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Abstract 
Highly Active Antiretroviral Therapy (HAART) has changed the course of 
human immunodeficiency virus (HIV) treatments since its introduction. 
However, for many patients, long term continuous HAART is expensive and 
can include problems with drug toxicity and side effects, as well as increased 
drug resistance. Because of these reasons, some HIV infected patients will vo-
luntarily terminate HAART. Some of these patients will also interrupt the 
continuous prescribed therapies for short or long periods. After discontinuing 
HAART, patients will usually experience a rapid increase in viral load coupled 
with an immediate decline in CD4+ counts. The canonical example of a pa-
tient undergoing unsupervised breaks in HAART is that of the “Berlin pa-
tient”. In this case, the patient was able to control viral load in the absence of 
treatment by cycling HAART on and off due to non-related infections. Due to 
this patient, interest in the use of structured treatment interruptions (STI) as a 
mechanism to regulate an HIV infection piqued. This paper describes an op-
timal control approach to determine STI regimen for HIV patients. The op-
timal STI was implemented in the context of the receding horizon control 
(RHC) using a mathematical model for the in-vivo dynamics of an HIV type 1 
infection. Using available clinical data, we calibrate the model by estimating on 
a patient specific basis, a best estimable set of parameters using sensitivity analy-
sis and subset selection. We demonstrate how customized STI protocols can be 
designed through the variation of control parameters on a patient specific basis. 
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1. Introduction 
There are few diseases in our society today that are more polarizing, politicized, 
and personal than human immunodeficiency virus/acquired immune deficiency 
syndrome, or HIV/AIDS. According to the Joint United Nations Programme on 
HIV and AIDS (UNAIDS), there were 34 million people living with HIV/AIDS 
in 2010, 22.9 million of which live in sub-Saharan Africa. Despite the prevalence 
and availability of effective treatment of HIV, even as late as 2010 the best prac-
tices for management of acute HIV infection are still unknown [1]. The time to 
initiate treatment and the manner of treatment are still the subject of many on-
going clinical trials that are investigating the treatment benefits versus risks. 

Throughout the last few decades, mathematical models have been developed 
to further the understanding of the progression of the virus as it replicates 
in-host. These models focus on the interaction between the virus and the CD4+ 
cells of the immune system, one of the virus’ primary targets [2] [3] [4]. The 
early models of progression were critical in the understanding of the virus and 
the development of early treatments, as the science and understanding were lag-
ging behind the impact of the spreading epidemic. 

The models of in-vivo dynamics are most often formulated as a system of 
nonlinear ordinary differential equations (ODE), though recently several size 
structured partial differential equation models have been developed. These mod-
els allow for variations in viral production rates as a function of time, since it is 
thought that as infected cells age their overall fitness decreases [5] [6]. The ordi-
nary differential equation models that we utilize are based on a compartmental 
and mass-balance analysis of the biological system. These models are developed 
to incorporate as many relevant physiological principles as possible, though at 
the cost of increased model complexity. 

A primary goal of using modern models of HIV is to influence treatment de-
cisions and construct better treatment protocols for infected patients. The con-
struction of optimal control methodologies has been investigated by many au-
thors, [7]-[16], however in almost all of these cases the authors worked with si-
mulated data and were not patient specific in nature. To use these dynamic 
models in a patient specific capacity, the models must first be calibrated to each 
individual patient. While much attention has been paid to the forward simula-
tion problem over the years, less attention has been focused on the so-called in-
verse problem. Inverse problems are formulated when we wish to determine the 
parameters that characterize the system using measurements. One of the main 
obstacles in solving the inverse problem is that biological and physiological 
models are often nonlinear and contain many parameters. Additionally, the data 
for validation is often sparse, or possibly representative of only a portion of the 
model. Before parameter estimation methods can be applied to an ODE model, 
an investigation into the identifiability of the parameters, given available data, 
must be performed. 

The investigation into parameter identifiability is not unique to the mathe-
matical sciences, and many papers in engineering, statistics, and biomedical en-
gineering have shed light into this area [17] [18]. Identifiability in an HIV model 
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context has been examined in [19] [20] where structural and observer perspec-
tives were used with a less complex model. In this paper we consider the para-
meter identifiability of a seven state, twenty two parameters HIV model based on 
clinically obtained measurements of both CD4+ count and viral load. We utilize 
both sensitivity analysis and identifiability analysis methods to compute patient 
specific best-estimatable subsets of parameters. In [21] an identifiability analysis 
was conducted on an identical model, however the authors used a different, 
ad-hoc subset selection procedure. 

Finally, the paper investigates the construction of optimal control and treat-
ment therapies in a patient specific context, i.e. in the setting of personalized 
medicine or precision medicine. We develop treatments known as structured 
treatment interruptions (STI), wherein the effective treatment is terminated at 
specified times and then restarted in an attempt to increase an in-host immune 
response and provide a drug holiday for the patient. These treatment methods 
have been studied in detail, though a lack of double-blind, randomized clinical 
trials has lead to a lack of consensus on the effectiveness of these types of treat-
ments [22] [23] [24] [25]. We implement the optimal STI using the receding ho-
rizon control (RHC) methodology [12]. Since RHC is a feedback control, it al-
lows for adjustment for unexpected perturbations to the treatment schedule, e.g. 
the patient decides to go off-treatment for a period of time not otherwise pre-
scribed. 

The organization of the paper is as follows. Section 2 describes the mathemat-
ical model of the HIV dynamics, including the control mechanisms. This section 
also describes the a-priori identifiability analysis, the available data and its in-
corporation into the parameter estimation problem, and the results of the model 
validation. In particular, we show how the model can well-fit both the CD4+ 
count and viral load clinical data. The optimal control formulation to compute 
optimal treatment strategies of an STI type is considered in Section 3. In this 
section we also provide computed optimal control simulations along side the 
clinical data and discuss the relevance. 

2. An HIV Model 

There have been numerous advances in modeling HIV viral dynamics in recent 
years. An excellent general overview of the modeling challenges of HIV, espe-
cially with regards to treatment protocols and stability analyses is given in [3]. In 
this section, we consider a model developed in [26]. 

The dynamics of the HIV model are described by the system of nonlinear or-
dinary differential equations 
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with an initial condition vector 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 20 0 0 0 0 0 0 .I NIT T T T V V E
Τ∗ ∗    

The model compartments are 1T  (type 1 target cells, e.g. CD4+ T-cells, cells/ 
µl blood), 2T  (type 2 target cells, e.g. macrophages, cells/µl blood), IV  (infec-
tious free viron particles, RNA copies/µl blood), NIV  (non-infectious free viron 
particles, RNA copies/µl blood) and E  (cytotoxic T-lymphocytes (CTL), 
cells/µl blood). A superscript asterisk denotes infected cells. This model has two 
important features. The presence of a second target cell type, 2T  satisfies a 
modeling requirement suggested in [4]: a reasonable HIV model predicts a non- 
zero steady-state viral load even in the presence of effective therapy. Because of 
this, one can not expect the viral load to be driven to zero, only to be reduced 
significantly. This HIV specific immune response state E  consists of CTLs 
lysing antigens to HIV infected cells, killing them at rates 1m  and 2m  for each 
class of target cell. The immune response model used in this work does not di-
rectly clear viral particles, and so there is no interaction between the immune 
compartment and the virus compartments. In [27] the authors extended the 
model by adding a second immune effector state that represents CTL cells with 
memory. While that model incorporates a greater degree of HIV dynamics, it is 
shown in [21] that the model used in this paper is sufficient for clinical data fit-
ting and model prediction. 

External mechanisms by which the virus is controlled are incorporated into 
the model. We allow for therapeutic treatment by reverse transcriptase inhibi-
tors (RTIs) and protease inhibitors (PIs). RTIs interfere with the viral RNA to 
DNA synthesis; when reverse transcriptase is inhibited HIV can enter a cell but 
the host cell will not become infected. PIs cause infected cells to produce non- 
infectious virions. Thus when considering treatment that includes PIs, we con-
sider both infectious and noninfectious viral particles. Noninfectious viral par-
ticles can remain present even in the absence of PIs. The prevailing paradigm of 
HIV treatment is to prescribe a highly active antiretroviral therapy (HAART) 
consisting of both PIs and RTIs. The treatment factors are given as  
( ) ( )1 1t u tε ε=  and ( ) ( )2 2t u tε ε= , consisting of efficacy [ ]1 0,1ε ∈  correspond-

ing to a reverse transcriptase inhibitor and [ ]2 0,1ε ∈  modeling the effectiveness 
of a protease inhibitor with a time dependent function ( ) ( ),0 1.u t u t≤ ≤  We 
assume that the treatment has a reduced efficacy for the population of 2T , where 
the efficacy is ( ) ( )1 , 0,1 .f t fε ∈  Treatment protocols are always implemented 
as a combination of both PIs and RTIs, so monotherapy is not considered. 

The model (1) contains 22 biologically relevant parameters that must be spe-
cified before numerical simulations can be performed. We evaluate the model at 
a nominal set of parameter values that is justified through literature and past 
clinical studies; these values are given in Table 1. The parameter values are taken 
primarily from work done by [4] [28]. Several of the parameters are not available 
from human or animal data. The nominal values for 1 1 2, ,kλ λ  and 2k  are  
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Table 1. HIV model parameters and their nominal values. 

Index Parameter Value Units Description 

1 1λ  10 cells/mm3 day Target cell type 1 source rate 

2 2λ  0.03198 cells/mm3 day Target cell type 2 source rate 

3 1d  0.01 1/day Target cell type 1 death rate 

4 2d  0.01 1/day Target cell type 2 death rate 

5 1k  48.0 10−×  mm3/virions day Population 1 infection rate 

6 2k  0.1 mm3/virions day Population 2 infection rate 

7 1m  0.01 mm3/cells day Immune-induced clearance rate for population 1 

8 2m  0.01 mm3/cells day Immune-induced clearance rate for population 2 

9 1ρ  1 virions/cell Average number virions infecting a type 1 cell 

10 2ρ  1 virions/cell Average number virions infecting a type 2 cell 

11 δ  0.7 1/day Infected cell death rate 

12 c  13 1/day Virus natural death rate 

13 f  ( )0.34 0,1∈   Treatment efficacy reduction in population 2 

14 TN  100 virions/cell Virions produced per infected cell 

15 Eλ  .001 cells/mm3 day Immune effector production (source) rate 

16 Eδ  0.1 1/day Natural death rate for immune effectors 

17 Eb  0.3 1/day Maximum birth rate for immune effectors 

18 Ed  0.25 1/day Maximum death rate for immune effectors 

19 bK  100 cells/ml Saturation constant for immune effector birth 

20 dK  500 cells/ml Saturation constant for immune effector death 

21 1ε  ( )0.7 0,1∈   RTI efficacy 

22 2ε  ( )0.3 0,1∈   PI efficacy 

 
chosen so that several conditions on viral load and target cell equilibria are satis-
fied. These conditions are actually not reflected in our model since we have 
omitted the chronically infected state from the Callaway-Perelson model, though 
it is believed that small adjustments to the parameter values will obtain the same 
qualitative behavior [26]. 

The parameters used in the immune response state are not well known, and 
are chosen primarily to exhibit expected model behavior in the simulations. The 
parameters 1 2,m m  represent the effectiveness that the immune response E  
clears the infected cells of the target populations. The commonly used values are 
taken from [4]. 

Because the range of both the state variables and parameter values can vary 
over several orders of magnitude, we use a 10log  transformed system for the 
state variables. We define the new state variable ( ) ( )10, log ,i ix t q x t q= , where 

ix  represents the original, non-log transformed state. We also log-transform the 
parameters, 10log ,q q→  as they also varying widely in magnitude (see Table 
1). The new system of equations are then given by 
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( ) ( )( )10, 10 ,10
ln10

i
i

x
x q q

ix t q f
−

=                    (2) 

where f  is the right hand side of (1). Performing this substitution puts both 
the states and parameters within an order of (log) magnitude of each other, al-
lowing for a more robust estimation procedure. This transformation also re-
solves issues of physically unrealistic negative solutions that occur due to round- 
off error. 

2.1. Sensitivity and Identifiability Analysis 

A first step in the a-priori identifiability analysis of a system is to determine 
which parameters contribute greatest to the output of the system. For our model, 
the output of the system is 1 1 1y T T ∗= +  representing the CD4+ count and 

2 I NIy V V= +  representing the viral load. Sensitivity analysis has traditionally 
primarily been used in the analysis of the forward problem when one needed to 
understand the effects of parameter perturbation on the output. In recent years 
sensitivity analysis has become an important component of inverse problem 
analysis, partly because it directly aids in uncertainty analysis. When physiolog-
ically based mathematical models are developed, the parameters typically have 
biological relevance, and thus one may wish to estimate these parameters from 
data. If these parameters are insensitive then they could be difficult to estimate 
despite their relevance. Sensitivity analysis determines the degree to which pa-
rameters affect system output. Sensitivity analysis can also aid in the optimal de-
sign of experiments and data collection [29], possibly maximizing parameter 
sensitivity. 

Sensitivity analysis constitutes a subset of techniques within identifiability 
analysis. An excellent survey of methods for identifiability in ODE models is 
given in [30]. In that paper, the authors define a system to be identifiable if the 
parameter q  can be uniquely determined from the system input ( )u t  and 
the measured system output ( )y t . The system is said to be unidentifiable if q  
can not be uniquely identified. A wide variety of techniques have been developed 
for identifiability analysis, including power series expansions and similar trans-
forms, the use of differential algebras, and the implicit function theorem. These 
methods are not dependent on experimental observations, and are termed me-
thods of structural identifiability. We concern ourselves primarily with practical 
identifiability analysis, which combines both the model structure information 
and experimental observations to determine which parameters are able to be 
identified. For a detailed discussion of our implementation of the practical iden-
tifiability analysis we refer the reader to [31]. 

2.2. Clinical Data 

The data available have come from a clinical study at Massachusetts General 
Hospital of over 100 adults with acute HIV infection between 1996 and 2004. 
The data collected consists of CD4+ T-lymphocyte count (cells/µl) and RNA vir-
al load (RNA copies/ml) represented by 1 1 1y T T ∗= +  and 2 I NIy V V= + , respec-



A. Attarian, H. Tran 
 

940 

tively. The viral load is quantified through different assay techniques; the stan-
dard assay can detect viral loads in the range of 400 to 750,000 copies/ml, while 
an ultra-sensitive assay has a detection range of 50 to 100,000 copies/ml. The ul-
tra-sensitive assay is used when a measurement is below the 400 copies/ml lower 
detection limit for the standard assay. This can often be the case when patients 
are successfully suppressing the virus due to HAART. 

Due to the range sensitivity limits of the assays, the clinical viral load effec-
tively have upper and lower limits of quantification. The upper limit of quantifi-
cation is addressed by repeatedly diluting the sample until it falls within the de-
tection range. The lower limit, or left censoring point, directly affects the col-
lected data and how it is used within the inverse problem. When a datum is re-
turned at a censor point, 1 400L =  copies/ml or 2 50L =  copies/ml, the only 
available knowledge is that the true measurement is between zero and the left 
quantification limit. These limits are illustrated in the longitudinal data set from 
patient identified by the number 1, shown in Figure 1. The data points appear-
ing directly on the horizontal reference lines are said to be censored. 

In addition to the data being censored at certain time values, the data are also 
collected at different time intervals. These intervals also differ between patients. 
This is visible in Figure 1 as well; the observations of viral load and CD4+ may 
not have been made at the same time points. In general for patient j , we have 
CD4+ data pairs ( )1 1 1, , 1, ,ij ij jt y i N=   and possibly different viral RNA pairs  
( )2 2 2, , 1, ,ij ij jt y i N=  . 

2.3. Model Validation 

Before we use the HIV model given in (1) to design the optimal treatment for 
 

 
Figure 1. Patient 1 data set, with the censor points indicated by horizontal lines,  

1 10 2 10log 400, log 50L L= = . The green and red bars on the axis indicate patient treatment 
adherence and non-adherence, respectively. 
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HIV patients in the context of personalized medicine, we first calibrate the mod-
el parameters to the clinical data through the parameter estimation formulation. 
The parameter estimation problem is patient specific; we use data from a single 
patient j in order to estimate the patient specific parameter value jq . A com-
mon approach for conducting parameter estimation in ODE models is through 
minimization of an ordinary least squares cost function [33]. To this end, we let 

( ) , 1, 2ij
s sz t s =  denote the model observation for patient j, output s, at time in-

dex i. That is, ( ) ( ) ( )1 1 1 1 1 1
ij ij ijz t T t T t∗= +  and ( ) ( ) ( )2 2 2 2

ij ij ij
I NIz t V t V t= + . We de-

fine the cost function 

( ) ( )
2 2

1 1

1 ; ,
j

sN
ij ij

s s sj
s is

J q z t q y
N= =

= −∑ ∑               (3) 

over an admissible parameter space Ω⊆  , where   is the number of para-
meters being identified by the practical identifiability analysis. The parameter 
estimation problem is to compute the unique minimizer of J, 

( )argminjq J q= , if it exists. Note that uniqueness of the minimizing parame-
ter vector is an issue addressed by the identifiability analysis. Assuming the data 
are uncensored and produced by the model with additive and independent 
Gaussian noise, the ordinary least squares estimate is also the maximum likelih-
ood estimate. However, in our case there is censoring in the data as discussed in 
section 2.2, and least squares does not suffice as a statistically rigorous metho-
dology. Instead we compute maximum likelihood parameter estimates using an 
expectation maximization (EM) algorithm [32]. Details regarding the use of this 
algorithm with ODE models can be found in [31]. 

We begin the parameter estimation problem by performing for each patient 
an a-priori sensitivity analysis at the nominal parameter values ∗q  given in Ta-
ble 1. As each patient model is evaluated at the same ∗q , the only factor that af-
fects parameter identifiability is the patient adherence to treatment. 

Before a subset specific estimate is formed, we first attempt to estimate all 22 
parameters using the global optimization algorithm DIRECT with the EM algo-
rithm. DIRECT is a bounded, sampling method based on dividing hyper-rec- 
tangles [34]. The termination criterion for DIRECT is only the number of itera-
tions, and we only allow 3. DIRECT is sometimes used to determine a “better” 
local initial iterate for gradient based optimizers, and our approach is similar in 
this regard. The parameters that are not being estimated are fixed to the output 
of the DIRECT optimization, and it is at this point we begin the gradient based 
method with EM to further refine the parameter estimates on the identifiable 
subset. 

The number of identifiable parameters range from 8k =  to 10k = . In addi-
tion to these parameters, all seven initial conditions were estimated for each pa-
tient. Each patient subset is given in Table 2. 

Representative of the parameter estimation results are depicted in Figure 2 
and Figure 3 for patients identified by number 1 and 3, respectively (for the fit 
of the model to other patient data see [31]). In each figure the collected clinical  
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Table 2. Patient specific identifiable subsets. 

Patient Identifiable Subset ρ  

1 1 1 2 1 2 1, , , , , , ,T Ed k k m m N λ ε  

2 1 1 2 1 1 1 2, , , , , , , ,td k k m f Nρ ε ε  

3 1 1 2 1 2 1 2, , , , , , , ,bd k k m m Kδ ε ε  

4 1 1 2 1 2 2, , , , , , ,T Ed k k m m N δ ε  

5 2 1 2 1 2, , , , , , , ,T E Ed k k m m c N dδ  

6 2 1 2 2 1 2, , , , , , , , ,E E dk k m c b Kλ ρ δ ε  

7 1 1 2 1 1 1, , , , , , , ,T Em k k m f Nρ λ ε  

8 2 1 2 1 1 2, , , , , , , ,T dd k k m N Kρ δ ε  

9 2 1 2 1 2 1, , , , , , , ,E E Ek k m m dλ λ δ ε  

10 2 1 2 1 2, , , , , , ,E dd k k m m f Kδ  

11 2 1 2 1 2, , , , , , , ,E E dd k k m m b Kδ λ  

12 2 1 2 1 1, , , , , , , ,E b dd k k m c K Kρ δ  

13 1 1 2 1 1, , , , , , , ,b dk m c k Kλ ρ δ ε  

14 2 1 2 1 2, , , , , , , ,E E dd k k m m b Kδ λ  

 

 
Figure 2. Collected and adjusted data with model prediction for patient 1. The red and 
green bars along the axis indicate patient adherence to therapy. Clinically collected data 
are in blue, and EM adjusted data are in black. The red trajectory is the calibrated model 
prediction. 
 
data are given in blue dots as well as the adjusted data (black circles) calculated 
through the expectation maximization algorithm. The calibrated model predic-
tion is the solid red line. Near the bottom of the figures are structured treatment  
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Figure 3. Collected and adjusted data with model prediction for patient 3. The red and 
green bars along the axis indicate patient adherence to therapy. Clinically collected data 
are in blue, and EM adjusted data are in black. The red trajectory is the calibrated model 
prediction. 
 
interruption as prescribed by the medical doctors for each patient (green for 
on-treatment and red for off-treatment). In general, the model fits the clinical 
data reasonably well. 

3. Optimal STI Therapy 

Highly Active Antiretroviral Therapy (HAART) has changed the course of HIV 
treatments since its introduction. Under HAART, viral load decreases exponen-
tially in the weeks after the start of treatment and is maintained at low levels so 
long as treatment is continued. Despite this exponential decline in viral load, 
these treatments do not completely clear the virus from the patient, and a life 
long therapy is necessary to maintain low viral load. Even with this kind of suc-
cess, the best way to treat acutely infected HIV patients is still an open question 
with many approaches under investigation [1]. For many patients, long term 
continuous HAART is expensive and can include problems with drug toxicity 
and side effects, as well as increased drug resistance [35]. It has been shown that 
approximately 80% of patients who adhered to less than 70% of the prescribed 
treatment regimen experienced treatment failure, whereas patients of high ad-
herence (>95%) experienced the best results [36]. Long term use of protease in-
hibitors has been associated with insulin intolerance, cholesterol elevation, and 
the redistribution of body fat. Because of these reasons, some HIV infected pa-
tients will voluntarily terminate HAART. Some of these patients will also inter-
rupt the continuous prescribed therapies for short or long periods. After discon-
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tinuing HAART, patients will usually experience a rapid increase in viral load 
coupled with a immediate decline in CD4+ counts [22]. 

The canonical example of a patient undergoing unsupervised breaks in 
HAART is that of the “Berlin patient” [23]. In this case, the patient was able to 
control viral load in the absence of treatment by cycling HAART on and off due 
to non-related infections. When treatment was fully stopped after day 176, the 
patient’s viral load did not immediately rebound as is consistent with going off 
treatment. Due to this patient, there have been a lot of interest in the use of 
structured treatment interruptions (STI) as a mechanism to regulate an HIV in-
fection. 

One of the key variables in the design of any STI based protocol is the criteria 
in which patients are removed or placed back on treatment. In some studies the 
viral load was the primary indicator as to when treatment would resume, whe-
reas in other studies off periods were of a fixed length, followed by a fixed length 
on period. The former approach is simpler, but harder to administer as it re-
quires a higher level of patience scrutiny with more expensive and inconvenient 
blood tests. The latter strategy is easier to implement in larger patient groups, 
but the on/off periods are still up for debate and the subject of many clinical tri-
als. Currently the period durations are determined either in an ad-hoc style, or 
by trying to adapt the methodologies of other trials. 

The use of mathematical modeling to determine optimal STI regimes has 
flourished in recent years. The survey paper [37] details the design of STI strate-
gies using HIV models and emphasizes that the use of models may be beneficial 
in a clinical design scenario. In [38] the authors build upon the original work of 
[39] and use an in-host HIV model to simulate many possible different STI 
treatments. In contrast to our work however, there is no patient specific data or 
parameter estimates used and the STI treatments are not calculated, only eva-
luated; several insights into the effects of STI treatments are gained through the 
“virtual STI” trials. 

3.1. A RHC Approach to STI Therapy 

Although several control paradigms exist for the control and simulation of non-
linear systems, not many nonlinear controllers can be applied to the discrete 
sample-and-hold methodology of STI treatment. One method that is highly 
promising and is well suited to finding an optimal treatment amenable to HIV 
treatment is the receding horizon control (RHC) [40]. Receding horizon control 
has also explicitly been used to compute optimal treatment schedules in [41], 
though with a very different, immune response centric model. The authors were 
some of the first investigators to apply RHC methodologies to biological sys-
tems. 

Receding horizon, or model predictive control seeks to gain the benefits of a 
feedback control while maintaining the overall existing control methodology (i.e. 
STI) and model structure. The basic structure of the RHC methodology is shown 
in Figure 4. RHC is a feedback control system that operates by computing the  
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Figure 4. Schematic diagram of the receding horizon control. 

 
current control from solving a finite time open loop control problem, using the 
current state of the system as the initial state. This implicit optimization then 
yields a control for future time, and the first control in the sequence is applied to 
the system for a specified control window. This is the primary difference with 
the open loop methodologies, where the controls are computed for the entire 
simulation interval before simulation. 

This framework is uniquely suited for the computation of controls that fall 
within the STI paradigm under HAART. Since the number of elements in the 
control sequence is finite due to the on-off nature of the STI control, the exis-
tence of an optimal control on each window is guaranteed. Moreover, this ap-
proach is model invariant, in that the HIV model can be updated or swapped out 
with a model with minimal modifications to the control setup. Lastly the RHC 
parameters such as horizon and window length, discussed later, can be easily 
modified based on clinical needs and observations. 

There are several basic elements to the RHC system, outlined in [42]: 
1) Model equations which govern the system dynamics. 
2) The calculation of a sequence of optimal control laws, subject to the cost 

function. 
3) A “receding horizon” strategy, so that on each interval or horizon, that the 

control is computed is shifted forward in time. The control that is computed is 
then only used for a portion of the horizon length. 

To solidify the RHC methodology, we present the following control problem 
formulation. Together with the model equations (1), we consider a control 
problem defined by the objective function, 

( )( ) ( ) ( ) ( ) ( )2 2
1 1 2 20

d ,ft
J u t QV t R t R t SE t tε ε = + + − ∫        (4) 

where ( ) ( )1 1t u tε ε= , an RTI, and ( ) ( )2 2t u tε ε= , a PI. The values 1ε  and 2ε  
are the patient specific values estimated in Section 2. The parameters 1 2, ,Q R R  
and S  represent the control weights for the virus, control input, and immune 
response, respectively. By varying these weights, the optimal control can be cus-
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tomized in a patient specific sense, and exact treatments can be designed. By in-
cluding the control terms in (4) we attempt to minimize the systematic cost of 
the drugs both in the sense of physiologic side effects as well as the monetary 
treatment cost. 

For the RHC formulation, we denote [ ]1i it t +  a sequence of time intervals. 
Let ,hor it  such that , 1hor i i it t t+≥ −  be the control horizon. We denote 1i it t+ −  to 
be wint , the current control window. Consider a sequence of control problems iP , 

( ) ( ) ( ) ( ) ( ), 2 2* *
1 1 2 2s.t. arg min d ,i hor i

i

t t

t
u u J u QV t R t R t SE t tε ε

+  ∈ = = + + − ∫ (5) 

on the interval [ ]1i it t +  subject to the model equations given by (1). The solu-
tion to each control problem iP  is computed by the direct search routine as 
outlined in [10]. In this context, the control functions are represented as  
( ) ( )1 1t u tε ε=  and ( ) ( )2 2t u tε ε= , where ( )u t  is a binary treatment function, 

with a 1 representing a patient taking the drug during the given treatment inter-
val, and a 0 meaning no treatment taken for that specific time period. The quali-
ty of control can depend on the treatment interval, which is the minimum of 
time necessary to change the treatment protocol. A sample control input is 
shown in Figure 5. Computing control functions of the form shown in Figure 5 
is akin to calculating a series of structured treatment interruptions, rather than a 
continuous treatment. 

Mathematically, we represent the control numerically with a pair of vectors 
describing the control function ( )u t  and the corresponding time intervals the 
control applies to. For example, for a treatment regimen with a treatment inter-
val of 15m =  days, a possible control could be ( ) [ ]1 1 0 0 1u t = . This cor-
responds to an overall treatment length of 75 days with on treatment for the first 
30 days, off for the next 30, and then back on for the final 15 days of treatment. 
For any treatment interval with n switchings of treatment, there exists a possible 
2n  ways to define a treatment. Because this is a finite set, there exists an optimal 
control that minimizes (5). We denote the set of all control vectors  , with 

2n= . We then seek the optimal control, 

( ) ( )( )*
1 2arg min , .u J t tε ε∈ =                 (6) 

On average, the data sets contain four years of longitudinal patient data, 
 

 
Figure 5. A sample control input for the HIV model. The 
switching of treatment represents a structured treatment inter- 
ruption. 
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therefore 1400n ≈  days. Because n is relatively large, modeling daily changes in 
treatment is both impractical from a computational and clinical stand point. In 
practice, an interval of two to three weeks is clinically appropriate and is what we 
simulate. 

If we assume a 30 day treatment interval, modeling the entire control interval 
could involve the calculation of nearly 50 control values, or switches. As the 
problem is defined, 30m =  and 1400n ≈  would involve testing upwards of 

502  possible treatment protocols; clearly this is not computationally tractable. 
To mitigate this issue, we seek to reduce the number of iterations necessary to 
find the optimal control. One strategy is to break the treatment interval into bins 
and calculate independent controls on these intervals before combining all of 
these controls for the entire interval. For instance, for 30 day segments we first 
compute an optimal control over the set [ ]0,30,60,90,120,150,180 , a calcula-
tion that involves the testing of 72 128=  distinct possible controls. Once this 
control is computed, the resulting trajectories are integrated to 180t = , and a 
control is computed over the set [ ]180,210,240, ,360 . This control is then 
appended to the prior control vector, and this sequence is repeated until the final 
time ft  is reached. 

Because we divide the treatment interval into several separate bins, the result-
ing control is only suboptimal; however in [10] they show that these results are 
reasonable approximations to a fully efficacious continuous therapy. In our con-
trol synthesis, we compare 10, 20, and 30 day treatment intervals. 

This process is extended by RHC, outlined as follows: 
1) Given an initial condition ( )ix t  solve the optimal control problem iP  on 

the horizon interval ,i hor it t   . 
2) Use the control calculated in the prior step to compute the trajectory over 

the current control window [ ]1i it t + . 
3) Repeat this process by extending to the next control horizon to compute 

the next control. Terminate when the next i ft t> . 
A schematic overview of this process is given in Figure 6. Note that in this 

system, each successive control computed on each new window is now implicitly 
a function of the prior window’s final state-now the current window’s initial 
condition. The window length and horizon length vary per simulation given dif-
ferent patient parameters, and are listed with each simulation presented. 

Receding control depends on having full state knowledge in the observations 
of the system. Our control functions are computed after the completion of the 
inverse problem, so we assume our model to be accurate and predictive for each 
patient, therefore yielding full state knowledge at each time step. 

For problems where there exists only a reduced observation of the system, a 
(typically) nonlinear estimation of the true state values is needed for the RHC to 
operate successfully. In cases such as this, the estimator is installed between the 
system model and the optimizer, as shown in Figure 7. 

3.2. Optimal STI Results 

In this section we present optimal controls and the resulting state solutions for  



A. Attarian, H. Tran 
 

948 

 
Figure 6. An example of receding horizon control. Future controls are 
calculated by computing controls on successive intervals. 

 

 
Figure 7. Schematic diagram of the receding horizon control with a non- 
linear state estimator. 

 
patient 3 under utilizing differing control weights and treatment intervals. We 
wish to illustrate that treatment protocols can be swayed and adjusted on a pa-
tient specific basis using the control weights. We also show cases with an “unex-
pected” perturbation to the optimal treatment, e.g. forced off treatment to dem-
onstrate the feedback capability of the RHC. The control weights are presented 
as the vector [ ]1 2Q S R R . In all of the following plots, the green and red bars 
at the bottom of the plot indicate clinical adherence to control, whereas the cyan 
and magenta at the top of the plot indicate the optimally computed control of on 
treatment and off treatment, respectively. 

3.3. Varying Treatment Intervals 

We first investigate the impact of different treatment intervals has on viral load. 
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Figure 8 and Figure 9 differ only in the treatment interval. We first see a 20 day 
schedule, which results in an average viral of load of less than 1000 RNA cop-
ies/ml. The control is on for alternating periods of 60 days, followed by 40 days 
off, then 60 days on again. 

When the interval is increased to 30 days in Figure 9 the average viral load 
increases to over 1500 RNA copies/ml. The control is on for the first 60 days, 
followed by an off treatment for 30 days, repeating periodically. Despite having a 
greater number of switching times, the control is off for fewer day, 30 off, versus 
 

 
Figure 8. Patient 3, with weights [ ]0.01 1 0.01 0.1 , with 20 day treatment 

intervals, 100 day control window, and 720 day control horizon. 
 

 
Figure 9. Patient 3, with weights [ ]0.01 1 0.01 0.1 , with 30 day treatment 

intervals, 90 day control window, and 720 day control horizon. 
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40 off with 20m =  in Figure 8. With 30 day treatment intervals, the viral load 
peaks to a level less than that of using 20 day intervals. The on/off treatment 
doesn’t decrease the viral load to points achieved due to clinical adherence, 
which is constant on for nearly two years. However, when the patient goes off 
treatment even for a matter of days, the viral load spikes to nearly 40,000 RNA 
copies/ml. This kind of spike does not occur with the STI style regime produced 
by the RHC. 

Compare these results with Figure 10, where we use a 15 day treatment inter-
val. Treatment begins with 45 days of on treatment, before entering into a peri-
odic switching of 30 days off, 15 days on, 15 days off, 30 days on. Due to the 
greater amount of time spent off control, the lowest viral load is greater than that 
of other treatment intervals. Through these results we see that having access to a 
greater number of switchings, or shorter treatment intervals, does not necessari-
ly produce better results overall. Further, we see in general a greater amount of 
control used in the first 100 or so days, indicating the need to control HIV 
greater in the acute infection regimes. 

3.4. Varying Control Weights 

One advantage of the control methodology presented is being able to customize 
a treatment for a given patient. This can be done by varying the control weights 
to emphasize or deemphasize specific terms in the goal function (4). Between 
Figure 8 and Figure 11 we see the effect of changing the weight on viral load 
reduction by a factor or 10. Nearly twice as much control is used when 0.01Q =  
versus 0.001Q = . There are currently ongoing clinical trials that are exploring 
STI treatments by using more frequent on-treatments compared to prior studies. 

 

 
Figure 10. Patient 3, with weights [ ]0.01 1 0.01 0.1 , with 15 day treat- 

ment intervals, 90 day control window, and 720 day control horizon. 



A. Attarian, H. Tran 
 

951 

3.5. Unexpected Treatment Perturbations 

In Figure 12 we force an off treatment protocol for 100 days early in the simula-
tion. The control returns the viral load to the same level in Figure 11, where 
treatment is not modified. 

4. Concluding Remarks 

In this work we have examined an in-vivo model describing the acute and 
chronic infection regimes of HIV. With this model, we first have performed a 
 

 
Figure 11. Patient 3, with weights [ ]0.001 1 0.01 0.01 , with 20 day treat- 

ment intervals, 100 day control window, and 720 day control horizon. 
 

 
Figure 12. Patient 3, with weights [ ]0.001 1 0.01 0.01 , with 20 day treat- 

ment intervals, 100 day control window, and 720 day control horizon. The 
control was fixed to zero for 100 days early on in the simulation. 



A. Attarian, H. Tran 
 

952 

patient specific model calibration to clinically collected data sets consisting of 
CD4+ count as well as viral load, which are censored. We then take the first steps 
in investigating the construction of optimal treatment strategies, noting the lack 
of consensus in the best standards of treatment for acutely infected patients. To 
construct the treatment protocols, we use receding horizon control which com-
putes several successive controls over a shifting interval. The broader controls 
are then used on short time intervals, allowing for the control to adjust to unex-
pected physical perturbations to the system. These controls mimic the form of 
structured treatment interruptions, and there are several ongoing clinical studies 
to assess their effectiveness against standard HAART therapy. In our control 
implementation, we assumed full state knowledge of the dynamic system. This is 
an unrealistic assumption and the use of nonlinear estimators would be benefi-
cial. In addition, calibration and validation of more advanced HIV models could 
lead to greater insight into the replication processes during acute infection. For 
example, the development of new immune response models, an area that is cur-
rently poorly understood, could shed light into the complicated immune pro- 
cesses that occur post-infection. There are CD8 immune response data available, 
but we do not use them in this work, as the data do not match the type of im-
mune response that we have modeled. 
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