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Abstract 

Direct and inverse scattering problems connected with the wave equation in 
non-homogeneous bounded domains constitute challenging actual subjects 
for both mathematicians and engineers. Among them one can mention, for 
example, inverse source problems in seismology, nondestructive archeological 
probing, mine prospecting, inverse initial-value problems in acoustic tomo-
graphy, etc. In spite of its crucial importance, almost all of the available ri-
gorous investigations concern the case of unbounded simple domains such as 
layered planar or cylindrical or spherical structures. The main reason for the 
lack of the works related to non-homogeneous bounded structures is the ex-
treme complexity of the explicit expressions of the Green’s functions. The aim 
of the present work consists in discovering some universal properties of the 
Green’s functions in question, which reduce enormously the difficulties aris-
ing in various applications. The universality mentioned here means that the 
properties are not depend on the geometrical and physical properties of the 
configuration. To this end one considers first the case when the domain is 
partially-homogeneous. Then the results are generalized to the most general 
case. To show the importance of the universal properties in question, they are 
applied to an inverse initial-value problem connected with photo-acoustic 
tomography. 
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1. Introduction 

Let 3V ⊂R  denote a bounded region composed of n sub-domains having dif-
ferent (constant) constitutive parameters, say εj and µj ( 1, ,j n=  ) as shown in 
Figure 1 below. The constitutive parameters of the surrounding space, say 0V , 
will be denoted by 0ε  and 0µ . Let a function ( ),p x t , defined for 3x∈ℜ  
and t∈ℜ , satisfy the wave equation  

( ) ( )
2

3
02

1div grad , ,  ,  pp p x t x t
t

µ
ε

∂
− = − ∈ℜ ∈ℜ

∂
           (1) 

in the sense of distribution. Here ( )0 ,p x t  stands for the density of the source 
which will be assumed located inside V while ( )xε ε=  and ( )xµ µ=  denote 
the above-mentioned constitutive parameters:  

( )

( )

0 0

,

0 0

, ,   1, ,
,

,   1, ,
, .

j j

j j

x V j n
x

x V

x V j n
x

x V

ε
ε ε

ε

µ
µ µ

µ

∈ =
= =  ∈

∈ =
= =  ∈





 

The validity of (1) in the sense of distribution involves in itself both the 
boundary conditions satisfied on the interfaces between the adjacent sub-regions 
and the initial conditions, if any, at a certain time, say 0t = . Therefore it is not 
necessary to write down here these boundary and initial conditions explicitly 
(see for ex. (14b)). To determine ( ),p x t  uniquely, one has to add to (1) the so- 
called radiation conditions also. They will be clarified later on (see (4a, b) be-
low). 

As is well known, in a direct propagation problem the so-called outgoing 
Green’s function plays important role in transporting the data known in the 
source region towards the observation points. This is a wave propagating to-
wards infinity. But in an inverse source problem, the data observed (measured) 
on a surface S, surrounding the source region, is transported inversely towards 
the source region. This transportation is accomplished through a Green’s func-
tion which propagates in the inverse direction (ingoing Green’s function).  
 

 
Figure 1. A partially-homogeneous bounded domain. 
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Therefore, in inverse source problems one has to use both of these Green’s func-
tions together. Now our aim is to reveal some universal properties of these func-
tions. Here the universality means that the properties in question do not depend 
on the geometrical shapes and constitutive parameters of the sub-domains. 

In what follows we will assume that ( ),p x t  is Fourier transformable with 
respect to t . The transform of each quantity are denoted by a hat on that quan-
tity. For example one has  

( ) ( )1, , e d ,    
2π

i tp x p x t tωω ω
∞

−∞

= ∈ℜ∫
               (2a) 

and, inversely 

( ) ( ) ( ) -1 , 0 , 0 , e d ,   ,
2

i tp x t p x t p x tωω ω
∞

−∞

+ + − = ∈ℜ   ∫
        (2b) 

Thus the transform of (1) is as follows: 

( ) ( )2
0

1div grad  ,p p p xω µ ω
ε

+ = −                  (3) 

The radiation conditions satisfied by ( ),p x ω  are  

( ) ( ), 1      as    p x O x xω = →∞                (4a) 

and  

( )2
0 1   as p x i c p O x xω∂ ∂ − = →∞              (4b) 

where we put  

0 0 01c ε µ=                       (4c) 

The outgoing Green’s function associated with (3)-(4c) is the function 
( )1 , ,G x wη  determined uniquely through the following relations:  

( ) ( ) ( )2
1 1

1  x xdiv grad G x G x
x

ω µ δ η
ε

 
+ = − − 

 
         (5a) 

( ) ( )1 , , 1   as   G x O x xη ω = →∞              (5b) 

( )2
1 0 1 1       as  G x i c G O x xω∂ ∂ − = →∞             (5c) 

Here 3η ∈R  stands for any point while ( )xδ η−  is the Dirac distribution 
concentrated at x η= . The sub-indices x  in divx  and grad x , which appear 
in (5a), means that the derivatives are to be computed with respect to the com-
ponents of x . Notice that because of the radiation condition (5c), the wave as-
sociated with G1 propagates in the direction xη → . This Green’s function 
permits one to transport the data known at the source point η  to the observa-
tion point x . Indeed, as we will see in Section 2.1, the solution to the problem 
(3)-(4c) (i.e. the direct problem) is as follows: 

( ) ( ) ( )
3

1 0, , ,  , dp x G x p vηω η ω η ω
ℜ

= ∫
              (6) 

As to the ingoing Green’s function ( )2 , ,G x η ω , it satisfies 
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( ) ( ) ( )2
2 2

1div grad  x xG x G x
x

ω µ δ η
ε

 
+ = − − 

 
           (7a) 

in the sense of distribution under the radiation conditions  

( ) ( )2 , , 1   as  G O x xω = →∞x η                 (7b) 

and  

( )2
2 0 2 1  as .G x i c G O x xω∂ ∂ + = →∞                (7c) 

Notice that (7a) and (7b) are quite identical to (5a) and (5b) while (7c) differs 
from (5c) only with the sign of (i). Because of this difference, the wave associated 
with ( )2 , ,G x η ω  propagates in the direction x η→  and serves to transport 
the measured data at x  to the source point η . 

Observe that the Green’s functions defined above differ from the classical ones 
by the factor ( )xε  (see [1]). In Section 2 we will prove that these Green’s func-
tions have the universal properties stated in the following theorems:  

Theorem-1. For all 3,x η ∈ℜ  the Green’s function ( )1 , ,G x η ω  is symme-
tric with respect to x  and η : 

( ) ( )1 1, , , , .G x G xη ω η ω≡                      (8) 

Theorem-2. For ω∈ℜ  the Green’s functions ( )1 , ,G x η ω  and ( )2 , ,G x η ω  
are interrelated with the following functional relations: 

( ) ( )2 1, , , , ,G x G xη ω η ω≡ −                     (9a) 

( ) ( )*
2 1, , , , ,G x G xη ω η ω≡                     (9b) 

( ) ( )2 2, , ,  , .G x G xη ω η ω≡                     (9c) 

Here ( )*  means the complex conjugate. The relations in (9a) and (9c) are 
also valid for complex ω .  

Theorem-3. For all 3,x η ∈ℜ  and n →∞  one has  

( ) ( ) ( )1
 π  , , d

n

n

iG x xη ω ω ω δ η
µ η

Ω

−Ω

→ −∫                (10a) 

( )
( )

22
xi

x

δ η
µ η η

−
→

−
                      (10b) 

( )
( )

2
xi

x
δ η

µ η η

′ −
→ −

−
                      (10c) 

Here { }nΩ  stands for any sequence such that nΩ →∞  as n →∞ . 
Theorem-4. For all 3,x η ∈ℜ  and n →∞  one has 

( ) ( ) ( ) ( )2 1
2π, , , , d

n

n

iG x G x xη ω η ω ω ω δ η
µ η

Ω

−Ω

− → − − ∫           (11a) 

( )
( )

2

xi
x

δ η
µ η η

−
→ −

−
                      (11b) 
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( )
( )

.
xi

x
δ η

µ η η

′ −
→

−
                     (11c) 

Here { }nΩ  stands for any sequence such that nΩ →∞  as n →∞ . 
Theorem-5. For all x V∈ , 0Vη ∈ , [ ]π 2,π 2α ∈ −  and n →∞  one has 

( ) ( )0sin0
1 , , sin e 1 1

4π
ni x c

n nG x O
x

α ηε
η α

η
Ω −  Ω → + Ω −

      (12a) 

( ) ( )0sin0
2 , , sin e 1 1

4π
ni x c

n nG x O
x

α ηε
η α

η
− Ω −  Ω → + Ω −

     (12b) 

Here { }nΩ  stands for any sequence such that nΩ →∞  as n →∞ . 
Theorem-6. For all ,  x y V∈ , 0Vη ∈  and n →∞  one has 

( ) ( ) ( )1 20
1 2

0 1 2
, , , , d .

8π

n

n

R RiG x G y
R R

δε
η ω η ω ω ω

µ

Ω

−Ω

′ −
→ −∫       (13) 

Here { }nΩ  stands for any sequence such that nΩ →∞  as n →∞  and  

1 2,  .R x R yη η= − = −  

2. Proofs of the Theorems 

Now we will give the proofs of the above-mentioned theorems in turn. But, first 
of all we prove the Formula (6) which will be used later on in the proofs of the 
theorems.  

2.1. Proof of the Formula (6) 

Multiply first (1) with 1G  and (5a) with p , and subtract side by side to get 

( ) { }

( ) ( ) ( ) ( )

1 1

0 1

1div grad grad

 , , , , .

x x xG p p G
x

p x G x p x x

ε

ω η ω ω δ η

 
− 

 
= − + −

 

 

 

If we integrate both sides in a sphere of radius R and transform the first side 
to the surface integral on x R= , then we write 

( ) { }

( ) ( ) ( )

1 1

1 0

1 grad grad d

 , , , , d .

x x x
x R

x
x R

G p p G S
x

p G x p x v

ε

η ω η ω ω

=

≤

 
− ⋅ 

 

= −

∫

∫

 

 

 

Now let us make R →∞ . Because of the radiation conditions satisfied by 1G  
and p , the surface integral tends to zero and yields (6).  

2.2. Proof of Theorem-1 

Now consider the function ( )1 ,p x ω  defined as follows: 

( ) ( ) ( )
3

1 1 0, , ,  ,  d  .p x G x p Vηω η ω η ω
ℜ

= ∫
   

One can easily check that 1p  satisfies (3) as well as the radiation conditions 
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(4a, b). Therefore it is equal to ( ), .p x ω  If we compare this new expression of 
( ),p x ω  with (6), then we write also  

( ) ( ) ( )
3

1 1 0, , , , , d 0.G x G x p Vηη ω η ω η ω
ℜ

− ≡  ∫
  

Since ( )0 ,p η ω  is arbitrary, from the latter one gets (8). 

2.3. Proof of Theorem-2 

Assume ω∈R  and make the change ( )ω ω→ −  in the differential equation 
and the radiation conditions satisfied by 1G . One obviously obtains the equa-
tions satisfied by 2G . From this one concludes (9a).  

If under the same assumption ω∈R  one considers the complex conjugates 
of the equations satisfied by 1G , one sees that the resulting equations are noth-
ing but those satisfied by 2G . This proves (9b). 

As to (9c), it is a direct consequence of (9a) and Theorem-1. The relations in 
(9a) and (9c) are obviously valid for complex ω  also. 

2.4. Proof of Theorem-3 

Consider the Equation (1) for the case when ( ) ( ) ( )0 0 0,p x t p x T t=  with 
( )0 0T t ≡  for 0t < . In this case one obviously has ( ), 0p x t ≡  for 0t < . Thus 

from (2a) and (2b) written for 0t =  one gets  

( ) ( ) ( ) ( )1 0 0
1 ˆ, 0 lim , , d d
2

n

n
n

V

p x i G x p T v
t ηω η ω η ω ω

Ω

→∞
Ω

∂
+ = −

∂ ∫ ∫       (14a) 

Assume first that ( ) ( )0T t tδ=  which yields ( )0̂ ( ) 1 2πT ω = . In this case 
from (1) one gets  

( ) ( )
( )

0, 0
p xp x

t xµ
∂

+ =
∂

                     (14b) 

A comparison of (14a) with (14b) yields  

( ) ( ) ( ) ( )0 0
πlim , dnn

V

ip Q x v p x
xηη η

µ→∞
=∫              (14c) 

with 

( ) ( )1, , , d ,  1, 2, .
n

n

nQ x G x nη η ω ω ω
Ω

−Ω

= =∫ 
 

From (14c) one concludes that when ,n →∞  the sequence nQ  defines a 
generalized function (= distribution) [2], namely:  

( ) ( ) ( )π, .n
in Q x xη δ η

µ η
→∞⇒ → −  

The latter proves (10a). 

To prove (10b), let us define a polar coordinate system ( ), ,R θ ϕ  with 
origin at the point η  and consider the distribution ( ) 2R Rδ . If 
( ) ( )1 2 3, ,x x x xφ φ≡  denotes any test function, then we write 
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( ) ( ) ( ) ( )
2π π

2
0 0 0

, , , sin d d ,
R

x R R R d
R

δ
φ δ ψ θ ϕ θ θ ϕ

∞

= ∫ ∫ ∫         (15a) 

where we put  

( ) ( )1, , sin cos ,R Rψ θ ϕ φ η θ φ= +   

Now it is worthwhile to remark that the transformation to the polar 
coordinates causes to a confusion in (15a) because the distribution ( )Rδ  
is defined on the space of the test functions defined for ( ),R∈ −∞ ∞  while 
the function ( ), ,Rψ θ ϕ  is known only for [ )0,R∈ ∞ . To overcome the 
difficulty, we extend the functions ( ), ,Rψ θ ϕ  defined in 0 R≤ < ∞  into 
( ) R−∞ < < ∞  as an even function (which is continuous at 0R =  !!). If the 
extended function is denoted by ( )Rψ , then we write  

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

0

0

0

0 0 ,

d

 d

2 d

R R

R R R

R R R

R R R

ψ ψ δ ψ

δ ψ

δ ψ

δ ψ

∞

−∞

∞

−∞

∞

= =

=

 
= + 
 

=

∫

∫ ∫

∫

 





 

which yields  

( ) ( ) ( )
0

1d 0
2

R R Rδ ψ ψ
∞

=∫                  (15b) 

This formula defines the extension of ( )xδ  into ( )Rδ  to be used in 3R  

and 2R .  
From (15a) and (15b) one gets  

( ) ( ) ( ) ( ) ( ), 2π 2π ,
2
R

x x x
R

δ
φ φ η δ η φ= = −  

and 

( ) ( )
2

1
2π

x
x

x

δ η
δ η

η

−
− =

−
                 (15c) 

which reduces (10a) to (10b).  

Finally, let us consider the distribution ( )R Rδ ′  and write 

( ) ( ) ( ) ( )

( ) ( )

2π π

0 0 0

2π π

0 0 0

, , , sin d d d

 , , sin d d d

R
x R R R

R

R R R
R

δ
φ δ χ θ ϕ θ θ ϕ

δ χ θ ϕ θ θ ϕ

∞

∞

′
′=

∂= −
∂

∫ ∫ ∫

∫ ∫ ∫
  

with  

( ) ( )1, , sin cos ,R R Rχ θ ϕ φ η θ ϕ= +  . 

By virtue of (15b) we write also  
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( ) ( ) ( )

( ) ( )

, 2π

2π , .

R
x

R

x x

δ
φ φ η

δ η φ

′
= −

= − −

 

This shows that  

( ) ( )1
2π

x
x

x
δ η

δ η
η

′ −
− = −

−
                 (15d) 

which reduces (10a) to (10c). 
Remark. All the results obtained above can easily be checked in the simplest 

case of homogeneous space for which one has  

( ) 00
1 , , e ,

4π
i R cG x

R
ωε

η ω =                   (16a) 

and  

( ) 00
2 , , e ,

4π
i R cG x

R
ωε

η ω −=                  (16b) 

where R x η= − . To this end one has to observe that in ℜ3  

( )0

0 0

π .
2

R i x
iR c
ε

δ δ η
µ

 ′ = − 
 

 

2.5. Proof of Theorem-4 

By considering (9a) we get directly  

( ) ( )

( )

2 1

1

, , d , , d

, , d

n n

n n

n

n

G x G x

G x

η ω ω ω η ω ω ω

η ω ω ω

Ω Ω

−Ω −Ω

Ω

−Ω

= −

= −

∫ ∫

∫
 

Thus from (10a), (10b) and (10c) one gets directly (11a), (11b) and (11c). 

2.6. Proof of Theorem-5 

Since the function ( )1 , ,G x η ω  is symmetrical with respect to x  and η , as a 
function of 0Vη ∈ , it satisfies the Helmholtz equation  

2
1 0 1 00,  ,  G k G V x Vη η∆ + = ∈ ∈                  (17a) 

under the radiation conditions  

( ) ( )21
1 0 11 ,   1

GG O ik G Oη η
η

∂
= − =

∂
             (17b) 

Here we put 0 0 0k ω ε µ= . Now let us define a polar co-ordinate system 
( ), ,R θ ϕ  whose origin is at the point x  and R xη= − . In this system (17a) 
and (17b) become 

2 2 2
1 1 1 1

12 2 2 2 2 2
0

2 1 1sin + 0
sin sin

G G G G G
R RR R R c

ωθ
θ θθ θ ϕ

∂ ∂ ∂ ∂ ∂+ + + = ∂ ∂ ∂∂ ∂ 
  (18a) 
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and  

( )1 1 ,    R G O R→∞ ⇒ =                   (18b) 

( )21
1

0
  1

GR i G O R
R c

ω∂
→∞ ⇒ − =

∂
              (18c) 

Now for each nΩ  let us make the substitutions  

[ ]

0 0
0

sin ,   π 2,π 2
sin1 ,

n

n
k k

c

ω α α
α

= Ω ∈ −

⇒ = ≡
Ω



 

and  

( ) ( )

2 2
21 1 1 1

2 2

1 1

,     

1 , , , , , ,

n

n n

n
n

R r

G G G G
R r R r

G x G rη ω θ ϕ α

Ω =

∂ ∂ ∂ ∂
⇒ = Ω = Ω

∂ ∂ ∂ ∂

⇒ =
Ω

 

which reduce (18 a-c) to  
2 2

21 1 1 1
0 12 2 2 2 2

2 1 1sin 0
sin sin

n n n n
n

G G G G
k G

r rr r r
θ

θ θθ θ ϕ
∂ ∂ ∂ ∂ ∂+ + + + = ∂ ∂ ∂∂ ∂ 

  (19a) 

and 

( )1 1 ,nr G O r→∞⇒ =                      (19b) 

( )21
0 1 1 .n

n
G

ik G O r
r

∂
− =

∂
                      (19c) 

Notice that (19a) is satisfied outside the region V, and 1nG  may depend on 

nΩ  (and α ) through the boundary conditions on V∂  also. 
It is obvious that (19a) and (19b, c) define the radiating (=outgoing) solution 

to the Helmholtz equation. When n →∞ , one has n nr RΩ →∞⇒ = Ω →∞ , 
which reduces the expression of 1nG  to the so-called far field pattern of 1nG  
[3]: 

( ){ }0
1

1 1e .ik r
nn G A O

r r∞→ ∞⇒ = +
                (20) 

Here A∞  stands for the scattering amplitude. It does not depend on r. By us-
ing (20), we write successively  

( ) ( )

0

0

0

0

π 2
2

1 1
π 2

π 2
) 2

π 2

2
0

, , d  , , , sin cos d

1 e sin cos d

1 e d

e d . (21)

n

n

n

n

n

n

n n n

ik r
n n

i R c

c
i R

c

G x G r

A r

AR

c AR

ω

ω

η ω ω ω θ ϕ α α α α

α α α

ω ω

ω ω

Ω

−Ω −

∞
−

Ω

∞
−Ω

Ω

∞
−Ω

= Ω Ω  

 → Ω Ω  

=

=

∫ ∫

∫

∫

∫



 

If we compare (21) with (10c) written as follows 



M. Idemen 
 

492 

( ) ( )
1

0

0

 , , d
2

1 1 e d ,
4π

i R

RiG x
R

R
ω

δ
η ω ω ω

µ

ω ω
µ

∞

−∞

∞

−∞

′
= −

=

∫

∫
 

then we conclude that  

0

4π
A

ε
∞ ≡  

and the explicit expression of (20) is  

( ) 0sin0
1

1, , sin e
4π

ir c
n nG x

r
αε

η αΩ →  

as n →∞ . This yields 

( ) 0sin0
1

1 , , sin e .
4π

ni R c
nn G x

R
αε

η α Ω→∞ ⇒ Ω →        (22) 

The latter proves (12a). The proof of (12b) is a direct result of (12a) and 
(9a). 

It is important to remark here that (22) is not the far-field expression of 1G  
because R  is finite. It states merely that when computing the integral ap-
pearing on the left-hand side of (21), for n →∞  1G  can be replaced by (22). 

2.7. Proof of Theorem-6 

Let us now define two polar coordinates ( )1 1 1, ,R θ ϕ  and ( )2 2 2, ,R θ ϕ  whose 
origins are located at the points x  and y , respectively. If we make the substi-
tutions  

1 2,     ,R x R yη η= − = −  

and  

( ) ( )
1 1 2 2

1 1 1 1 1

,    ,  sin
1 , , , , , ,

n n n

n
n

r R r R

G x G r

ω α

η ω θ ϕ α

= Ω = Ω = Ω

=
Ω

             (23a) 

( ) ( )2 2 2 2 2
1 , , , , , ,n

n
G y G rη ω θ ϕ α=

Ω
             (23b) 

then from (22) we write 

1 00
1

1

1 G e
4π

i R c
n nn

R
ωε

→ ∞ ⇒Ω →               (24a) 

and  

2 00
2

2

1 G e .
4π

i R c
n nn

R
ωε −→ ∞⇒Ω →              (24b) 

Now let us define the distribution defined through the sequence [2] 

( ) ( )1 2, , , , d .
n

n

nW G x G yη ω µ ω ω ω
Ω

−Ω

= ∫  

By virtue of (24a, b) we have  
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( ) ( )

( )

( )

( )

1 2 0

π 2
2

1n 1 1 1 2 2 2 2
π 2

2
0

1 2

2
0 1 2

1 2 0

1 20

0 2 2

G r , , , , , , sin cos d

1 e d4π

1 2π4π

. (24c)8π

n

n

n n n n n

i R R c

W G r

R R

R RiR R c

R Ri
R R

ω

θ ϕ α θ ϕ α α α α

ε ω ω

ε δ

δε
µ

−

Ω
−

−Ω

= Ω Ω Ω      

 →  
 

−   ′→ −   
   

′ −
→ −

∫

∫

 

 

This proves (13). 
Remark. (24c) can easily be checked in the simplest case of homogeneous 

space for which 1G  and 2G  are given by (16a, b).  

3. Application. Inverse Initial-Value Problem of Acoustic  
Tomography in a Non-Homogeneous Domain 

Reconsider the domain shown in Figure 1 above. Such a domain can model, for 
example, small-seized animals, women’s breasts or other biological domains where 
different regions are the bone, skin, muscle, fat, cancerous tissues, epileptic tumor 
etc. If V  is exposed to a light (or thermal) pulse, excited at a certain time, say 

0t = , then the energy stored in various regions creates a pressure wave ( ),p x t  
which propagates towards 0V . The initial value of the pressure function, say 
( ), 0p x + , gives an idea about the configuration. The so-called photo-acoustic and 

thermo-acoustic tomographies are based on this phenomenon. To this end one 
first measures the pressure intensity ( ),p x t  on a closed surface S lying in 0V  in 
a certain time interval (0, T) and then inserts them into an integral on S to obtain 
( ), 0p x +  in V (see Figure 2). That means that the acoustic tomography consists 

in an inverse initial-value problem. The pressure function ( ),p x t  satisfies the 
Equation (1) with ( ) ( ) ( )0 0,p x t p x tδ ′= , namely [4]: 

( ) ( ) ( )
2

02
1 1div grad ,  pp p x t

t
µ δ

ε ε
∂ ′− = −
∂

            (25) 

 

 
Figure 2. Various parameters connected with the tomography problem. 
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where 3  x∈ℜ  and t∈ℜ . It is worthwhile to remark that in realistic problems 
both the source density ( )0p x  and the constitutive parameters ( ) ( ){ },x xε µ  
(i.e. the geometrical shapes of the regions jV ) are not known beforehand. Re-
mark also that all of the previous theoretical works concern the simplest case 
where the space is assumed to be homogeneous and the aim consists in the de-
termination of the source density ( )0p x  (inverse source problem) [4]-[12]. 
The basic principles and different implementations along with a long reference 
list are given in [4] and [5].  

Let ( )1 , ,G x η ω  and ( )2 , ,G x η ω  be the Green’s functions associated with 
the configuration shown in Figure 1. The pressure ( ),p tη  measured at a point 

0S Vη ∈ ∈  is connected to the source density ( )0p x  through the outgoing 
Green’s function ( )1 , ,G x η ω  as given in Formula (6), where 

( ) ( )0 0ˆ ( , ) 2πp x i p x xω ω ε= −    . 

Now, by using the ingoing Green’s function ( )2 , ,G x η ω  we transport the 
data known at the point Sη ∈  to the point x V∈  through the following func-
tion ( )nq x   

( ) ( ) ( ) ( )21  , , , d d .
n

n

n
S

Gq x p x S
n η
η

η ω η ω ω
ε η

Ω

−Ω

∂
=

∂∫ ∫
           (26) 

Here { }nΩ  stands for any sequence such that nΩ →∞  as n →∞ , ηn  is 
the unit outward normal vector to the surface S at the point η  and nη∂ ∂  
means the derivative in this direction (see Figure 2). First we will show that 
when n →∞  one has  

( ) ( )2 , 0 ,    .nq x p x x V− → + ∈                  (27) 

To prove (27), let us replace ( )ˆ ,p η ω  in (26) by (6) and write  

( ) ( ) ( )0
1 , d

2πn n y
V

q x p y P y x v= ∫  

where we put 

( ) ( ) ( ) ( ) ( )2
1

1, , , , , d d
n

n

n
S

GiP y x G y x S
ny η
η

η ω η ω ω ω
ε ηε

Ω

−Ω

 ∂ = −  ∂  
∫ ∫    (28) 

(28) can also be written as follows (in what follows SD  shows the domain 
bounded by S): 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ){ }

1 2

1 2

1 2

,

1, , grad , , d d

1div , , grad , , d d

, , , , , , d d

n

n

n

n S

n

n S

n

S

D

D

P y x

i G y G x S
y

i G y G x v
y

i Q x y Q x y v
y

η η

η η η

η

η ω η ω ω ω
ε ε η

η ω η ω ω ω
ε ε η

η ω η ω ω ω
ε

Ω

−Ω

Ω

−Ω

Ω

−Ω

  = − ⋅ 
  

   = −   
   

= − +

∫ ∫

∫ ∫

∫ ∫

  (29) 

where we put 
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( ) ( ) ( ) ( )1 1 2
1, , , , , div grad , ,Q x y G y G xη ηη ω η ω η ω

ε η
  =  
  

 

and 

( ) ( ) ( ) ( )2 1 2
1, , , grad , , grad , ,Q x y G y G xη ηη ω η ω η ω

ε η
= ⋅   

Now reconsider the equations satisfied by 1G  and 2G  (see (5a) and (7a)) to 
write  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2
1 2 1

2 1

2 1

, , , , , , ,

1, , div grad , ,

 , , , , .

Q x y G x x G y

G x G y

y G x x G y

η η

η ω ω µ η η ω δ η η ω

η ω η ω
ε η

δ η η ω δ η η ω

 = − + − 
 

=  
 

+ − − −

 

Now let us add the left hand-side again to both sides to obtain a more sym-
metrical expression  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 1

1 2

2 1

12 , , div grad , ,

1 , , div grad , ,

  , , , , .

Q G x G y

G y G x

y G x x G y

η η

η η

η ω η ω
ε η

η ω η ω
ε η

δ η η ω δ η η ω

 
=  

 
 

+  
 

+ − − −

 

By using the latter in (29) one obtains 

( ) ( ) ( )1 2, , ,n n nP y x P y x P y x= +   

where 

( ) ( ) ( ) ( ){ }1 2 1, , , , , d
2

n

n

n
iP y x G y x G y x

y
ω ω ω ω

ε

Ω

−Ω

= − −∫  

and  

( ) ( ) { }32 1 2, 2 d d
2

n

n S

n
D

iP y x Q Q Q v
y ηω ω

ε

Ω

−Ω

= − + +∫ ∫         (30) 

with  

( )3 1 , , ,Q Q x y η ω= − . 

In what follows we will show that if SD  is convex (see Sec.4 below), then 

( )2lim , 0nn
P y x

→∞
=                       (31) 

which means that the contribution of 2 nP  to ( )nq x  is naught when n →∞ . 
As to the contribution of Pn1, one has 

( ) ( ) ( ) ( )0 1
1 lim , d

2πn n yn
V

q x p y P y x v q x
→∞

→ ≡∫ . 

This equation defines a distribution (generalized function), say ( ),f y x , 
which permits us to write [2] 

( ) ( ) ( )0, ,q x f y x p y=                    (32a) 
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and  

( ) ( )1
1 , , .

2π nn P y x f y x→∞⇒ →  

On the other hand, from Theorem-4 we already know that  

( ) ( ) ( ) ( )1
1 1,

2π 2nn P y x x y
y y

δ
ε µ

→∞⇒ = − − ,  

which reduces (32a) to 

( ) ( )
( ) ( ) ( )0 1 , 0 .

22
p x

q x p x
x xε µ

= − = − +             (32b) 

The second equality in (32b) is an obvious issue of the distributional validity 
of (25).  

(32b) is the basic formula of the present work. It can be used in photo-acous- 
tic and thermo-acoustic tomography problems connected with non-homoge- 
neous media. To obtain a more explicit expression of ( ), 0p x + , let us insert the 
expression of ( )nq x  given by (26) into (27), and make the change of variable 

sinnω α= Ω . If we use also (12b), then we write successively  

( ) ( ) ( )

( ) 1 0

π 2

2
0π 2

π 2
sin 0

0 1π 2

cos ˆ , sin , , sin d d

cos 1ˆ , sin e d d .
4π

n

n
n n n

S

i R cn
n

nS

q x p G x S
n

p O S
n R

η
η

α
η

η

α
η α η α α

ε

α ε
η α α

ε

−

− Ω

−

Ω ∂
= Ω Ω

∂

  Ω  ∂  = Ω +   ∂ Ω   

∫ ∫

∫ ∫
 

Here 1R xη= −  (see Figure 2). It is obvious that when n →∞  the con-
tribution of the part taking place in ( )1 nO Ω  tends to zero if the contribution 
of the constant ( )0 14πRε  is finite. Therefore, by omitting the terms in 
( )1 nO Ω  and writing inversely sinnω α= Ω  we write also  

( ) ( )

( )

( )

1 0

1 0

1 0

1

1

1

1 1ˆ , e d d  
4π

1 1ˆ , grad e d d
4π

1 1 ˆgrad , e d d
4π

n

n

n

n

i R c
n

S

i R c
x

S

i R c
x

S

q x p S
n R

p n S
R

p n S
R

ω
η

η

ω
η η

ω
η η

η ω ω

η ω ω

η ω ω

Ω
−

−Ω

Ω
−

−Ω

∞
−

−∞

 ∂→  ∂  

 → − ⋅ 
 

 
→ − ⋅ 

 

∫ ∫

∫ ∫

∫ ∫

 

Now observe that the integral on ω  gives the inverse Fourier transform at 

1 0t R c= . Thus we obtain finally 

( ) 1

1 0

1 1
2

0 1 0 01

1 1, 0 grad , d2π

1 1 1, , cos d (33)2π

x
S

S

Rp x p n SR c

R Rpp Sc R c t cR

η η

η

η

η η φ

  + = ⋅  
  

 ∂   = −    ∂    

∫

∫
 

where ( )cos n x xηφ η η= ⋅ − −  (see Figure 2). 
(33) gives the solution to the tomography problem in question. Since its right- 

hand side does not explicitly involve any information about the configuration of 
the domain V, it is valid for all non-homogeneous bounded domains. In the case 
of homogeneous space, where ( ) 0xε ε≡  and ( ) 0xµ µ≡ , (33) is reduced to the 
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known formula obtained in [12].  
From (33) one concludes that in order to get a chart of the sensitive points, 

one has to know the values of ( ),p tη  at all Sη ∈  at the times 0t x cη= − . 
Maximum values of these t, say T, for all Sη ∈  and all Sx D∈  is obviously 

1 2 0maxT cη η< − . Therefore, (33) can be stated as the following theorem. 
Theorem. Let the values of ( ),p x t  be known on the boundary S of a convex 

bounded domain DS involving V for all [ ]0,t T∈  where 1 2 0maxT cη η= −  

with 1 2, Sη η ∈ . Then the initial values configuration ( ), 0p x +  is given by the 
universal Formula (33) while the density ( )0p x  of the source appearing in (25) 
can be determined through the Formula (32b). 

4. Proof of (31) 

One can easily check that the integrand in (30) is equal to  

( ) ( ) ( )1 2
1div grad , , , , ,  G y G xη η η ω η ω

ε η
 

    
 

 

where ,x y V∈  while SDη ∈ . Thus, by using the Gaus-Ostrogradski theorem 
one can write also 

( ) ( ) ( ) ( )2 1 2
0

1, grad , , , , d d
2

n

n

n
S

iP y x G y G x S
y η ηη ω η ω ω ω

εε

Ω

−Ω

= − ⋅  ∫ ∫  

or 

( ) ( ) ( ) ( )2 1 2
0

, grad , , , , d d
2

n

n

n
S

iP y x G y G x S
y η ηη ω η ω ω ω

ε ε

Ω

−Ω

  = − ⋅ 
  

∫ ∫  

When n →∞  the inner integral tends to the distribution given by (13) and 
yields 

( ) ( )
( )

( )
( )

2 10
2

0 1 20

2 1

1 20

'
lim , grad d8π2

1 div grad d (34)
16π

S

nn
S

D

R Ri iP y x SR Ry

R R
vR Ry

η η

η η η

δε
µε ε

δ
µ ε

→∞

− 
= − − ⋅ 

 
′ − 

= −  
 

∫

∫
 

Now it is important to observe that the function in the bracket is a function of 
the form 

( ) ( )2 1

1 2
,

R R
f x y

R R
δ

η η
′ −

= − −  

and  

( ) ( )( )div grad , div div grad gradx y x yf x y fη η η η− − ≡ + +  

This shows that (34) can also be written as follows: 

( ) ( ) ( )( ) ( )2 1
2

1 20

1lim , div div grad grad d .
16π

S

n x y x yn
D

R R
P y x v

R Ry η

δ
µ ε→∞

′ −
= − + + ∫  (35) 

By a theorem due to the author, the integral taking place in (35) is equal to 
naught whenever the domain DS is convex (see Lemma in [12]). This proves 



M. Idemen 
 

498 

(31). 

5. Conclusions and Concluding Remarks 

From the results obtained above one concludes that the solution to the inverse 
initial-value problem (i.e. the tomography problem!) connected with spaces in-
volving partially homogeneous bounded regions is given by (33). It is extremely 
important to observe that it is a universal formula which does not depend on the 
configuration. The geometrical shape and constitutive parameters effect only the 
data measured on S. Since the shapes and number of the sub-regions does not 
appear in (33), we can conjecture that it is also valid for any non-homogeneous 
medium. 

Furthermore, since the Formula (28) considered above is symmetrical with 
respect to the Green’s functions 1G  and 2G , we could replace ( )nq x  given by 
(26) by  

( ) ( ) ( ) ( )2
1 , , , d d .n

S

q x G x p S
n η
η

η ω η ω ω
ε η

∞

−∞

∂=
∂∫ ∫

  

In this case, instead of (33) one gets more simply 

( ) ( ) ( ) ( ) ( )0
1

1 1 1, 0 , d
2π S

p x p x p S
R nx x η

η
η τ

ε µ
 ∂+ = =  ∂ 
∫  

[ ]1 1 0 0;  0,R x R c x c Tη τ η= − = = − ∈ ;  

and  

1 2 1 2max ; ,  ;  ,T x V S Sη η η η η≤ − ∈ ∈ ∈ . 
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