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Abstract 
We consider optimal control problems for the flow of gas in a pipe network. 
The equations of motions are taken to be represented by a semi-linear model 
derived from the fully nonlinear isothermal Euler gas equations. We formu-
late an optimal control problem on a given network and introduce a time dis-
cretization thereof. We then study the well-posedness of the corresponding 
time-discrete optimal control problem. In order to further reduce the com-
plexity, we consider an instantaneous control strategy. The main part of the 
paper is concerned with a non-overlapping domain decomposition of the 
semi-linear elliptic optimal control problem on the graph into local problems 
on a small part of the network, ultimately on a single edge. 
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1. Introduction 
1.1. Modeling of Gas Flow in a Single Pipe 

The Euler equations are given by a system of nonlinear hyperbolic partial 
differential equations (PDEs) which represent the motion of a compressible 
non-viscous fluid or a gas. They consist of the continuity equation, the balance 
of moments and the energy equation. The full set of equations is given by (see [1] 
[2] [3] [4]). Let ρ  denote the density, v  the velocity of the gas and p  the 
pressure. We further denote λ  the friction coefficient of the pipe, D  the 
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diameter, a  the cross section area. The variables of the system are ρ , the flux  

q a vρ= . We also denote c  the the speed of sound, i.e. 2 pc
ρ
∂

=
∂

 (for constant  

entropy). For natural gas we have 340 m/s. In particular, in the subsonic case 
( v c< ), the one which we consider in the sequel, two boundary conditions have 
to be imposed, one on the left and one on the right end of the pipe. We consider 
here the isothermal case only. Thus, for horizontal pipes  

( )

( ) ( )2

0

.
2

v
t x

v p v v v
t x D

ρ
ρ

λ
ρ ρ ρ

∂ ∂
+ =

∂ ∂
∂ ∂

+ + = −
∂ ∂                 

(1) 

In the particular case, where we have a constant speed of sound 
pc
ρ

= , for 

small velocities v c , we arrive at the semi-linear model  

( )

( )

0

.
2

v
t x

pv v v
t x D

ρ
ρ

λ
ρ ρ

∂ ∂
+ =

∂ ∂
∂ ∂

+ = −
∂ ∂                     

(2) 

1.2. Network Modeling 

Let ( ),G V E=  denote the graph of the gas network with vertices (nodes) 

{ }1 2, , , VV n n n=   an edges { }1 2, , , EE e e e=  . Node indices are denoted 
,j V∈ =  , while edges are labelled ,i E∈ =  . For the sake of 

uniqueness, we associate to each edge a direction. Accordingly, we introduce the 
edge-node incidence matrix  

1, if node is the left node of the edge ,

1, if node is the right node of the edge ,

0, else.

j i

ij j i

n e

d n e

−


= +



 

In contrast to the classical notion of discrete graphs, the graphs considered here 
are known as metric graphs, in the sense, that the edges are continuous curves. 
In fact, we consider here straight edges, along which differential equations hold. 
The pressure variables ( )i jp n  coincide for all edges incident at node jn , i.e. 

{ }: 1, , 0j iji i E d∈ = ∈ ≠ . We express the transmission conditions at the 
nodes in the following way. We introduce the edge degree :j jd =  . We 
distinguish now between multiple nodes jn , where 1jd > , which we denote 

M , whereas for simple nodes jn , for which 1id = , we write S . The set of 
simple nodes decomposes then into those simple nodes, where Dirichlet 
conditions hold S

D  and Neumann nodes S
N . Then the continuity 

conditions read as follows  

( ) ( ) ( ), , , , , , 0, .M
i j k j jp n t p n t i k j t T= ∀ ∈ ∈ ∈ 

          
(3) 

The nodal balance equation for the fluxes can be written as in instant of the 
classical Kirchhoff-type condition  
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( ) ( ), 0, , 0, .
j

M
ij i j

i
d q n t j t T

∈

= ∈ ∈∑



                

(4) 

From the considerations above we conclude the following system of semi- 
linear hyperbolic equations on the metric graph G :  

( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )
( ) ( ) ( )

( ) ( )

( )

2

2

2

, , 0, , , 0, 0,

, ,
, , , , , 0, 0,

,2

, , , , , , 0,

, , , , , , 0,

, 0, , 0,

,0
j

i
t i x i i

i

i ii
t i x i i

ii i
S

j i j i j j j

M
i j k j j

M
ij i j

i

i i

c
p x t q x t i x t T

a
q x t q x tc

q x t p x t i x t T
p x tD a

h p n t q n t u t i j t T

p n t p n t i k j t T

d q n t j t T

p x p

λ

∈

∂ + ∂ = ∈ ∈ ×

∂ + ∂ = − ∈ ∈ ×

= ∈ ∈ ∈

= ∀ ∈ ∈ ∈

= ∈ ∈

=

∑











 

 



( ) ( ) ( ) ( ),0 0, ,0 , 0, , .i i ix q x q x x i= ∈ ∈ 
 

(5) 

To the best knowledge of the authors, for problem (5), no published result 
seems to be available. 

2. Optimal Control Problems and Outline 

We are now in the position to formulate optimal control problems on the level 
of (5). There are currently two different approaches towards optimizing and/or 
control the flow of gas flow through pipe networks. The first one aims at 
optimizing decision variables such as on-off-states for valves and compressors or 
zero-full-supply and demand variables for input and exit nodes, respectively. 
Valves and compressors can be modelled as transmission conditions at a serial 
node. We refer to [5] [6] [7] and refrain in the sequel from discussing issues of 
valves and compressors. The combined discrete and continuous optimization will 
be the subject of a forthcoming publication. We now describe the general format 
for an optimal control problem associated with the semi-linear model equations. 

( )
( ) ( ) ( )

( ) ( )

2

, ,
0 0 0

min , , : , d d d
2

. . , , satisfies 5 ,

i

S

T T

i i i jp q u i j

I p q u I p q x t u t t

s t p q u

ν
∈Ξ ∈ ∈

= +∑ ∑∫∫ ∫


 

        

(6) 

( ){ }: , , : , , , .i i i i i i i i ip q u p p p q q q u u u iΞ = ≤ ≤ ≤ ≤ ≤ ≤ ∈
       

(7) 

In (6), 0ν >  is a penalty parameter and ( ),iI ⋅ ⋅  a continuous function on 
the pairs ( ),p q . In (7), the quantities , , ,i i i ip q p q  are given constants that 
determine the feasible pressures and flows in the pipe i , while ,i iu u  describe 
control constraints. In the continuous-time case the inequalities are considered 
as being satisfied for all times and everywhere along the pipes. In the sequel, we 
will not consider control constraints and state-constraints and, moreover, even 
reduce to a time semi-discretization. 

Time Discretization 

We now consider the time discretization of (5) such that [ ]0,T  is decomposed into 
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break points 0 10 Nt t t T= < < < =  with widths 1: , 0, , 1n n nt t t n N+∆ = − = − . 
Accordingly, we denote ( ) ( ) ( ) ( ), ,, : , , : , 0, , 1i n i n i n i np x t p x q x t q x n N= = = − . 
We consider a mixed implicit-explicit Euler scheme which takes ip  in the 
friction term in an explicit manner.  

( ) ( ) ( ) ( )
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( ) ( )( )
( ) ( )

( )

2

, 1 , 1 ,
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( ) ( ) ( )
( ) ( )

,0 ,0 ,0

0

, ,

,

, 0, , .

M

i i i

i i

j

p x p x q x

q x x i

∈

=

= ∈ ∈





        

(8) 

We then obtain the optimal control problem on the time-discrete level:  

( )
( ) ( ) ( )

( ) ( )

2
, ,, , 1 =10

min , , : , d
2

. . , , satisfies 8 .

i

S

N N

i i n i n jp q u i n nj

I p q u I p q x u n

s t p q u

ν
∈ = ∈

= +∑∑ ∑∑∫


 

        

(9) 

In (9), we consider edgewise given cost functions e.g.  

( )( ) ( ) ( ) ( ) ( ){ } ( )
2 2

, , , , , ,, : , 0, , .
2

d di
i i n i n i n i n i n i n iI p q x p x p x q x q x x iκ

= − + − ∈ ∈   

It is clear that (9) involves all time steps in the cost functional. We would like 
to reduce the complexity of the problem even further. To this aim we consider 
what has come to be known as instantaneous control. This amounts to reducing 
the sums in the cost function of (9) to the time-level 1nt + . This strategy has is 
known as rolling horizon approach, the simplest case of the moving horizon 
paradigm, see e.g. [8] [9]. Thus, for each 1, , 1n N= −  and given , ,,i n i np q , we 
consider the problems 

( )
( ) ( )

( ) ( )

2

, ,
0

min , , : , d
2

. . , , satisfies 8 at time level 1.

i

S
i i i jp q u i j

I p q u I p q x u

s t p q u n

ν
∈ ∈

= +

+

∑ ∑∫


 

           

(10) 

It is now convenient to discard the actual time level 1n +  and redefine the 

states at the former time as input data. To this end, we introduce 
1:i t

α =
∆

, 

( )1
,

1:i i nf p x
t

=
∆

, ( )2
,

1:i i nf q x
t

=
∆

, ( ) ( )
2

2
,

1:
2

i
i

i ni i

cx
p xD a

λ
γ =  and rewrite (8) as  
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( ) ( )( )
( )

( )

2
1

2

, 0, ,

, 0, ,

, , ,

( ), , ,

0, .
j

i
i i x i i i

i

i i x i i i i i i

S
j i j i j j j

M
i j k j j

M
ij i j
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cp x q x f x i
a

q x p x x q x q x f x i

g p n q n u i j

p n p n i k j

d q n j

α

α γ

∈

+ ∂ = ∈ ∈

+ ∂ + = ∈ ∈

= ∈ ∈

= ∀ ∈ ∈

= ∈∑











 

 


      

(11) 

We now differentiate the first equation in (11) with respect to x  and insert 

the result into the second equation. After renaming 2 11:i i x i
i

f f f
α

= − ∂ , 

{ }1, ,i m= =   and introducing 
2
i

i
i i

c
a

β
α

= , we consider the semi-linear 

elliptic problem on the graph G  with Neumann controls at simple nodes.  

( ) ( ) ( )( ) ( ) ( )
( ) ( )

( )
( )

( )

; , 0, ,

, ,

0, ,

, ,

0, ,
k

i i i xx i i i i i

M
i x i k j x j k k

S
i k k k D

S
x i k k k k N

M
ik i k

i

q x q x g x q x f x x i

q n q n i j k

q n i n

q n u i n

d q n k

α β

β β

∈

− ∂ + = ∈ ∈

∂ = ∂ ≠ ∈ ∈

= ∈ ∈

∂ = ∈ ∈

= ∈∑







 

 

 


      

(12) 

where we set ( ) ( ); :i ig x s x s sγ= . We then consider in the rest of the paper the 
following optimal control problem:  

( )
( ) ( )

( ) ( )

2

, ,
0

min , , : , d
2

. . , , satisfies 12 .

i

S
i i i jp q u i j

I p q u I p q x u

s t p q u

ν
∈ ∈

= +∑ ∑∫


             (13) 

Example 1. Before we embark on the non-overlapping domain decomposition 
method in the context of the instantaneous control paradigm (13), we look into 
the situation of a star graph with a central multiple node and m  edges. We 
arrange the graph such that the central node is located at 0x =  for all right 
ends of the edges and ix =   at the left ends of the edges. This is the situation 
that we consider in our examples. We assumed that the first edge satisfies a 
homogeneous Dirichlet condition at 1x =   and controlled Neumann conditions 
at ix =  . We obtain, accordingly  

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )1 1
1

, 0, , 1, ,

0 0 , 1, ,

0 0, 0, 2, , .

i i i xx i i i i i i i

i x i j x j

m

i x i i i
i

q x q x x q x q x f x x i m

q q i j m

q q q u i m

α β α γ

β β

=

− ∂ + = ∈ =

∂ = ∂ ≠ =

= = ∂ = =∑

 



  

(14) 

3. Domain Decomposition 

We provide an iterative non-overlapping domain decomposition that can be 
interpreted as an Uzawa method (Alg3, in the sense of Glowinski). See the 
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monograph [10] for details. The idea for this algorithm originates from a 
decoupling of the transmission conditions. To this end, we define the flux vector 

( )( )T
: ,k

ik i k kq d q n i= ∈  and the pressure vectors ( )( )T
: ,k

i x i k kq q n iβ∂ = ∂ ∈  
at a given node , M

kn k∈ . Given a vector ( ): ,i kz z i= ∈ , we define  

( )( ) 2: .
k

k
j ii jk

z z z
d ∈

= −∑



                   

(15) 

Then ( )2kS I=  and ( )1 1kS =  for ( )1: 1, ,1 kd= ∈  . With this notation, the 
general concept is easily established. We set for any 0σ > :  

( ) ( ).k k k k k kq q q qσ σ+ ∂ = ∂ − 
                

(16) 

Applying k  to both sides of (16), we obtain  

( ) 0.
k

ik i k
i

d q n
∈

=∑
                        

(17) 

But then (16) reduces to  

( ) ( )1 , ,
k

i k j k k
kk

q n q n i
d ∈

∂ = ∂ ∈∑


  

which, in turn, implies  

( ) ( ) , , .M
i x i k j x j k kq n q n i j kβ β∂ = ∂ ≠ ∈ ∈              (18) 

Clearly, if the transmission conditions (17), (18) hold at the multiple node kn , 
then (16) is also fulfilled. Thus, (16) is equivalent to the transmission conditions 
(17), (18). These new conditions (16) are now relaxed in an iterative scheme as 
follows. We use l  as iteration number.  

( ) ( ) ( )( ) ( )( ) ( )1 1 1
: .

l l l l lk k k k k k kp q q q gσ σ
+ + +
+ ∂ = ∂ − = 

       
(19) 

We have the following relations:  

( ) ( ) ( )( )1
2 .

l l lk k k kg q gσ
+
= ∂ −

                 
(20) 

This gives rise to the definition of a fixed point mapping. To this end, we need 
to look into the behavior of the interface in terms of ,k Mg k∈ , that is  

22
,

1: , : ,M k
M k

i i kk
ik

g g g
σ∈∈

∈∈

∈ = Π Π = ∑ ∑ 



           

(21) 

: ,→                            (22) 

( ) ( )( ), : 2 , , ,k k k M
ki k i

g q g k iσ= ∂ − ∈ ∈     

( ) ( ){ }, , ,kk i kg i= ∈    

( ){ }, .M
kg g k= ∈    

Now,  

( )( )
22 1 2 .

M k

k k k

iik

g q gµ
σ∈∈

= ∂ −∑ ∑


 
             

(23) 

We use the facts ( ) ( )2 2

k k

k k k
i ii i

g g
∈ ∈

=∑ ∑ 
  and  
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( ) ( )
k k

k k k k k k
i ii ii i

q g q g
∈ ∈

=∑ ∑ 
   and show  

( )2 2 4 .
M k

k k k
i i i

ik

g g g q qσ
∈∈

= − − ∂ ∂∑ ∑ 



              

(24) 

We now formulate a relaxed version of a fixed point iteration: for [ )0,1∈   

( ) ( )1 1 .l l lg g g+ = − +  
                    

(25) 

Up to now, the relations concerning the iteration at the interfaces do not 
involve the state equation explicitly. For the analysis of the convergence of the 
iterates, we need to specify the equations. 

The Non-Overlapping Domain Decomposition 

We are interested in the errors between the solutions to the problem (12) and  

( ) ( ) ( ) ( ) ( )
( )
( )
( ) ( )

( ) ( ) ( ) ( )

1 1 1

1 1

1

, 0, ,

0, ,

, ,

2 2

, .

l l l
i i i xx i i i i i

S
i k k k D

S
x i k k k k N

l l
ik i k x i k

l l l l
j x j k i x i k ik j k ik i k

j jk kk k

l M
ik

q x q x g q f x x i

q n i n

q n u i n

d q n q n

q n q n d q n d q n
d d

g k

α β

σ

σ β β

+ + +

+ +

∈ ∈

+

− ∂ + = ∈ ∈

= ∈ ∈

∂ = ∈ ∈

+ ∂

   
= ∂ − ∂ − −      

   
= ∈

∑ ∑



 



 

 

   

(26) 

Thus, we introduce 1 1:l le q q+ += − . Then 1le +  solves a non-linear differential 
equation with nonlinearity ( ) ( )1l

i i i i ig e q g q+ + − , zero right hand side and 
homogeneous boundary conditions at the simple nodes. As we noted above, the 
full transmission conditions are equivalent to (16). Hence, the error satisfies the 
same iterative Robin-type boundary conditions as 1lq + . We consider the 
following integration by parts formula after multiplying by a test function φ .  

( )( )1 1 1

0

0 ( ) d
i

l l l
i i i xx i i i i i i i

i
e e g e q g q xα β φ+ + +

∈

= − ∂ + + −∑∫


         
(27) 

( ) ( )1

M k

l
ik i x i k i k

ik

d e n nβ φ+

∈∈

= − ∂∑ ∑
                        

(28) 

( ) ( )( )( )1 1 1

0

d .
i

l l l
i i i i x i x i i i i i i i

i
e e g e q g q xα φ β φ φ+ + +

∈

+ + ∂ ∂ + + −∑∫


   
(29) 

We now take the test function to be equal to 1l
ie +  and obtain:  

( ) ( )

( ) ( )( )( )

1 1

1 1 1 1 1 1

0

d .

M k

i

l l
ik x i k i k

ik

l l l l l l
i i i i x i x i i i i i i i

i

d e n e n

e e e e g e q g q e xα β

+ +

∈∈

+ + + + + +

∈

∂

= + ∂ ∂ + + −

∑ ∑

∑∫




     

(30) 

We use the boundary condition at the interfaces in the form  

( ) ( )1 1 1 , .l l l M
ik i k ik x i kd e n g e n kσ+ + += − ∂ ∈  

This identity is used in the identity (24), evaluated for the error:  
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( )2 2 4 .
M k

k k k
i i i

ik

g g g e eσ
∈∈

= − − ∂ ∂∑ ∑ 



             

(31) 

We obtain  

( ) ( )( )( )

2 21

2

0

4 d .
i

l l

l l l l l l l
i i i i x i x i i i i i i i

i

g g

g e e e e g e q g q e xα β

+

∈

=

= − + ∂ ∂ + + −∑∫


 






  
(32) 

We assume  

( ) ( )( )( ) ( ); ; 0, 0, ,i i ig x s g x t s t x i− − ≥ ∀ ∈ ∈ 
          

(33) 

and define the bilinear form  

( ) ( )
0

, : d .
i

i i i i i i x i x ia xψ φ αψ φ β ψ φ= + ∂ ∂∫


               
(34) 

We define the corresponding quadratic form applied to le   

( ) ( )
0

, : d ,
i

l l l l l l
i i i i i i i x i x ia e e e e e e xα β= + ∂ ∂∫



               
(35) 

which is certainly bounded below by ( )2 0, ii Le


. Then the error iteration is  

( )2 2 21 4 ,l l l l l
i i i

i
g g g a e e+

∈

= = − ∑  



              

(36) 

and, thus, the error does not increase. That it actually decreases to zero is shown 
next. But first we look at the relaxed version of the iteration (25). We take norms 
and calculate in order to obtain (for [ ]0,1∈   

( ) ( )2 21 4 1 , .l l l l
i i i

i
g g a e e+

∈

≤ − − ∑ 



               

(37) 

We iterate in (36) or (37) down from l  to zero. Then we obtain  

{ } ( )is bounded, , 0, .l l l
i i ig a e e l→ →∞

              
(38) 

Clearly, for 0iα > , this shows that the ( )1 0, iH  -error strongly tends to zero. 
Then also the traces tend to zero as l →∞  and, therefore, the iteration 
converges.  

Theorem 2. Under assumption (33), for each [ )0,1∈  the iteration (25) 
with (26) and (21), (22) converges as l →∞ . The convergence of the solutions 
is in the sense of (38).  

Example 3. We show a numerical example, where three edges span a tripod. 
The first edge (see Figure 1) satisfies homogeneous Dirichlet conditions at the 
exterior node, while for the other two edges satisfy homogeneous Neumann 
conditions at the exterior nodes. In particular, we take 1 1000dx = , 10iα = , 

1 1f = , 2 0.1f = , 3 0.5f = . The nonlinearity is weighted by a factor 1γ =  and 
there are 10 fixed point iterations in order to handle the nonlinearity. The 
system without domain decomposition is solved using the MATLAB routine 
bvp4c with error tolerance 1 10tol e= − . The system with domain decomposition 
is solved with classical finite differences of second order. Figure 1 shows the 
tripod, where we display the original solutions and the ones obtained by the 
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domain decomposition. No difference is visible. Notice the discontinuity of the 
state at the central node. This is contrast to the classical nodal conditions known 
in the literature, where the states are continous across the multiple node, while 
the Neumann traces satisfying the Kirchhoff condition. We display the 
individual solutions—again without and with domain decomposition in Figure 2. 
There is no visible difference. Figure 3 shows the nodal errors at the central 
node. We see the nodal errors regarding the conservation of flows and the two 

 

 
Figure 1. The tripod with disciniuity at the central node. 

 

 

Figure 2. The three edges individually. 
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Figure 3. Error history at the central node. 
 

 

Figure 4. Iteration history L∞-errors. 
 

continuity conditions of the derivatives at the central node. In Figure 4, we 
display the relative L∞ -errors of the solutions, where the errors are taken with 
respect to the computed solution without domain decomposition. 

4. Domain Decomposition for Optimal Control Problems 

We pose the following optimal control problem with Neumann boundary 
controls:  
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( )
( )

( ) ( ) ( )( ) ( ) ( )
( )
( )
( ) ( )
( )

2 20

,
min , :

2 2

subject to

; , 0, ,

0, ,

, ,

, , ,

0, .

S
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k

i i kq u i k

i i i xx i i i i i

S
i k k k D

S
x i k k k k N

M
i x i k j x j k k

M
ik i k

i

I q u q q u

q x q x g x q x f x x i

q n i n

q n u i n

q n q n i j k

d q n k

κ ν

α β

β β

∈ ∈

∈

= − +

− ∂ + = ∈ ∈

= ∈ ∈

∂ = ∈ ∈

∂ = ∂ ≠ ∈ ∈

= ∈

∑ ∑

∑



 





 

 

 


     

(39) 

The corresponding optimality system then reads as follows:  

( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )
( )

0

in 0, ,

in 0, ,

0, 0, ,
1 , 0, ,

, , ,

0
k k

i i i xx i i i i i

i i i xx i i i i i i i

S
i k i k k k D

S
x i k i k x i k k k N

M
i x i k j x j k i x i k j x j k k

ik i k ik i
i i

q q g q f i

g q q q i
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q n q n n n i j k

d q n d

α β

α ρ β ρ ρ κ

ρ

ρ ρ
ν

β β β ρ β ρ

ρ
∈ ∈

− ∂ + = ∈

′− ∂ + = − − ∈

= = ∈ ∈

∂ = ∂ = ∈ ∈

∂ = ∂ ∂ = ∂ ≠ ∈ ∈

= =∑ ∑





 





 

 

 

( ) , .M
kn k∈

 

(40) 

The idea now is to use a domain decomposition similar to the original system 
on the network. We design a method that allows to interpret the decomposed 
optimality system (41) as an edge-wise optimality system of an optimal control 
problem formulated on an individual edge. To this end, we introduce the 
following local system:  

( )
( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

1 1

1 1 1 0

1 1

1 1 1

1 1 1

in 0, ,

in 0, ,

0, 0, ,
1 , 0, ,

2
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l l
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l l l
ik i k k x i k k x i k

l
k j x k k

jk

q q f i

q q i

q n n i n

q n n n i n

d q n q n n

q n
d

α β

α ρ β ρ κ

ρ

ρ ρ
ν
λ µ ρ

λ β

+ +

+ + +

+ +
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(41) 

The same arguments that led from (16), (15) to (17), (18) apply to show that, 
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upon convergence as l →∞ , the system (41) tends to (40). Now, (41) 
decomposes the fully connected problem (40) to a problem on a single edge 
i∈  with inhomogeneous Robin-type boundary conditions. The question is as 
to whether the decomposed optimality system (41) is in fact itself an optimality 
system on that edge. If so, then it is possible to parallelize the optimization 
problems rather than the forward and backward solves. Let us, therefore, now 
consider the following optimization problems on a single edge. The idea is to 
introduce a virtual control that aims at controlling classical inhomogeneous 
Neumann condition including the iteration history at the interface as inhomogeneity 
to the Robin-type condition that appears in the decomposition. To this end, it is 
sufficient to consider three cases: a.) the edge i  connects a controlled 
Neumann S

Nj∈  node with a multiple node Mk∈  at which the domain 
decomposition is active, b.) the edge i  connects a controlled Neumann node 

S
Nj∈  with multiple node Mk∈  at which the domain decomposition is 

active, c.) the edge i  connects two multiple nodes , Mj k∈ . 
Case a.):  

( ) ( )( )

( ) ( )
( ) ( ) ( )

220 2 2

,

1 1min , , :=
2 2 2 2

subject to
, 0,

, .

j ik
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i j ik i i j ik k x i k iku v

k k

i i i xx i i i i i

l
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I q u v q q u v q n h

q q g q f x

d q n u d q n q n g v

κ ν
µ

µ µ

α β

λ β

− + + + ∂ +

− ∂ + = ∈

= = − ∂ + +



  

(42) 

Case b.):  

( ) ( )( )

( ) ( )
( ) ( ) ( )

220 2 2

,

1 1min , , :
2 2 2 2

subject to
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, .
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i i i i i i ik k i x i k iku v
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µ µ

α β
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= − + + + ∂ +

− ∂ + = ∈

∂ = = − ∂ + +



  

(43) 

Case c.):  

( )

( )( ) ( )( )

( ) ( )
( ) ( ) ( ) ( )

20 2 2

,

22

1 1min , , :
2 2 2

1 1
2 2
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, 0,

, .

ij ik
i ij ik i i ij ikv v

j k

l l
k i x i k ik j i x i j ij

k j

i i i xx i i i i i

l l
ij i j j i x i j ij ij ik i k k i x i k ik ik

I q v v q q v v

q n h q n h

q q g q f x

d q n q n g v d q n q n g v

κ
µ µ

µ β µ β
µ µ

α β

λ β λ β

= − + +

+ ∂ + + ∂ +

− ∂ + = ∈

= − ∂ + + = − ∂ + +



  

(44) 

Remark 4.1.  
• If we write down the optimality systems for (42), (43) and (44), respectively, 

and combine the results, we arrive at (41).  
• This shows that within the loop of iterations that restore the transmission 

conditions at the multiple nodes, we can reformulate the system (41) as the 
optimality system of an optimal control problem formulated on a single edge, 
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with input data coming from the iteration history that involves all nodes 
adjacent at the ends of the given edge.  

• This means that we can actually decompose the optimization problem given 
on the graph into a sequence of local optimization problems given on an 
individual edge.  

• The resulting optimization problem on the individual edges are strictly 
convex, thus, admitting a unique global solution.  

Remark 4.2. There are at least two ways to use the proposed ddm-approach.  
1) In the first approach, we consider (40) and start with a guess for the adjoint 

variables ( )i i
ρ

∈
. This provides a guess for the controls ( ) Sj j

u
∈

. Therefore, we 
can establish the states ( )i i

q
∈

. The states ( )i i
q

∈
, in turn, are inserted into the 

adjoint problem and that system is then solved for ( )i i
ρ

∈
, which closes the 

cycle. With this method, we keep the optimization in an outer loop and solve 
both the forward system for the states ( )i i

q
∈

 and the adjoint system for 
( )i i
ρ

∈
, individually. For given ( )i i

q
∈

, the adjoint system is a linear elliptic 
problem on the graph. To this system the ddm-method above applies and 
converges. As we have established above, the forward problem admits a 
convergent ddm-algorithm. This finally means that in the inner loop we can use 
convergent ddm-iterations for finding ( )i i

q
∈

 and ( )i i
ρ

∈
. The effect of 

parallelization can, therefore, be used for the solves in the inner loop, while the 
outer loop is sequential.  

2) In the second approach, we decompose the coupled system (40) to (41). 
The resulting decoupled problem is then the optimality system for the virtual 
optimal control problems (42), (43) or (44), as seen above. In this case, there is 
no outer loop other than the ddm-iteration which is completely parallel. Still, the 
local optimality systems have to be solved in a way describes in the first 
approach. Namely, we provide an initial guess for iρ  for each i∈  then 
solve for iq  which is introduced then in the local adjoint equations. This is 
then followed by the solve for iρ  and the update of the boundary data ,ik ikg h  
which are used in the communication at the next ddm-iteration. In this, 
admittedly, more elegant approach, the constrained minimization problem on 
the entire graph can be decomposed to minimization problems on a single edge. 
As we will see below, unfortunately, but expectedly, the convergence is no longer 
global as in the first approach, but rather local. This means that only if we start 
close to a solution of (40), or if we have a priori estimates and tune the 
parameters accordingly, we can prove convergence of the unique solutions of (41) 
to those of (40).  

5. Wellposedness 
5.1. Wellposedness of the Primal Problem 

The semi-linear network problem (12) admits a unique solution. This is true, as 
the linear part of problem (12) describes a self-adjoint positive definite operator 
in the Hilbert space  :  
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( )1 0, .ii H
∈

=∏ 


  

Indeed, we also define the energy space  

( ) ( ): 0, , , 0,
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S M
i k k k D ik i k

i
q q n i n d q n k

∈

  = ∈ = ∈ ∈ = ∈ 
  

∑
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( ) ( ): ini i i xx iq q x q xα β= − ∂   
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∂ = ∈ ∈

   

 
     

(45) 

It is a matter of applying standard integration by parts to show that, indeed, 
  is symmetric and positive definite in   such that   can be extended as a 
self-adjoint operator in  . Then it is standard to show that   can be 
extended to a bounded coercive map from   into its dual * . If we assume 
(33) and define the Nemitskji operator ( )( ) ( )( ):q x g q x=  then   is strictly 
monotone and continuous. Hence, according to [11], +   is strictly 
monotone and continuous and, hence, the semi-linear problem admits a unique 
solution q∈ . Clearly, for regular right hand sides f , the solution is in 
( )D  . 

5.2. Smoothness of the Control-to-State-Map 

Let ( )ˆ ˆtq u  be the solution of (12) with u  replaced with ˆu tu+  and let q  be 
the solution of (12). We denote by ˆ:e q q= −  the difference of these solutions. 
We obtain  

( ) ( ) ( )( ) ( )( ) ( )
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(46) 

Dividing by t  and letting t  tend to zero in (12) implies with 
( )( ) ( )( )ˆ ˆ:e e u u e u uδ′ ′= =   

( ) ( ) ( )( ) ( ) ( )
( ) ( )
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′ = ∈∑







 

 

 


     

(47) 

For the solution q  of (12), applying the standard Lax-Milgram Lemma, e′  
uniquely solves the linear elliptic network problem (47) and, therefore, satisfies 
standard energy estimates. As the cost function in (39) is convex, according to 
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the classical Weierstrass theorem, problem (39) admits a unique solution. One 
can then verify the conditions for the Ioffe-Tichomirov Theorem [12] in order to 
establish the first order optimality conditions (40).  

Theorem 4. Under the assumption (33), for *f ∈ , there exists a unique 
solution q∈  of (12). In addition, the mapping from u  into q  is Gateaux 
differentiable. Moreover, the optimal control problem (39) admits a unique 
solution. The optimal solution is characterized by the optimality system of first 
order (40).  

5.3. A Priori Error Estimates for the Optimality System 

We denote the errors :l l
i i ie q q= −  and :l l

i i ip ρ ρ= −  for i∈  and 0,1,l =  . 
These errors solve the system equations:  
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(48) 

We prove the following  
Lemma 5. The solutions ,i ie p  for i∈  of (48) satisfies the estimate  

( ) ( ) ( ) ( ) ( ) ( )( ) { }1 1
2 22 2 2 2 2 2

0, 0,
0 0 .

i ii i i i i i i i ij ijH He p e e p p C g hγ+ + + + + ≤ +
 

  (49) 

More precisely, for , M
k kλ λ= ∀ ∈ , we obtain  

( ) ( )( ) { }
22 2 2 2

1

4 .i i i i ij ij
i

e p g hν
λ =

+ ≤ +∑ 

              
(50) 

Remark 5.1. As a result, for small data ,ij ijg h , we have small solutions.  
Proof of Lemma 5: We multiply the equations in (48) by 1l

ie +  and 1l
ip + , 

respectively, integrate and then use integration by parts. For the sake of brevity, 
we leave the full arguments to the reader. 
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5.4. Convergence 
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(53) 

We multiply the state equation for the errors ie , ip  by ie  and ip , 
respectively.  
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Now, we reverse the roles and obtain  
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From now on we assume that all : , :k kλ λ µ µ= =  are independent of the node. 
We multiply (54) and (56) by λ and (55), (57) by μ and add in the following way 
λ(54)+ μ(27), λ(55)- μ(56). This leads to  

( ) ( ) ( )( )

( ) ( ) ( ) ( )( ){ }
( ) ( ) ( )( ){ }

2 2
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2 d
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i
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e e g e q g q e
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∈ ∈

∈

∂ + ∂
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∑∑
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∈ ∈

∈

∂ − ∂
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− + ∂ ∂ + +

∑ ∑
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We add the latter equations and obtain  

( ) ( ) ( )( )
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( ) ( ) ( )( ) d

.

i i i i i i i i i ip e g e q g q e e p x

I II III

µ µ θ′ ′+ + + − +

= + +

 
(58) 

We are going to estimate the third integral. For that matter we assume that 
( )ig s′  admits a Lipschitz constant iL .  
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( ) ( ) ( )
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1 d

d d
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∈

∈
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∑∫

∑ ∫ ∫



 

  



  

(59) 

The second term contains quadratic expressions an mixed terms. The mixed 
terms need to be absorbed in the quadratics ones  
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(60) 

We now combine (58), (59), (60) in order to obtain  
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(61) 

We now group the corresponding quadratic expressions.  
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∑ ∑


(62) 

where we have used the boundary estimate due to Kato [13]. We now need to 
discuss under which configuration of the parameters the coefficients in front of 
the quadratic terms  

( ) ( ) ( )

( )

2
0, 0,

0,

:
2

1:
2

i i

i

i i i i i i iL L

i i i i L

a L p c n
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λ λ
λα κ µ µ ρ µ λδ

δ

λ α δ ρ

∞ ∞

∞

     = + − − + + −     
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(63) 
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can be made positive. Moreover, if 0λ
µ

δ
− ≤ , we need to absorb the 

corresponding boundary term again using the estimate [13]. It is obvious that 

ib  can be positive iff ( )0,

1
2 ii i i LLα δ ρ ∞

 − − 
 

 and λ  are positive. The only  

parameters that we can select in order achieve positive, respectively, non- 
negative coefficient are the two parameters ,i iκ ν  coming from the cost function 
and the parameters 0, 0λ µ≥ ≥  provided for the algorithm. Moreover, the 
coefficient 0iα >  becomes relevant. We recall the meaning of iα : it is 

1
t∆

! So 
it becomes obvious from (63) that the norm of the reference solution to the 
adjoint equation iρ ∞

and the Lipschitz-constant iL , reflecting the stiffness of 
the nonlinear term come into play. We thus need small 0t∆ >  to compensate 
the remaining terms. The question to be discussed below then is as to whether 
the maximum-norm of the solution iρ  of the adjoint equation which, in turn, 
involves iα  is small against iα . Only in this case, we can choose 0λ >  in 
order to have 0ib > . If, on the other side, 0λ = , we have to compensate 

i iL p , in this case the adjoint error, by choosing iκ  sufficiently large and 
0µ >  in order to have 0ia > . The appearance of the adjoint error, in case 
0µ > , necessitates an a posteriori error estimate. We discuss the following cases 
0, 0λ µ= > , 0, 0λ µ> =  and 0, 0λ µ> > : 

[Case 1.] 0, 0λ µ= > :  

( ) ( )( )( )0, 0,
, : 0

i ii i i i i iL La L p bµ κ ρ ∞ ∞= − + =
             

(64) 

In this case  

( ) ( ) ( )( )

( ) ( ) ( )( )
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∈ ∈

∈ ∈∈

∂ + ∂

+ ∂ − ∂

≥ − + +

∑ ∑

∑∑

∑ ∑ ∑∫


 

 

 

     

(65) 

As mentioned above, this case involves both the reference adjoint and the 
adjoint error. Moreover, in this case the convergence of the iteration is 
determined solely by the choice of the cost parameters in that iκ  has to be 
sufficiently large, while iα  plays no role. 

[Case 2.] 0, 0λ µ> = :  

( ) ( )

( )

2
0,

0,

1 1:
2

1: .
2

i

i

i i i i i iL

i i i i L

a L c n

b L

λ α κ ρ δ
δ

λ α δ ρ

∞

∞

  = − − −  
  

 = − − 
 





           

(66) 

In this case we obtain  

( ) ( ) ( )( )
k

ik i k i x i k i x i k
k i

d e n e n p nλβ µβ
∈ ∈

∂ + ∂∑∑
 

 

( ) ( ) ( )( )
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(67) 
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( ) ( )2 2
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1 1 d
2

i

ii i i i i iL
i

L c n e xλ α κ ρ δ
δ

∞

∈

 ≥ − − − 
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1 d
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(68) 

( )( )( ) ( )( )( )2 21 1

0

1 1 d
i

x i x i
i

c n e c n p xδ δ
∈

+ − ∂ + − ∂ 


∑∫



 

In this case iα  has to absorb all negative terms and, in fact, the penalty 
parameter iκ  acts in the reverse sense than in Case 1. One needs to balance κ , 
δ  and n  in the coefficients ( ) ( )1 2, ic n c n  in order to make the two 
coefficients of all quadratic terms positive. We are then left with question as to 
whether the norm iρ  is small against iα  for suitably large iα . Now, the 
adjoint iρ  of the full network problem has as data the right hand side 

( )0
i i iq qκ− −  and as iq -dependent coefficient ( )i ig q′ . For a given iq , the 

corresponding network equation is linear and by Lax-Milgram’s lemma, the 
solution iρ  satisfies an estimate against the data, which, in turn, depend on the 
original solution iq .  

[Case 3.] 0, 0λ µ> > : In this case ,i ia b  in (63) need to be positive. This can 
be achieved in general if iα  large and iκ  small and µ  is large compared to 
λ . A more explicit analysis can be done, but is skipped for the sake of space. 

Theorem 6. Under the positivity assumptions in Cases 1, 2, 3, the iterations 
converge and the solutions ( )l l

i i
q q

∈
=


 of the iterative process (41), describing 

the local optimality systems on the individual edges, converge to the solution of 
the optimality system (40). In Case 2,3, ,l l

i iq p  converge to 0 0,i iq p  in the 
energy sense. In Case 1, convergence takes place in the 2L -sense.  

Example 7. We consider the following numerical example. We take for 
10α = , 10κ = , 1ν =  and if xα= ∗  and Neumann controls at all simple 

nodes. Clearly, the exact solution of the linear problem, i.e. ( )g qγ ∗ , with 
0γ =  and ( )g q q q= , is , 1, 2,3iq x i= = , where the adjoints have Dirichlet 

traces equal to 1 with Neumann traces being 0 by construction. This, however, is 
achieved only for very large penalty κ . We compute the solution with 
nonlinearity 0.1γ =  using the MATLAB routine bvp4 with tolerance . 6e − . 
As for the domain decomposition, we take 15 steps. The nonlinearity is taken 
into account using an inner fixed-point loop, where we take 15 iterations. The 
parameters ,λ µ  are chosen as 0.1, respectively. The results are shown in 
Figures 5-10. In Figure 11 and Figure 12, we display the numerical results for 
the same setup, but now with 1000iα = , 100iκ = , 1µ = , 0λ = , 0.1γ =  
with relaxation parameter 0.1= . Figure 13 reveals the fact that due to the 
optimality of the functions ( )iq x x= , the adjoint, as being forced to have zero 
Neumann data, is zero in almost the entire interval and is nontrivial in the last 
part only. Clearly, the three reference solutions and adjoints are plotted on top 
of the ddm-solutions. No difference is visible. 
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Figure 5. Forward solutions. 

 

 

Figure 6. Adjoint solutions. 
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Figure 7. Optimal tripod. 

 

 
Figure 8. Errors. 
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Figure 9. Errors of relaxed iteration. 

 

 

Figure 10. Nodal errors (state,adjoint). 
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Figure 11. Optimal tripod. 

 

 
Figure 12. Optimal state. 
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Figure 13. Optimal adjoint. 
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