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Abstract 
In this paper, a bivariate stochastic process with Poisson postulates has been 
considered to model the incomings, outgoings and mutual transfers of in-
vestments between and within the portfolios during an epoch of time “t”. 
Stochastic differential equations were obtained from the simple differential 
difference equations during the epoch of time “Δt”. The notion of bivariate 
linear birth, death and migration process has been utilized for measuring var-
ious statistical characteristics among the investments of Long and Short terms. 
All possible fluctuations in the investment flow have been considered to ex-
plore more meaningful assumptions with contemporary marketing environ-
ments. Mathematical relations for proposed statistical measures such as aver-
age sizes and variances of short term and long-term investments along with 
the correlation coefficient between them are derived after obtaining the re-
lated differential equations. Numerical illustrations were provided for better 
understanding of the developed models with practitioner’s point of view. 
 

Keywords 
Stochastic Modelling, Portfolio Diversification, Difference-Differential Equations 

 

1. Introduction 

Portfolio management has good attraction of researchers of decision making 
model developments with stochasticity. Formulation of suitable relationship 
between variables in finance sector and risk assessment is the potential area of 
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application of stochastic modelling as the derivatives of finance investments fol-
low various stochastic processes. Understanding the dynamics of cash flow 
within one format of investments and also in between two or more formats of 
investments is possible by measuring the processes in small interval of time so as 
the behaviour of the investment growth/loss/transformation can be estimated in 
a epoch of time “t”. A continuous time diffusion process is the suitable option 
for diversification, growth, and real interest rates among the countries with 
closed economy and technological uncertainties. 

The pioneering activity on modelling of time series data using Brownian mo-
tion was initiated in lateral period of 19th century [1]. Consequently, Bachelier 
developed theory to study the risk asset prices with Brownian motion using the 
assumptions of increments of stock prices shall be independent and normally 
distributed and applied for Paris stock market [2]. Another significant develop-
ment in this direction is that Construction of Markov processes with continuous 
through Kolmogorov’s analytic theory [3]. 

Bachelier’s model was failed due to the reason that it has not ensured about 
the stock prices would always be positive though the Geometric Brownian Mo-
tion has overcome this drawback [4]. It is evident that Geometric Brownian Mo-
tion is a suitable and competent model for stock price movements [5]. The Mar-
tingale Approach is used explicitly instead of the classical approach based on 
partial differential equations for modelling the stock prices. The shift of partial 
differential equations under boundary conditions to martingale methods has 
taken long time and which is an essential condition for Feynman-Kac method is, 
however, that the underlying security processes have to be Markovian diffusions 
[6]. A constructive approach to stochastic integration with respect to conti-
nuous, vector-valued martingales with “continuous” filtrations is presented by 
Walter Willinger et al. Here the Riemann-Stieltjes approximation is used to dis-
cretize time and to carefully discretize the probability space so that almost-sure 
(path wise) convergence of “simple” Riemann-Stieltjes sums can be established. 
They have also applied path wise stochastic integration to the theory of security 
markets with continuous trading [5]. Many theories have been developed to deal 
with the analysis of stochastic models for the buying and selling of portfolios of 
securities in continuous time. Another vital finding is Lower tail dependence 
which contains significant facts for risk-averse investors and is appropriate for 
portfolio choice, and this a measure of the probability that whether a portfolio 
will suffer large losses [5] [7]. 

Investors can formulate a probability distribution of the probable rates of re-
turn on investments to study the likelihood of default and bankruptcy risk [8]. 
International risk-sharing can yield substantial welfare gains through its effect 
on expected consumption growth under the assumption that the countries in-
itially hold no riskless assets and asset returns are symmetrically distributed [9]. 
PDE methods of Kolmogorov and Feller used to study Markov processes with 
analytic approach and Stochastic Differentials of Itô with probabilistic approach 
[10]. 
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The objective of portfolio manager is to minimize the tracking error variance 
(TEC) for a given projected gain more than the bench marking targets so as the 
achievement in the wealth of maximum shareholders [11].  

The perception of tail dependence derives from Extreme Value Theory (EVT) 
allows to designate the tail behaviour of a random variable deprived of postulat-
ing its underlying distribution [12]. The risk and returns of investment portfolio 
in hypothetical scenario based on Heston models have good agreement with 
practical data pertaining to investigate changing aspects of stock price in real fi-
nancial markets [13]. A portfolio manager shall have pre-set of information 
about security returns, developed obvious solutions for the ideal dynamic port-
folios with a range of probable constraints. He/she may monitor by using condi-
tioning information to form portfolios that optimize unrestricted performance 
methods and unconditional tracking efficiency [14]. A unified structure to mod-
el and to make evaluation on comparatively large dependence matrices by means 
of pair vine copula and lowest risk optimal portfolios with respect to five risk 
measures viz., variance, MAD, minimax, the conditional Value-at-Risk and the 
conditional Drawdown-at-Risk, has been proposed [15]. 

Value at Risk (VaR) is an unsuccessful measure to vigilant the instability on 
the perspective as it is not using Non-standard Monte Carlo simulations. The 
magnitude of fat a lower tail, in special circumstances like turbulent markets, 
general Monte Carlo analysis might not reflect. Then the bi-modal switching 
structure between assumed normal periods and possible turbulent economic pe-
riods may help to resolve the problem [16]. A bivariate stochastic model for 
Portfolio Management to find the share allocations in Risky and Non-Risky 
Portfolios of an investment business was developed by considering the linear 
birth, death and migration processes. It will assess the prevalence of investment 
inflows from risky to safety assets and vice versa in a portfolio management 
through the mechanism of growth/loss/and transition processes within a single 
scheme of investments [17]. 

Management of single portfolio consisting of bivariate inflow among the same 
scheme of the investments such as short term and long-term investments is 
modelled. However, in practice there will be more than one scheme of invest-
ments in which the investors prefer to share their capital. The optimal finance 
management always suggests the operation of more than one scheme of invest-
ments to achieve the objectives like risk minimization, profit maximization, con-
sistency in growth of investment, etc. In order to reach the said goals, this study 
has proposed a stochastic model with bivariate linear growth and loss processes 
in two dimensional complementary schemes of investments. Text styles are pro-
vided. The formatter will need to create these components, incorporating the 
applicable criteria that follow. 

2. Stochastic Model 

As per this model, there will be two simultaneous operating investment schemes 
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namely long term (fixed) investment and short term (operational) investment. 
There are two types of complementary growth portfolios namely risky assets and 
safety assets, operates within each of the fixed and operational investments. 
Hence this study describes and developed a stochastic model with Bivariate 
Poisson linear growth and loss processes with two-dimensional investment 
schemes. The proposed process has the combination of four possible invest-
ments such as (i) Fixed Investments with Risky Assets, (ii) Fixed Investments 
with Safety Assets, (iii) Operational Investments with Risky Assets and (iv) Op-
erational Investments with Safety Assets. Two schemes of investments are con-
nected by a linear combination for getting the joint effect of the total investment 
policy.  

This study has addressed a two-dimensional investment stochastic model with 
bivariate risk management and portfolio diversification within each dimension. 
The activities like bonus shares, liquidation, transfer of investments from risky 
assets to safety assets and vice-versa are expressed with the combination of fixed 
and operational investments. Each bivariate process is influenced with initial 
fixed investments in risky and safety assets; as well as initial operational invest-
ments in risky and safety assets.  

Usually, the objective of Portfolio diversification is to minimize the risk in the 
investments. However, continuous diversification without any absence makes 
some times the Portfolio is towards for loss in the long run. The logic of jointing 
the total effect of portfolio diversification with fixed investment and operational 
investment through a linear combination of binary variables is considered in this 
study. Further, it is assumed that the Poisson processes of diversification during 
the fixed investment and operational investment are complementary. However, 
the model development is designed to study the factors on growth, evolutions 
and stipulations and loss processes as an overall phenomenon by combining the 
conditions of risky and safety assets. 

2.1. Notation and Assumptions 

Events will be occurred in non-overlapping intervals of time and are statistically 
independent. a, b, c, d, e, f, g and h be binary constants such that a, b, c, d, e, f, g, 
h = (0, 1). The notations to use in the formulation are as follows.  

i. mfr: fixed investments in risky assets 
ii. mor: operational investments in risky assets 

iii. nfs: fixed investments in safety assets 
iv. nos: operational investments in safety assets 
v. αifr: Growth Rate of initial fixed investments in risky assets per unit time 

vi. αifs: Growth Rate of initial fixed investments in safety assets per unit time 
vii. αior: Growth Rate of initial operational investments in risky assets per 

unit time 
viii. αios: Growth Rate of initial operational investments in safety assets per 

unit time 
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ix. αfr: Growth Rate of fixed investments in risky assets per unit time from 
the existing mfr 

x. αfs: Growth Rate of fixed investments in safety assets per unit time from 
the existing nfs 

xi. αor: Growth Rate of operational investments in risky assets per unit time 
from the existing operational investments in risky assets 

xii. αos: Growth Rate of operational investments in safety assets per unit time 
from the existing operational investments in safety assets 

xiii. δor: Loss Rate of operational investments in risky assets per unit time 
from the existing operational investments in risky assets 

xiv. δos: Loss Rate of operational investments in safety assets per unit time 
from the existing operational investments in safety assets 

xv. δfr: Loss Rate of fixed investments in risky assets per unit time from the 
existing fixed investments in risky assets 

xvi. δfs: Loss Rate of fixed investments in safety assets per unit time from the 
existing fixed investments in safety assets 

xvii. τor: Transition Rate of operational investments from risky assets to safety 
assets per unit time from the existing operational investments in risky assets 

xviii. τos: Transition Rate of operational investments from safety assets to risky 
assets per unit time from the existing operational investments in safety assets 

xix. τfr: Transition Rate of fixed investments from risky assets to safety assets 
per unit time from the existing fixed investments in risky assets 

xx. τfs: Transition Rate of fixed investments from safety assets to risky assets 
per unit time from the existing fixed investments in safety assets 

2.2. Schematic Diagram for the Portfolio Diversification 

 

2.3. Postulates of the Model 

i) arrival of a share to the group of Risky Assets during t∆  through immi-
gration from external sources provided there exits “ l ” number of shares at time 
“t” is ( ){ } ( )1ifr iorl a a t o tα α+ − ∆ + ∆ ;  
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ii) arrival of share to the group of Safety Assets during t∆  through immigra-
tion from external sources provided there exits “ l ” number of shares at time “t” 
is ( ){ } ( )1ifs iosl b b t o tα α+ − ∆ + ∆ ;  

iii) growth in investment within the group of Risky Assets, during t∆  pro-
vided there exits “mfr” number of shares in fixed investments and “mor” number 
of shares in operational investments already in the said group at time “t” is 

( ){ } ( )1fr fr or orcm c m t o tα α+ − ∆ + ∆ ;  
iv) growth in investment within the group of Safety Assets, during t∆  pro-

vided there exits “nfs” number of shares in fixed investments and “nos” number of 
shares in operational investments already in the said group at time “t” is 

( ){ } ( )1fs fs os osdn d n t o tα α+ − ∆ + ∆ ;  
v) Transition of share from the group of Risky Assets to the group of Safety 

Assets during t∆  provided there exits “mfr” number of shares in fixed invest-
ments and “mor” number of shares in operational investments are in the Risky 
Assets group at time “t” is ( ){ } ( )1fr fr or orem e m t o tτ τ+ − ∆ + ∆ ;  

vi) Transition of share from the group of Safety Assets to the group Risky As-
sets of during t∆  provided there exits “nfs” number of shares in fixed invest-
ments and “nos” number of shares in operational investments in Safety Assets 
group at time “t” is ( ){ } ( )1fs fs os osfn f n t o tτ τ+ − ∆ + ∆ ;  

vii) Withdrawal of share (Liquidation) from the group of Risky Assets during 
t∆  provided there exits “mfr” number of shares in fixed investments and “mor” 

number of shares in operational investments in the said group at time “t” is 
( ){ } ( )1fr fr or orgm g m t o tδ δ+ − ∆ + ∆ ;  

viii) Withdrawal of share (Liquidation) from the group of Safety Assets during 
t∆  provided there exits “nfs” number of shares in fixed investments and “nos” 

number of shares in operational investments in the said group at time “t” is 
( ){ } ( )1fs fs os oshn h n t o tδ δ+ − ∆ + ∆ ; 

ix) No growth in number of shares to the groups of Risky Assets and Safety 
Assets from external sources, no growth in investment within the group of Risky 
Assets and Safety Assets, no transformation of shares one group to the other 
group, no withdrawal of shares from the groups of Risky Assets and Safety As-
sets during an infinitesimal interval of time t∆  is  

( )( ) ( )( ) ( ){
( ) ( ) ( ) ( )
( ) ( ) ( ) } ( )

1 1 1

1 1 1

1 1 1

ifr ior ifs ios fr fr fr fr

or or or or fs fs fs fs

os os os os

l a a b b m c e g

m c e g n d f h

n d f h t O t

α α α α α τ δ

α τ δ α τ δ

α τ δ

 − + − + + − + + + 

+ − + − + − + + +  

+ − + − + − ⋅∆ + ∆  

 

x) Occurrence of other than the above events during an infinitesimal interval 
of time t∆  is ( )2O t∆ .  

2.4. Differential Equations of the Model 

Let Pm,n(t) be the probability that there exists “m” shares in Risky Assets group 
and “n” shares in Safety Assets at time “t”. Further let ( ),m nP t t+ ∆  be the 
probability that there exists “m” shares in Risky Assets group and “n” shares in 
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Safety Assets at time “t + Δt”, it may happened as the processes of 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

, , 0,0 , 1 0,1 1, 1,0

, 1 0, 1 1, 1,0 1, 1 1, 1

2
1, 1 1, 1

m n m n m n m n

m n m n m n

m n

p t t p t p t p t p t p t p t

p t p t p t p t p t p t

p t p t o t

− −

+ − + − + − − +

− + + −

+ ∆ = ∆ + ∆ + ∆

+ ∆ + ∆ + ∆

+ ∆ + ∆

       

( )( ) ( )( ){
( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) } ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( )

,

,

, 1

1 1

1 1 1

1 1 1

1 1 1

1 1 1

m n ifr ior ifs ios

fr or fr or fr or

fs os fs os fs os m n

ifs ios fs os m n

ifr ior fr or

P l a a b b

m c c e e g g

n d d f f h h P t

l b b n d d P t

l a a m c c

α α α α

α α τ τ δ δ

α α τ τ δ δ

α α α α

α α α α

−

 ′ = − + − + + − 

 + + − + + − + + − 

 + + − + + − + + − 

 + + − + − + − 

 + + − + − + − ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

1,

, 1 1,

1, 1

1, 1

1 1 1 1

1 1

1 1 ; for , 1

m n

fs os m n fr or m n

fs os m n

fr or m n

P t

n h h P t m g g P t

n f f P t

m e e P t m n

δ δ δ δ

τ τ

τ τ

−

+ +

− +

+ −



   + + + − + + + −   

 + + + − 

 + + + − ≥ 

(2.4.1) 

( ) ( )( ) ( )( ){ } ( )

( )( ) ( ) ( )( ) ( )

0,0 0,0

0,1 1,0

1 1

1 1

ifr ior ifs ios

fs os fr or

P t l a a b b P t

h h P t g g P t

α α α α

δ δ δ δ

 ′ = − + − + + − 

+ + − ⋅ + + − ⋅
      (2.4.2) 

( ) ( )( ) ( )( ){
( )( ) ( )( ) ( )( ) } ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( )

1,0

1,0

1,1 2,0

0,1

1 1

1 1 1

1 1

1

ifr ior ifs ios

fr or fr or fr or

fs os fr or

fs os

P t l a a b b

c c e e g g P t

h h P t g g P t

f f P t

α α α α

α α τ τ δ δ

δ δ δ δ

τ τ

 ′ = − + − + + − 

 + + − + + − + + − 

+ + − + + −

+ + −

 (2.4.3) 

( ) ( )( ) ( )( ){
( )( ) ( )( ) ( )( ) } ( )

( )( ) ( )( ) ( )

( )( ) ( )

0,1

0,1

1,1 1,0

0,2

1 1

1 1 1

1 ( ) 1

2 1

ifr ior ifs ios

fs os fs os fs os

fr or fr or

fs os

P t l a a b b

d d f f h h P t

g g P t e e P t

h h P t

α α α α

α α τ τ δ δ

δ δ τ τ

δ δ

 ′ = − + − + + − 

 + + − + + − + + − 

+ + − + + −

+ + −

(2.4.4) 

With the initial condition  
( ) ( ),1, 0 0, ,

o oM N i j o oP t P i M j N= = ∀ ≠ ≠  Where oM  Risky shares and oN  
Safety Shares in the Portfolio. 

Let ( ), ;P x y t  be the joint probability generating function of ( ),m nP t ; 

where ( ) ( ),
0 0

, ; m n
m n

m n
P x y t x y P t

∞ ∞

= =

= ∑∑  

Multiplying the Equations (2.4.1)-(2.4.4) with m nx y  and summing overall m 
and n, we obtain 
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( )

( ){ } ( ){ }( ) ( )

( ){ } ( ){ } ( ){ }( ) ( )

( ){ } ( )

,
0 0

,
0 0

,
0 0

,
0

1 1

1 1 1

({ (1 ) } 1 { (1 ) })

m n
m n

m n

m n
ifr ior ifs ios m n

m n

m n
fr or fr or fr or m n

m n

m n
fs os fs os fs os m n

n

x y P t

l a a b b x y P t

m c c e e g g x y P t

n d d f f h h x y P t

α α α α

α α τ τ δ δ

α α τ τ δ δ

∞ ∞

= =

∞ ∞

= =

∞ ∞

= =

∞

=

′

 = − + − + + − 

 + − + − + + − + + − 

 + − + − + + − + + − 

∑∑

∑∑

∑∑

∑

( ){ } ( ) ( ){ } ( )

( ){ } ( ) ( ){ } ( )

( ) ( ){ } ( )

( ) ( ){ } ( )

( )

0

, 1
0 0

1,
0 0

, 1
0 0

1,
0 0

1 1 1

1 1 1

1 1

1 1

1

m

m n
ifs ios fs os m n

m n

m n
ifr ior fr or m n

m n

m n
fs os m n

m n

m n
fr or m n

m n

l b b n d d x y P t

l a a m c c x y P t

n h h x y P t

m g g x y P t

n f

α α α α

α α α α

δ δ

δ δ

∞

=

∞ ∞

−
= =

∞ ∞

−
= =

∞ ∞

+
= =

∞ ∞

+
= =

 + + − + − + − 

 + + − + − + − 

 + + + − 

 + + + − 

+ +

∑

∑∑

∑∑

∑∑

∑∑

( ){ } ( )

( ) ( ){ } ( )

1, 1
0 0

1, 1
0 0

1

1 1

m n
fs os m n

m n

m n
fr or m n

m n

f x y P t

m e e x y P t

τ τ

τ τ

∞ ∞

− +
= =

∞ ∞

+ −
= =

 + − 

 + + + − 

∑∑

∑∑
 

( ) ( ){ } ( ){ } ( ){ }(

( ){ }) ( ){ } ( ){ }

( ){ } ( ){ } ( ){ }(
( ){ }) ( ){ } ( ){ }

( ){ }( )

2

2

d , ;
1 1 1

d

1 1 1

1 1 1

1 1 1

( 1 1

fr or fr or fr or

fr or fr or fr or

fs os fs os fs os

fs os fs os fs os

ifr ior

P x y t
g g c c e e

t
Pg g x e e y c c x
x

h h d d f f

Ph h y f f x d d y
y

l a a x l b

δ δ α α τ τ

δ δ τ τ α α

δ δ α α τ τ

δ δ τ τ α α

α α α

= + − − + − + + −

∂+ + − + + − + + −  ∂

+ + − − + − + + −
∂+ + − + + − + + −  ∂

+ + − − + ( ){ }( ) ( )1 1 , ;ifs iosb y P x y tα + − − 

  

2.5. Statistical Measures through the Model 

We can obtain the characteristics of the model by using the joint C.G.F. of 
( ),m nP t  as below 

2.5.1. Expected Number of Risky Shares 

( ) ( ){ } ( ){ } ( ){ }1,0 exp 1 1 1fr or fr or fr or om t g g e e c c t Mδ δ τ τ α α = − + − − + − + + −   (2.5.1) 

where No is initial number of shares in the Risky Asset group 

2.5.2. Expected Number of Safety Shares 

( ) ( ) ( ) ( ){ }0,1 exp 1 1 1fs os fs os fs os om t h h f f d d Nδ δ τ τ α α     = − + − − + − + + −       (2.5.2) 

where Mo is initial number of shares in the Safety group. 
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2.5.3. Variance of Risky Shares 

( ) ( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ }( )

( ){ } ( ){ } ( ){ }( )

2,0 1 1 1

exp 1 1 1

1 1 1

exp 2 1 1 1

fr or fr or fr or o

fr or fr or fr or

fr or fr or fr or

fr or fr or fr or

m t g g e e c c M

g g e e c c t

g g e e c c

g g e e c c t

δ δ τ τ α α

δ δ τ τ α α

δ δ τ τ α α

δ δ τ τ α α

= + − + + − + + − ∗

 ∗ − + − − + − + + − 
 ÷ − − + − − + − + + − 

 + − + − − + − + + − 

 (2.5.3) 

2.5.4. Variance of Safety Shares 

( ) ( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ }( )

( ){ } ( ){ } ( ){ }( )

0,2 1 1 1

exp 1 1 1

1 1 1

exp 2 1 1 1

fs os fs os fs os o

fs os fs os fs os

fs os fs os fs os

fs os fs os fs os

m t h h f f d d N

h h f f d d t

h h f f d d

h h f f d d t

δ δ τ τ α α

δ δ τ τ α α

δ δ τ τ α α

δ δ τ τ α α

 = + − + + − + + − ∗ 
 ∗ − + − − + − + + − 

 ÷ − − + − − + − + + − 
 + − + − − + − + + − 

 (2.5.4) 

2.5.5. Covariance between Risky Shares and Safety Shares 

( ) ( ){ } ( ){ } ( ){ }(
( ){ } ( ){ } ( ){ })

1,1 exp 1 1 1

1 1 1

fr or fs os fr or

fs os fr or fs os

m t g g h h e e

f f c c d d t

δ δ δ δ τ τ

τ τ α α α α

= − + − + + − + + −
+ + − − + − − + − 

 (2.5.5) 

3. Numerical Illustration and Sensitivity Analysis 

In order to understand the model behavior on more detailed way, simulated 
numerical data sets were obtained from Equations (1)-(5). The values of 

( ) ( ) ( ) ( )1,0 0,1 2,0 0,2, , ,m t m t m t m t  and ( )1,1m t  are computed for different values 
of , , , , , , , , , , , , ,fr or fs os fr or fs os fr or fs os o oN Mα α α α δ δ δ δ τ τ τ τ  and t  when the re-
maining are constant and presented in Table 1 and Table 2. 

 
Table 1. Values of m10, m01,m20, m02, and m11 for varying values of αfr, αor, αfs, αos, δfs, δor, δfs,δos when the remaining are constants. 

frα  orα  fsα  osα  frδ  orδ  fsδ  osδ  10m  01m  20m  02m  11m  

1 1 0.1 0.1 1 1 1 1 0.368 0.15 1.239 0.188 0.055 

1.1 1 0.1 0.1 1 1 1 1 0.375 0.15 1.297 0.188 0.056 

1.2 1 0.1 0.1 1 1 1 1 0.383 0.15 1.359 0.188 0.057 

1.3 1 0.1 0.1 1 1 1 1 0.391 0.15 1.424 0.188 0.058 

1.4 1 0.1 0.1 1 1 1 1 0.399 0.15 1.493 0.188 0.06 

1.5 1 0.1 0.1 1 1 1 1 0.407 0.15 1.566 0.188 0.061 

1 1 0.1 0.1 1 1 1 1 0.368 0.15 1.239 0.188 0.055 

1 1.1 0.1 0.1 1 1 1 1 0.399 0.15 1.493 0.188 0.06 

1 1.2 0.1 0.1 1 1 1 1 0.432 0.15 1.81 0.188 0.065 

1 1.3 0.1 0.1 1 1 1 1 0.468 0.15 2.212 0.188 0.07 

1 1.4 0.1 0.1 1 1 1 1 0.507 0.15 2.73 0.188 0.076 
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Continued 

1 1.5 0.1 0.1 1 1 1 1 0.549 0.15 3.411 0.188 0.082 

1 1 0.1 0.1 1 1 1 1 0.368 0.15 1.239 0.188 0.055 

1 1 0.2 0.1 1 1 1 1 0.368 0.153 1.239 0.195 0.056 

1 1 0.3 0.1 1 1 1 1 0.368 0.156 1.239 0.203 0.057 

1 1 0.4 0.1 1 1 1 1 0.368 0.159 1.239 0.212 0.058 

1 1 0.5 0.1 1 1 1 1 0.368 0.162 1.239 0.22 0.06 

1 1 0.1 0.1 1 1 1 1 0.368 0.15 1.239 0.188 0.055 

1 1 0.1 0.2 1 1 1 1 0.368 0.162 1.239 0.22 0.06 

1 1 0.1 0.3 1 1 1 1 0.368 0.176 1.239 0.259 0.065 

1 1 0.1 0.4 1 1 1 1 0.368 0.19 1.239 0.304 0.07 

1 1 0.1 0.5 1 1 1 1 0.368 0.206 1.239 0.358 0.076 

1 1 0.1 0.1 1 1 1 1 0.368 0.15 1.239 0.188 0.055 

1 1 0.1 0.1 1.1 1 1 1 0.361 0.15 1.198 0.188 0.054 

1 1 0.1 0.1 1.2 1 1 1 0.353 0.15 1.158 0.188 0.053 

1 1 0.1 0.1 1.3 1 1 1 0.346 0.15 1.12 0.188 0.052 

1 1 0.1 0.1 1.4 1 1 1 0.34 0.15 1.084 0.188 0.051 

1 1 0.1 0.1 1.5 1 1 1 0.333 0.15 1.049 0.188 0.05 

1 1 0.1 0.1 1 1 1 1 0.368 0.15 1.239 0.188 0.055 

1 1 0.1 0.1 1 1.1 1 1 0.34 0.15 1.084 0.188 0.051 

1 1 0.1 0.1 1 1.2 1 1 0.313 0.15 0.952 0.188 0.047 

1 1 0.1 0.1 1 1.3 1 1 0.289 0.15 0.84 0.188 0.043 

1 1 0.1 0.1 1 1.4 1 1 0.267 0.15 0.743 0.188 0.04 

1 1 0.1 0.1 1 1.5 1 1 0.247 0.15 0.66 0.188 0.037 

1 1 0.1 0.1 1 1 1 1 0.368 0.15 1.239 0.188 0.055 

1 1 0.1 0.1 1 1 1.1 1 0.368 0.147 1.239 0.183 0.054 

1 1 0.1 0.1 1 1 1.2 1 0.368 0.144 1.239 0.179 0.053 

1 1 0.1 0.1 1 1 1.3 1 0.368 0.141 1.239 0.175 0.052 

1 1 0.1 0.1 1 1 1.4 1 0.368 0.138 1.239 0.171 0.051 

1 1 0.1 0.1 1 1 1.5 1 0.368 0.135 1.239 0.167 0.05 

1 1 0.1 0.1 1 1 1 1 0.368 0.15 1.239 0.188 0.055 

1 1 0.1 0.1 1 1 1 1.1 0.368 0.138 1.239 0.171 0.051 

1 1 0.1 0.1 1 1 1 1.2 0.368 0.127 1.239 0.156 0.047 

1 1 0.1 0.1 1 1 1 1.3 0.368 0.118 1.239 0.142 0.043 

1 1 0.1 0.1 1 1 1 1.4 0.368 0.109 1.239 0.13 0.04 

1 1 0.1 0.1 1 1 1 1.5 0.368 0.1 1.239 0.119 0.037 
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Table 2. Values of m10, m01, m20, m02, and m11 for varying values of τfs, τos, τfr, τor, N0, M0 and t when the remaining are constants. 

fsτ  osτ  frτ  orτ  oN  oM  t  10m  01m  20m  02m  11m  

1 1 1 1 1 1 1 0.368 0.15 1.239 0.188 0.055 

1.1 1 1 1 1 1 1 0.361 0.15 1.198 0.188 0.054 

1.2 1 1 1 1 1 1 0.353 0.15 1.158 0.188 0.053 

1.3 1 1 1 1 1 1 0.346 0.15 1.12 0.188 0.052 

1.4 1 1 1 1 1 1 0.34 0.15 1.084 0.188 0.051 

1.5 1 1 1 1 1 1 0.333 0.15 1.049 0.188 0.05 

1 1 1 1 1 1 1 0.368 0.15 1.239 0.188 0.055 

1 1.1 1 1 1 1 1 0.34 0.15 1.084 0.188 0.051 

1 1.2 1 1 1 1 1 0.313 0.15 0.952 0.188 0.047 

1 1.3 1 1 1 1 1 0.289 0.15 0.84 0.188 0.043 

1 1.4 1 1 1 1 1 0.267 0.15 0.743 0.188 0.04 

1 1.5 1 1 1 1 1 0.247 0.15 0.66 0.188 0.037 

1 1 1 1 1 1 1 0.368 0.15 1.239 0.188 0.055 

1 1 1.1 1 1 1 1 0.368 0.147 1.239 0.183 0.054 

1 1 1.2 1 1 1 1 0.368 0.144 1.239 0.179 0.053 

1 1 1.3 1 1 1 1 0.368 0.141 1.239 0.175 0.052 

1 1 1.4 1 1 1 1 0.368 0.138 1.239 0.171 0.051 

1 1 1.5 1 1 1 1 0.368 0.135 1.239 0.167 0.05 

1 1 1 1 1 1 1 0.368 0.15 1.239 0.188 0.055 

1 1 1 1.1 1 1 1 0.368 0.138 1.239 0.171 0.051 

1 1 1 1.2 1 1 1 0.368 0.127 1.239 0.156 0.047 

1 1 1 1.3 1 1 1 0.368 0.118 1.239 0.142 0.043 

1 1 1 1.4 1 1 1 0.368 0.109 1.239 0.13 0.04 

1 1 1 1.5 1 1 1 0.368 0.1 1.239 0.119 0.037 

1 1 1 1 1 1 1 0.368 0.15 1.239 0.188 0.055 

1 1 1 1 1.1 1 1 0.405 0.15 1.349 0.188 0.055 

1 1 1 1 1.2 1 1 0.441 0.15 1.46 0.188 0.055 

1 1 1 1 1.3 1 1 0.478 0.15 1.57 0.188 0.055 

1 1 1 1 1.4 1 1 0.515 0.15 1.68 0.188 0.055 

1 1 1 1 1.5 1 1 0.552 0.15 1.791 0.188 0.055 

1 1 1 1 1 1 1 0.368 0.15 1.239 0.188 0.055 

1 1 1 1 1 1.1 1 0.368 0.165 1.239 0.204 0.055 

1 1 1 1 1 1.2 1 0.368 0.179 1.239 0.221 0.055 

1 1 1 1 1 1.3 1 0.368 0.194 1.239 0.237 0.055 

1 1 1 1 1 1.4 1 0.368 0.209 1.239 0.254 0.055 

1 1 1 1 1 1.5 1 0.368 0.224 1.239 0.27 0.055 

1 1 1 1 1 1 2 0.135 0.022 0.424 0.025 3.028 × 10−3 

1 1 1 1 1 1 3 0.05 3.346 × 10−3 0.152 3.709 × 10−3 1.666 × 10−4 

1 1 1 1 1 1 4 0.018 5.005 × 10−4 0.055 5.534 × 10−4 9.166 × 10−6 

1 1 1 1 1 1 5 6.738 × 10−3 7.485 × 10−5 0.02 8.274 × 10−5 5.043 × 10−7 
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Figures 

 
Figure 1. The changing patterns of statistical measures with respect to the study parameters. 
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4. Findings 

The changing patterns of statistical measures with respect to the study parame-
ters are presented in Table 1 and further they are presented in figures for better 
understanding of model behaviour with related parameters. The following are 
some observations. 

Figure 1(a) & Figure 1(b) displayed that Mean and Variances of number of 
Risky Asset’s shares are increasing functions of growth (arrival) rate of Fixed in-
vestments and also increased with Operational investments when all other pa-
rameters are constants. And Co-variance of number of Risky Asset’s Shares with 
Safety Asset’s Shares are increasing functions of growth (arrival) rate of Risky 
Asset’s Shares with Fixed investments and Operational investments, when all 
other parameters are constant. It is also observed that Expected number of Safety 
Asset’s Shares and variance of number of Safety Asset’s Shares are invariant of 
Growth Rate of initial fixed investments in Risky Assets per unit time and 
Growth Rate of initial operational investments in Risky Assets per unit time. 

From Figure 1(c) & Figure 1(d), it is observed that, Average and Variances of 
Safety Assets are increasing functions of growth (arrival) rate of Fixed invest-
ments and also increased with Operational investments when all other parame-
ters are constant. Co-variance of Risky Asset’s Shares with Safety Asset’s Shares 
are increasing functions of growth (arrival) rate of Safety Assets Shares with 
Fixed investments and Operational investments, when all other parameters are 
constant. It is also observed that Expected number of Risky Asset’s Shares and 
variance of number of Risky Asset’s Shares are invariant of Growth Rate of ini-
tial fixed investments in Safety Assets per unit time and Growth Rate of initial 
operational investments in Safety Assets per unit time. 

From Figure 1(e) & Figure 1(f), it is apparent that, Aggregate and Variability 
of Risky Asset’s Shares are decreasing functions of growth (arrival) rate of Fixed 
investments and also increased with Operational investments when all other pa-
rameters are constant. Co-variance of Risky Asset’s Shares with Safety Asset’s 
Shares are decreasing functions of loss rate of Risky Asset’s Shares with Fixed 
investments and Operational investments, when all other parameters are con-
stant. And Expected number of Safety Asset’s Shares and variance of Safety As-
set’s Shares are invariant of Loss Rate of fixed investments in Risky Asset’s per 
unit time from the existing mfr and Loss Rate of operational investments in Risky 
Assets per unit time from the existing mor. 

Figure 1(i) & Figure 1(j) exhibited that Mean and Variances Safety Asset’s 
Shares are decreasing functions of growth (arrival) rate of Fixed investments and 
also increased with Operational investments when all other parameters are con-
stant. Co-variance of Risky Asset’s Shares with Safety Asset’s Shares are de-
creasing functions of loss rate of Safety Asset’s Shares with Fixed investments 
and Operational investments, when all other parameters are constant. Aggregate 
and variance of Risky Asset’s Shares are invariant of Loss Rate of fixed invest-
ments in Safety Assets per unit time from the existing nfs and Loss Rate of opera-
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tional investments in Safety Assets per unit time from the existing nos. 
Figure 1(k) & Figure 1(l) show that average number of Risky Asset’s shares 

and variance of Risky Asset’s Shares are decreasing functions of loss rate of 
Safety Assets with Fixed investments and Operational investments, when all 
other parameters are constant. Co-variance of Risky asset’s shares with Safety 
asset’s shares are decreasing functions of transformation rate of Risky asset’s 
shares with Fixed investments and Operational investments, when all other pa-
rameters are constant. Average and variance of number of Safety asset’s shares 
are invariant of Transition Rate of operational investments from Risky assets to 
Safety assets per unit time from the existing mor and Transition Rate of fixed in-
vestments from Risky assets to Safety assets per unit time from the existing mfr. 

Figure 1(m) & Figure 1(n) disclosed that, aggregate and Variances of Safety 
Asset’s Shares are decreasing functions of loss rate of Safety Asset’s Shares with 
Fixed investments and Operational investments, when all other parameters are 
constant. Co-variance of Risky Assets Shares with Safety Assets Shares are de-
creasing functions of transformation rate of Safety Assets Shares with Fixed in-
vestments and Operational investments, when all other parameters are constant. 
Expectation and variance of number of Risky Asset’s Shares are invariant of 
Transition Rate of fixed investments from Safety Assets to risky assets per unit 
time from the existing nfs and Transition Rate of operational investments from 
Safety Assets to Risky Assets per unit time from the existing nos. 

Figure 1(o) exhibited that Mean and Variance of Risky Assets Shares are in-
creasing functions of initial size of Risky shares oN . Whereas, expected number 
and variance of Safety asset’s shares along with co-variance between Risky asset’s 
shares and of Safety asset’s shares are invariant with Fixed investments; and Op-
erational investments when all other parameters are constant. 

Figure 1(p) displayed that expected number of Safety asset’s shares and va-
riance of Risky asset’s shares are increasing functions of initial size of Safety 
shares oM . Whereas, expected number of Risky Asset’s Shares, the variance of 
Risky Asset’s shares; Co-variance of Risky Asset’s shares with Safety Asset’s 
shares are invariant with Fixed investments and Operational investments when 
all other parameters are constant. 

Figure 1(q) exhibited that, average number of Risky Asset’s Shares and Safety 
Asset’s Shares, variance of Risky Asset’s shares and variance of Safety Asset’s 
shares; Co-variance of Risky Asset’s Shares with Safety Asset’s shares are de-
creasing functions of time t. 
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