − + −   − − + − = − − + −   

    

which yields either ( ) ( )1 2 1 2e e 0i k k i k k+ − ++ =  or 1 2e ei i−= 

 and hence  
( )1 2cos 0k k+ =  or 1sin 0l = . Retracing the steps gives converse.  

3. Heat Equation for Thin Plate and Medium 

In the case of thin plate, let ( )1 2 3, ,v k k k  be the temperature of the plate at 
position ( )1 2,v k k  and time 3k . The heat equation for the plate is  

( )
( )

( )
( )

3 1,20,0,
,v k v kγ

±
∆ = ∆
                      

(16) 

where 
( )( ) ( ) ( ) ( ) ( )1 1 2 21,2

,0,0 ,0,0 0, ,0 0, ,0− −±
∆ = ∆ + ∆ + ∆ + ∆

   



 

Theorem 3.1. Consider the heat Equation (16). Assume that there exists a 
positive integer m, and a real number 3 0>  such that ( )1 2 3 3, ,v k k k ml−  and  
the partial differences 

( )( )
( )

( )( )
( )

1,2 1,2
1 2 3 1 2 3, , , ,v k k k u k k k

± ±
∆ =
 

 are known functions 

then the heat Equation (16) has a solution ( )1 2 3, ,v k k k  as,  

( ) ( )
( )

( )
1,2

1 2 3 3 1 2 3 3
1

, , , , .
m

r
v k v k k k m u k k k rγ

±=

= − + −∑


 

        
(17) 

Proof. Taking 
( )

( )
( )

( )
1,2 1,2

v k u k
± ±
∆ =
 

 in (16), we arrive  

( )
( )

( )
3 1,2

1

0,0,
.v k u kγ −

±
= ∆

                       
(18) 

The proof follows by applying inverse principle of 
3

1−
∆


 in (18).  

Consider the notations in the following theorem: 

( ) ( )( ) ( ) ( )1 1 2 1 2 21,2 1,2 , , , , ,v k l v k k v k k± ∗ = ± ∗ + ± ∗   also  

( ) ( )( ) ( ) ( )2 2 3 2 3 32,3 2,3 , , , , ,v k l v k k v k k± ∗ = ∗ ± + ∗ ±  .  

Theorem 3.2. Assume that ( )1 2 3, ,v k k k  is a solution of Equation (16),  

( )1 1 2 2,v k r k r± ±   exist and denote  

( ) ( ) ( )1 1 1 1 1 1, , , , , ,v k v k v k± ∗ ∗ = + ∗ ∗ + − ∗ ∗   ,  

( ) ( ) ( )3 3 3 3 3 3, , , , , ,v k v k v k∗ ∗ ± = ∗ ∗ + + ∗ ∗ −   . Then the following are equivalent:  

(a) 

( ) ( ) ( ) ( )

( )( ) ( )( )

1

1 2 3 1 2 3 3
0

1 1 2 3 3 1 2 2 3 3

, , 1 4 , , 1 4

, , 1 , , 1

mm r

r
v k k k v k k k m

v k k k r v k k k r

γ γ γ
−

=

= − − + −

 × ± − + + ± − + 

∑

   

  

(19) 

(b) 

( )
( )

( )

( ) ( ) ( ) ( )( )

1 2 3 1 2 3 3

3 31,2 1,2
1

1, , , ,
1 4

, 1
1 4

m

m

r
r

v k k k v k k k m

v k l k r

γ

γ
γ=

= +
−

 − ± + − −
∑





       

(20) 

https://doi.org/10.4236/am.2017.89099


G. B. A. Xavier et al. 
 

 

DOI: 10.4236/am.2017.89099 1348 Applied Mathematics 
 

(c) 

( ) ( )

( )( )

( )( )

( )( )

1 1 2 3 3

1 1 2 3 3
1

1

1 1 2 3 3
0

1

1 1 2 2 3 3
0

1 , ,

1 4 , , 1

1 2 , ,

1 1 , ,

m

m

r
r

m

r
r

m

r
r

v k v k m k k m

v k r k k r

v k r k k r

v k r k k r

γ

γ
γ

γ

γ

=

−

=

−

=

= − +

−
− − + −

− − + +

− − + ± +

∑

∑

∑

 

 

 

  

          

(21) 

(d) 

( ) ( ) ( )( )

( )( )

( )( )

1 1 2 3 3 1 1 2 3 3
1

1

1 1 2 3 3
0

1

1 1 2 2 3 3
0

1 1 4, , , , 1

1 2 , ,

1 1 , ,

m

m r
r

m

r
r

m

r
r

v k v k m k k m v k r k k r

v k r k k r

v k r k k r

γ
γ γ

γ

γ

=

−

=

−

=

−
= + + − + + −

− + + +

− + + ± +

∑

∑

∑

   

 

  

 

(22) 

Proof. The proof of this theorem is easy and similar to the proof of the 
Theorem (2.3). From (16) and (1), we arrive  

(i) 
( ) ( ) ( )

( ) ( )
1 2 3 3

1 1 2 3 3 1 2 2 3 3

1 4 , ,

, , , ,

v k v k k k

v k k k v k k k

γ

γ

= − −

 + ± − + ± − 



   

 

(ii) ( ) ( ) ( ) ( )1 2 3 3 1 1 2 3 1 2 2 3
1 , , , , , ,

1 4 1 4
v k v k k k v k k k v k k kγ

γ γ
 = + − ± + ± − −

   . 

(iii) 
( ) ( ) ( )

( ) ( )

1 1 2 3 3 1 1 2 3

1 1 2 3 1 1 2 2 3

1 1 4, , , ,

2 , , , ,

v k v k k k v k k k

v k k k v k k k

γ
γ γ

−
= − + − −

− − − − ±

  

  

. 

(iv) 
( ) ( ) ( )

( ) ( )

1 1 2 3 3 1 1 2 3

1 1 2 3 1 1 2 2 3

1 1 4, , , ,

2 , , , ,

v k v k k k v k k k

v k k k v k k k

γ
γ γ

−
= + + − +

− + − + ±

  

  

. 

Now the proof of (a), (b), (c), (d) follows by replacing 

3k  by 3 3 3 3 3, 2 , , mk k k m− − −    , 3k  by 3 3 3 3 3, 2 , , mk k k m+ + +    , 1k  
and 3k  by 1 1 1 1 1, 2 , , mk k k m− − −    , 3 3 3 3 3, 2 , , mk k k m+ + +    , 1k  and 

3k  by 1 1 1 1 1, 2 , , mk k k m+ + +    , 3 3 3 3 3, 2 , , mk k k m+ + +     in (i), (ii), (iii), 
(iv) respectively.  

The following diagrams (generated by MATLAB) are obtained by using 13, 

0.5γ =  and taking 1
1
50

= , 2
1

2500
= ,  

(i) sine function; boundary values(BV) are ( )1 1,1 sin πv k =  , ( )21, 0v k = ,
( )251, 0v k = , 
(ii) cosine function; BV are ( )1 1,1 cos πv k =  , ( )21, 1v k = − , ( )251, 1v k = − , 
(iii) sum of sine and cosine function; BV are ( )1 1 1,1 sin π cos πv k = +  , 
( )21, 1v k = , ( )251, 1v k = −  respectively. 
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From the above diagrams, when the transmission of heat is known at the 
boundary points then the diffusion within the material under study can be easily 
determined.  

4. Conclusion 

The study of partial difference operator has wide applications in discrete fields 
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and heat equation is one such. The core theorems (2.1), (2.3) and (3.2) provide 
the possibility of predicting the temperature either for the past or the future after 
getting the know the temperature at few finite points at present time. The above 
study helps us in making a wise choice of material(γ) for better propagation of 
heat. In the converse, it also shows the nature of transmission of heat for the 
material under study. Thus in conclusion, we can say that the above research 
helps us in reducing any wastage of heat and also enables us in making a optimal 
choice of material (γ). 
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