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Abstract 
Many advanced mathematical models of biochemical, biophysical and other 
processes in systems biology can be described by parametrized systems of 
nonlinear differential equations. Due to complexity of the models, a problem 
of their simplification has become of great importance. In particular, rather 
challengeable methods of estimation of parameters in these models may re-
quire such simplifications. The paper offers a practical way of constructing 
approximations of nonlinearly parametrized functions by linearly parame-
trized ones. As the idea of such approximations goes back to Principal Com-
ponent Analysis, we call the corresponding transformation Principal Compo-
nent Transform. We show that this transform possesses the best individual fit 
property, in the sense that the corresponding approximations preserve most 
information (in some sense) about the original function. It is also demon-
strated how one can estimate the error between the given function and its ap-
proximations. In addition, we apply the theory of tensor products of compact 
operators in Hilbert spaces to justify our method for the case of the products 
of parametrized functions. Finally, we provide several examples, which are of 
relevance for systems biology. 
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1. Introduction 

This study is closely related to applications in the so-called “metamodeling” of 
differential equations, where a “proper” model of an e.g. complex biological 
process is replaced by its approximation which contains “most information” 
about the model, but which is simpler. In particular, the true parameters of the 
model are replaced by “the latent parameters”, which makes the model linear 
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with respect to the latter and hence enables the usage of the (if necessary, partial) 
least-squares regression. This explains why this idea proved to be efficient in pa-
rameter estimation (see e.g. [1]). This also justifies the high numerical efficiency 
of metamodeling, which has been widely used in statistics [2], chemometrics [3], 
biochemstry [1], genetics [4] [5] [6], infrared spectroscopy [7] to simplify theo-
retical and computational analysis of the “true” models. 

Let ( ),x x u ω=  be a function, where Nu U∈ ⊂   and ω∈Ω , MΩ ⊂   
being a space of parameters and k ∈  be a given number. The kth Principal 
Component Transform (PCT) is a specially constructed parametrized function 

( )PCT , kx k x≡  of the form ( ) ( )
1

k

k i i
i

x p u t ω
=

= ∑ . The image kx  is constructed 
to yield the minimum distance (in some sense) between x  and all possible ap-
proximations of x  of the form ( ) ( )

1

k

i i
i

z u y ω
=
∑ . The distance is chosen to en-

sure an efficient way to estimate the deviation of kx  from x . 
Geometrically, the parametrized function x  may be regarded as a curve 

( ),xω ω⋅  in a separable Hilbert space. Then ( )PCT ,kx x k=  can be inter- 
preted as a projection of this curve onto an k -dimensional subspace, which is 
chosen in such a way that the image kx  gives a best possible individual fit to x  
among all k -dimensional subspaces. As we will see in Subsection 3.1, this nec-
essarily leads to nonlinearity of the mapping PCT. 

As we will see in Subsection 3.3, discretizing the function ( ),x u ω  and its 
PCT yields matrices and the projections onto their first k  principal compo- 
nents, respectively. This explains our terminology: PCT can be regarded as a 
functional analog of the principal component analysis (PCA) of matrices. This 
terminology was suggested by Prof. E. Voit in a private talk with the second au-
thor during his seminar lecture in Oslo in 2014. 

All the papers cited above concentrate on efficiency of the metamodeling ap-
proach and disregard mathematical properties of PCT and their justification, 
which is, for instance, quite important for understanding the limitations of the 
method and describing the exact conditions under which the method is applica-
ble. In particular, the convergence properties of the sequence of metamodels to 
the original model has not been studied in the available literature. In our paper 
we try to fill this gap suggesting a rigorous mathematical approach to PCT and 
analysis of its basic properties. More precisely, we demonstrate how the theory 
of compact operators in separable Hilbert spaces can be used to provide such an 
analysis. 

The paper is organized as follows. In Section 2 we introduce the distance in 
the space of parametrized functions, formulate the theorem on the best indivi- 
dual fit in terms of PCT of functions (Subsection 2.1) and provide some exam-
ples relevant for systems biology (Subsection 2.2). In Section 3 we study mathe-
matical properties of PCT: nonlinearity (Subsection 3.1), continuity (Subsection 
3.2) and show relations of PCT and PCA via discretization of functions (Subsec-
tions 3.3 and 3.4). In Section 4 we study PCT of products of parametrized func-
tions which are interpreted as elements of the tensor product of two or several 
Hilbert spaces (Subsection 4.1). We aslo show that PCT pre- serves the tensor 
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products and therefore the product of parametrized functions (Subsection 4.2) 
and give some examples (Subsection 4.3). In Appendix 5 we offer short proofs of 
some auxiliary results used in the paper: Allahverdiev’s theorem (Subsection 5.1) 
and some propositions related to tensor products of linear compact operators in 
Hilbert spaces (Subsection 5.2).  

2. The Best Individual Fit Theorem 

In this section we define the distance in the space of parametrized functions and 
describe how best individual fits ( )( )PCT ,x k k ∈  to a given function x  can 
be obtained using the theory of compact operators in Hilbert spaces. We also 
prove nonlinearity and continuity of PCT and give some specific examples.  

2.1. The Distance in the Space of Parametrized Functions 

Let U  be a compact subset of N  and Ω  be a compact subset of .M  We 
consider the separable Hilbert spaces ( )2L U  and ( )2L Ω  with the standard 
scalar products ( ),⋅ ⋅  and the norms ⋅ . 

Suppose we are given a measurable, square integrable function :  x U ×Ω→ 
, 

i.e.  

( ) 2
, d d

U

x u uω ω
Ω

< ∞∫∫                       (1) 

The aim is to find a best possible approximation of x  in the class k  of all 

functions of the form ( ) ( ) ( )
1

,
k

k i i
i

x u z u yω ω
=

= ∑ , where ( )2
iz L U∈  and  

( )2
iy L∈ Ω . 

To explain better the nature of topology we use in this case let us have a look 
at finite dimensional Hilbert, i.e. Euclidean, spaces. Let ijX x =    be an m n×
-matrix, for instance, a discretized function ( ),x u ω  where ( ),ij i jx x u ω= . In 
this case, the best approximation kX  to X  in the class of m n× -matrices of 
rank not greater than k  is given by the first k  terms in the singular value de-
composition of X :  

*

1
,

k

k i i
i

X t p
=

= ∑                           (2) 

where i it Xp=  and ip  are the normalized eigenvectors of the matrix *X X  
and *A  is the conjugate (transpose) of a matrix A . In other words,  

min , where rank kX Y X X Y k− = − ≤             (3) 

The matrix norm is defined as 
1

supZ Z
α

α
≤

= , where α  is the Euclidean 

norm in n . 
Now we will look at arbitrary real separable Hilbert spaces which are denoted 

by H  and K  and which are equipped with the scalar products ( ), H⋅ ⋅  and 
( ), K⋅ ⋅  and the corresponding norms 

H⋅  and 
K⋅ , respectively. Assume that  

: X H K→  is a linear compact operator. Its norm is again defined as  

1
sup

H
KX X

α
α

≤
= . 
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Put  

( ) ( ){ }, is a linear bounded operator from to such that dim Imk H K Y H K Y k= ≤ (4) 

We want to find an operator ( ),k kX H K∈  for which minkX X− → . 
The construction of kX  is very close to the singular value decomposition of 
matrices. 

Assume that * :X H K→  is the adjoint of X . Then the linear compact op-
erators * : ,X X H H→  * :XX K K→  are self-adjoint and positive-definite. 

Let ( )2 2 2
1 2 0, 0,  1, 2,i i iσ σ σ σ≥ ≥ ≥ ≥ → > =    be all positive eigen- 

values of the operator *X X , the associated normalized eigenvectors being 

1 2 3, , ,p p p H∈ , respectively:  
* 2 , 1,i i i i HX Xp p p iσ= = ∈                 (5) 

It is well-known that ip  can always be chosen to be orthogonal:  
,i jp p i j⊥ ≠  and for any Hα ∈  there is a unique set ic ∈ , i∈  and a 

unique ( )*
0 Nullp X X∈  for which 0

1
i i

i
p c pα

∞

=

= +∑  and, moreover,  

22 2
0

1
.iH H

i
p cα

∞

=

= +∑  Now, the operator X  can be represented as  

( )
1

, ,i iH
i

X p tα α
∞

=

= ∑                        (6) 

where i it Xp=  and the convergence is understood in the sense of the norm in 
the space K . The truncated versions ( ),k kX H K∈  of this representation is 
defined by  

( )
1

,
k

k i iH
i

X p tα α
=

= ∑                         (7) 

The following result, a short proof of which is offered in Appenix 5.1, is 
known as Allahverdiev’s theorem, see e.g. [8, Chapter II, p. 28]:  

Theorem 1. For any linear compact operator : X H K→   

( ) 1,
min k kY H Kk

X Y X X σ +∈
− = − =


                 (8) 

The functions in numerical calculations are usually replaced by their discreti- 
zations, which in the case of parametrized functions gives matrices. That is why, 
the distance in the space of the parametrized functions ( ),x u ω  should be con-
sistent with the distance in the space of matrices, so that we can get all the ad-
vantages of the finite dimensional singular value decomposition as well as Al-
lahverdiev’s theorem. To define the distance in the space of matrices we have to 
interpret matrices as linear operators between two Euclidean spaces. Analo- 
gously, we have to interpret parametrized functions as operators between suita-
ble Hilbert spaces, and define the distance accordingly. 

Let us therefore go back to the spaces ( )2L U , ( )2L Ω , where U , as before, 
is a compact subset of N  and Ω  is a compact subset of .M  We denote 
the norm in both spaces as 2 .L⋅  Consider the integral operator  
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( )( ) ( ) ( ), d
U

X x u u uα ω ω α= ∫                   (9) 

Under the assumptions of the square integrability of the kernel ( ),x u ω  the 
operator X  becomes compact and linear from the space ( )2L U  to the space 

( )2L Ω  (see e.g. [9], Chapter 7, p. 202]). 
The distance between two square integrable parametrized functions x  and 

x′  can be now defined in the following way:  

( )dist , ,x x X X′ ′= −                     (10) 

where X  is defined in (9) and ( )( ) ( ) ( ), d .
U

X x u u uα ω ω α′ ′= ∫  The norm of 

the linear operators acting from ( )2L U  to ( )2L Ω  is defined in the standard 
way. 

Remark 1. Evidently,  

( ) 2
, d d

U

X C x u uω ω
Ω

≤ ∫∫                    (11) 

for some constant C . Therefore, 2L -convergence of the sequence ( ){ }nx  im-

plies the convergence in the sense of the distance dist.  
Let ( ) ( )* 2 2:X L L UΩ →  be the adjoint of X , so that  

( )( ) ( ) ( )* , dX u x uβ ω β ω ω
Ω

= ∫                  (12) 

Now, the self-adjoint and positive-definite integral operators  

( ) ( ) ( ) ( )* 2 2 * 2 2: and :X X L U L U XX L L→ Ω → Ω         (13) 

can be written as follows:  

( )( ) ( ) ( ) ( ) ( ) ( )* , d , where , , , d
U

X X u u v v v u v x u x vα γ α γ ω ω ω
Ω

= =∫ ∫  (14) 

and  

( )( ) ( ) ( ) ( ) ( ) ( )* , d , where , , , d ,
U

XX x u x u uβ ω δ ω ξ β ξ ξ δ ω ξ ω ξ
Ω

= =∫ ∫  (15) 

respectively. Let, as before,  

( )2 2 2
1 2 0 1,2,i iσ σ σ≥ ≥ ≥ ≥ → =             (16) 

be all positive eigenvalues of the integral operator (14) associated with its nor-
malized and mutually orthogonal eigenfunctions ( )2

ip L U∈ , i.e.  

( )( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

2 0
, d , d

1i i i i i j
U U

i j
p u u v p u u p u p u p u u

i j
γ σ

 ≠Γ = = =  =
∫ ∫  (17) 

From Theorem 1 we immediately obtain the Best Individual Fit Theorem.  
Theorem 2. For a given function : x U ×Ω→   satisfying (1) the best ap-

proximation of x  in the class k  of all functions of the form ( ) ( )
1

k

i i
i

z u y ω
=
∑ , 

where ( )2
iz L U∈  and ( )2

iy L∈ Ω , is given by  

( ) ( ) ( )
1

, ,
k

k i i
i

x u p u tω ω
=

= ∑                   (18) 
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where ip  are the normalized, mutually orthogonal eigenfunctions of the oper-

ator (14) and ( ) ( )( ) ( ) ( ), di i i
U

t Xp x u p u uω ω ω= = ∫ . Moreover,  

( ) 1dist , k kx x σ +=  for all natural k . 

In other words,  

( ) ( ) 1dist , dist , for allk k kx y x x yσ +≥ = ∈          (19) 

Remark 2. The functions it  have the following properties (which we do not 
use in this paper): 

• i jt t⊥  for all i j≠ ;  
• i it σ=  for all i ;  
• * 2

i i iXX t tσ=  for all i .  
Definition 1.  
• The kth Principal Component Transform (PCT) of the function ( )2x L U∈ ×Ω  

is defined as  

( )( ) ( ) ( ) ( )
1

PCT , , ,
k

k i i
i

x k u x u p u tω ω ω
=

= = ∑          (20) 

• The Full Principal Component Transform of the function ( )2x L U∈ ×Ω  is 
given by  

( )( ) ( ) ( )
1

PCT , , i i
i

x u p u tω ω
∞

=

∞ = ∑               (21) 

We will also write ( ) ( )PCT , PCT .x x∞ ≡   
We remark that none of these transforms is uniquely defined: even if all iσ  

are all different, we have always a choice between two normalized eigenfunctions 

ip . However, the distance between x  and any kx  is independent of the pro-
jection we use. On the other hand, this means that the properties of PCT should 
be formulated with a care. 

2.2. Examples of PCT 

In this subsection we consider three examples which are of importance in sys-
tems biology. 

Example 1. Let  

( ),x u uωω =                        (22) 

Assume that [ ] [ ], , , , 0, 0,1 .u a b a b a ω∈ ∈ > ∈  Then, using Formulas (14) 
and (15), we obtain the following representations of the kernels γ  and δ   

( ) ( ) ( )
1 1

0 0

1, d d ,
ln
uvu v u v uv

uv
ωω ωγ ω ω −

= = =∫ ∫            (23) 

( )
1 1

, d d
1

b b

a a

b au u u u u
ω ξ ω ξ

ω ξ ω ξδ ω ξ
ω ξ

+ + + +
+ −

= = =
+ +∫ ∫          (24) 

Therefore the normalized eigenfunctions ( )ip u  can be obtained from the 
equation  

( ) ( ) ( )
1

2

0

1 d
ln i i i
uv p u u p u

uv
σ

 −
=  

 
∫                 (25) 
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The functions ( ) ( )d
b

i i
a

t u p u uωω = ∫  can be alternatively found from the equ-

ations  

( ) ( )
1 1 1

2

0

d
1 i i i

b a t t
ω ξ ω ξ

ω ω σ ω
ω ξ

+ + + + −
= + + 

∫            (26) 

The parametrized power function xω  is of crucial importance in the bioche- 
mical system theory, where u  represents the concentration of a metabolite, 
while ω  stands for the kinetic order. In the case of several metabolites, one gets 
products of such power functions, which, in turn, are included into the right- 
hand side of the so-called “synergetic system”, see (e.g. [10], Chapter 2, p. 51) 
and the references therein. The products of parametrized power functions are 
considered in Section 4. 

Example 2. Consider the function  

( ), ux u e ωω −=                       (27) 

Assume that [ ] [ ], , , 0, , , , , 0.u c c c c a b a b aω∈ − ∈ > ∈ ∈ >   Then, using 
Formulas (14) and (15), we obtain the following representations of the kernels 
γ  and δ   

( ) ( ) ( ) ( )( )1, d d ,
b b

u v a u v b u vu v

a a

u v e e e e e
u v

ωω ωγ ω ω− + − + − +− −= = = −
+∫ ∫   (28) 

( ) ( ), d d
c c

u l u u l

c c

e e u e uω ωδ ω ξ − − − +

− −

= =∫ ∫               (29) 

We denote for simplicity  

( ) ( )

( )

( )0

1             for 0
, , d

1            for 0

s l
s

u

s

e s
lF s e u

e s
l

ω

ω ξ

ω ξ

ωω ξ

ω

+

− +

− +

 < += = 
 >
 +

∫       (30) 

and get  

( ) ( ) ( ), , , , ,F c F cδ ω ξ ω ξ ω ξ= − −                (31) 

Therefore the normalized eigenfunctions ( )ip u  can be obtained from the 
equation  

( ) ( )( ) ( ) ( )21 d
a

a u v b u v
i i i

b

e e p u u p u
u v

σ− + − + 
− =  + 

∫         (32) 

The functions ( ) ( )d
b

u
i i

a

t e p u uωω −= ∫  can be also obtained from the equa-

tions  

( ) ( )( ) ( ) ( )2, , , , d
c

i i i
c

F c F c t tω ξ ω ξ ω ω σ ω
−

− − =∫          (33) 

The function ue ω−  is often used in the neural field models, where it serves as 
the simplest example of the so-called “connectivity functions” describing the in-
teractions between neurons, see e.g. [11] and the references therein. 
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Example 3. Consider the Hill function  

( ),
q

q q

ux u
u

ω
θ

=
+

                     (34) 

Assume that [ ], ,  , , > 0u a b a b a∈ ∈ , [ ]0 0 0, ,   , ,   0m mq q q q q q∈ ∈ > , 
[ ]0 0 0, ,   , ,   0.m mθ θ θ θ θ θ∈ ∈ >  Putting ( ),qω θ=  and ( ),qξ θ′ ′=  we ob-

tain  

( )
0 0

, d d
m mq q q

q q q q
q

u vu v q
u v

θ

θ

γ θ
θ θ

=
+ +∫ ∫               (35) 

and  

( ), d
b q q

q q q q
a

u u u
u u

δ ω ξ
θ θ

′

′ ′=
′+ +∫                (36) 

The Hill function plays central role in the theory of gene regulatory networks, 
where it stands for the gene activation function, x  being the gene concentra- 
tion and θ  being the activation threshold, see e.g. [12] and the references 
therein. 

3. Some Properties of PCT 

The Principal Component Transform ( )PCT ,x k  is not uniquely defined. That 
is why, we will use a special notation when comparing PCT of different func- 
tions, namely, we will write ( ) ( )PCT , PCT ,x k y k=


 if there exist coinciding 

versions of PCT of x  and y . 

3.1. PCT Is Homogeneous, But Not Additive 

Theorem 3. 
1. ( ) ( )PCT , PCT ,cx k c x k=


 for any c∈  and .k ∈   

2. In general, ( ) ( )( )1 2PCT ,x x k+  is different from ( )( ) ( )( )1 2PCT , PCT , .x k x k+   

Proof.  
1. The case 0c =  is trivial. We assume therefore that 0c ≠ . Let  

( )( ) ( ) ( ), d
U

X x u u uα ω ω α= ∫  and ( )( ) ( ) ( )
1

PCT , i i
i

x u p u tω ω
∞

=

= ∑ , see (21). By 

definition, ip  are normalized, mutually orthogonal eigenfunctions of the ope- 

rator *X X  and i it Xp= . Let ( ) ( )cX X cα α≡ . Then  

( ) ( )* * 2 * 2 2 ,c c i i i i i iX X p X cp X cp c X Xp c pσ= = =         (37) 

so that ip  are the same for cX  and X . On the other hand,  
( ) ( ) ( )c i i i iX p X cp cX p ct= = =  and  

( )( ) ( ) ( ) ( )( )
1

PCT , , PCT , ,
k

i i
i

cx k u p u ct c x k uω ω ω
=

= =∑ 
     (38) 

2. Before constructing an example illustrating nonlinearity of PCT we remark 
that this statement, in its more precise formulation, says that there are no  
versions of ( ) ( )( )1 2PCT ,x x k+ , ( )( )1PCT ,x k , ( )( )2PCT ,x k , for which  
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( ) ( )( ) ( )( ) ( )( )1 2 1 2PCT , PCT , PCT , .x x k x k x k+ = +  

Let [ ]0,1U = Ω =  and the functions [ ] ( ): 0,1   1, 2rτ τ→ =  satisfy  

( ) ( ) ( )
1 1

2
1 2

0 0

d 1 and d 0r u u r u r u uτ = =∫ ∫              (39) 

We put  

( )( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

1 1
1

1 1 2 2
0 0

1 1
2

1 1 2 2 1 2
0 0

2 d ,

( ) 2 d d .

X r r u u du r r u u u

X r r u r u u u r r u r u u u

α ω ω α ω α

α ω ω α ω α

= +

= + + +

∫ ∫

∫ ∫
  (40) 

To calculate PCT we observe that both operators have a 2-dimensional image 
in ( )2L Ω . Using the representation ( ) ( ) ( ) ( )1 1 2 2 ˆu c r u c r u uα α= + +  where 

( )ˆ   1, 2rτα τ⊥ =  we reduce the operators ( )1X  and ( )2X  to the matrices  

2 0 2 1
and , respectively,

0 1 1 2
A B   
= =   
   

 

so that  

( ) ( ) ( ) ( ) ( ) ( )* *1 2
1 2 1 2 1 2 1 2and ,X r r A c c X r r B c cα α= =        (41) 

where ( ),a b  and ( )*,a b  are row and column vectors, respectively. 
Matrices A  and B  are symmetric. Then * 2A A A=  and * 2B B B= . The 

first eigenpairs of 2A  and 2B  are ( )*4, 10  and ( )*9, 11 , respectively. There- 
fore the best rank 1 approximations of A  and B  are  

1 1

2 0 1.5 1.5
and , respectively,

0 0 1.5 1.5
A B   
= =   
   

 

so that ( )( )( ) ( ) ( )1
1 1PCT ,1 , 2X u r u rω ω=  and  

( )( )( ) ( ) ( )( ) ( ) ( )( )2
1 2 1 2PCT ,1 , 1.5 ,X u r u r u r rω ω ω= + +  which both are  

operators with an 1-dimensional image. However, their sum  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 1 2 23.5 1.5 1.5 1.5r u r r u r r u r r u rω ω ω ω+ + +    (42) 

has a 2-dimensional image, as its representation in the basis { }1 2,r r  is given by 

the non-singular matrix 
3.5 1.5
1.5 1.5

A  
=  
 

. Therefore  

( )( ) ( )( )1 2PCT ,1 PCT ,1X X+  cannot coincide with any version of ( )PCT ,1X . 

3.2. PCT Is Continuous 

Let us consider a sequence of parametrized, square integrable functions  
( ) :nx U ×Ω→  . 
Theorem 4. Let k ∈  and ( )( ) ( )dist , 0nx x n→ →∞  for some parame- 

trized, square integrable functions ( ) , :nx x U ×Ω→  . Then for any version 

( ),kx PCT x k=  there are versions ( ) ( )( )PCT ,n n
kx x k=  such that  
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( )( )dist , 0,n
k kx x n→ →∞                    (43) 

Proof. Let ( )2H L U= , ( )2K L= Ω . We define the compact linear integral 
operators ( ) , :nX X H K→  using the kernels ( )nx , respectively. By the defini-
tion of the dist we immediately get that ( ) 0, .nX X n− → →∞  

Let ,  1, ,ip i k=   be the normalized, mutually orthogonal eigenfunctions of 
the operator *X X  corresponding to its first k  eigenvalues 2 2 2

1 2 kσ σ σ≥ ≥ ≥ . 
Since ( )nX  converges to the operator X  in norm, we can always choose a se-
quence of the eigenfunctions ( )n

ip  such that  
( ) 0, , 1, ,n
i i H

p p n i k− → →∞ =                (44) 

In this case  
( ) ( ) ( ) , , 1, ,n n n
i i i it X p t Xp n i k= → = →∞ =            (45) 

Therefore ( ) 0, ,n
k kX X n− → →∞  which implies  

( )( )dist , 0,n
k kx x n→ →∞                  (46) 

The above theorem can be reformulated in terms of robustness of PCT. 
Corollary 1. Let k ∈  and : x U ×Ω→ 

 be a parametrized, square inte- 
grable function and k ∈ . Then given an 0ε >  there is a 0ε >  such that 
for every parametrized, square integrable function : x U′ ×Ω→   the follow- 
ing holds true:  

( ) ( ) ( )( )dist , <  dist PCT , PCT ,x x x k x kδ ε′ ′⇒ − <         (47) 

for some suitable versions of PCT.  

3.3. Discretization of Functions 

In the papers [5] [6], which are aimed at applying the metamodeling approach to 
gene regulatory networks, the approximations of the parametrized sigmoidal 
functions are performed numerically by using discretization and SVD of the re-
sulting matrices. The continuity of PCT, proved in the previous subsection, can 
now be used to justify this analysis and, in particular, the results on the number 
of the principal components k  ensuring the prescribed precision. 

In this subsection we suppose that all functions are continuous, which is suffi-
cient for most applications. The general case is, however, unproblematic as well 
if we slightly adjust the approximation procedure. 

Let x  be a continuous function on a compact set , ,N MD D U+⊂ = ×Ω  
where ( ), .s u ω=  

For all ,n∈  D  is divided into n  measurable subsets ( )n
iD :  

1

n

i
i

D D
=

=


                          (48) 

We define the sequence of the functions ( )nx s  as follows:  
( ) ( ) ( )( ) ( ), ,n n n

i ix s x s s D= ∈                    (49) 
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where ( )n
is  is an arbitrary point in ( ) .n

iD   
Lemma 1. Let x  be a continuous function on D . Then  

( )( )dist , 0,nx x n→ →∞                   (50) 

provided that ( )
1
max diam 0n

ii n
D

≤ ≤
→  as n →∞ . 

Proof. The function x  is continuous on the compact set D , therefore ( )x s  
is uniformly continuous on D . Then for all 0ε >  there is 0δ >  such that  

( ) ( )s s x s x sδ ε′ ′− < ⇒ − <                (51) 

On the other hand, there is a number N  for which ( )
1
max diam n

ii n
D ε

≤ ≤
<  as 

long as n N> . Let s  be an arbitrary point from D . Then for any n  there is 
( )n
iD  such that ( )n

is D∈ . Taking now an arbitrary n N>  we obtain  

( ) ( ) ( ) ( )( ) ( ) ,n n
ix s x s x s x s ε− = − <              (52) 

so that ( )( )dist ,nx x Cε≤ , where 2C  is the Lebesgue measure of the set D . 
Hence ( )( )dist , 0, .nx x n→ →∞   

Corollary 2. Let k ∈  and : x U ×Ω→   be a parametrized, continuous 
function, ( ){ }nx  be a sequence of discrete approximations satisfied the assump- 
tions of Lemma 1. Then for any version ( )PCT ,kx x k=  there are versions 

( ) ( )( )PCT ,n n
kx x k=  such that ( )( )dist , 0, .n

k kx x n→ →∞   

Finally, we observe that if ( )n
iD  are defined as ( ) ( )n n

j lU ×Ω , where for any n  
( ){ }n
jU  and ( ){ }n

lΩ  are measurable partitions of U  and Ω , respectively, and  

( ),i j l= , then PCT of the discrete functions ( )nx  coincide with the k - trun-
cated SVD of the matrix ( )

( )( ),
n

j lx s 
 

. In the next subsection we provide an 
example of such approximation stemming from the biochemical systems theory. 

3.4. Examples of Discrete Approximations 

In this subsection we study the parametrized power function ( ),x u uωω =  de-
fined on the interval [ ]1 1 1, , , , 0n nu u u u u∈ >  with the parameter values 

[ ]1, .mω ω ω∈  To approximate this function we construct a matrix X  as fol-
lows: we divide [ ]1, nu u  into 1n −  parts: 1 2< < < .nu u u  Similarly, we di-
vide the interval [ ]0 , mω ω  into 1m −  parts. Every entry of the matrix X  will 
be given by the values ( ) 1 , 1j

iu i n j mω ≤ ≤ ≤ ≤ :  
1 1 1

2 2 2

1 2

1 2

1 2

...

...
... ... ... ...

...m m m

n

n

n

u u u
u u u

X

u u u

ω ω ω

ω ω ω

ω ω ω

 
 
 =  
 
  

                    (53) 

The corresponding discretization of ( )PCT ,x k  will be then given by the 
matrix  

*

1
, ,

k
n

i i i i
i

t p t p
=

∈ ∈∑  

 
                      (54) 

The vectors ip  and it  can be obtained from the singular value decompo- 
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sition of the matrix X   
* ,m m m n n nX U S P× × ×=                        (55) 

where the rows of the scores matrix T US=  consists of the numbers it  and 
the columns of the loadings matrix P  are the vectors ip . As an example, let us 
consider the case 4k = , [ ] [ ]0 , 0.5,1.5nu u = , [ ] [ ]0 , 1, 2mω ω = − , 50n m= = . 
Then  

1 1 1

2 2 2

50 50 50

11 12 13 14 11 12 11 1 50

21 22 23 24 21 22 21 2 50

31 32 3

1 2 3 4 41 42 41 2 50

......

......
, ,

... ... ... ... ...... ... ... ...
......

n

n

n

m m m m n

t t t t p p pu u u
t t t t p p pu u u

X T P
p p p

t t t t p p pu u u

ω ω ω

ω ω ω

ω ω ω

    
    
    = = =    
    
     

 ,








 (56) 

so that the Expression (54) becomes  

* * * *
1 1 2 2 3 3 4 4t p t p t p t p+ + +                      (57) 

Assume now that 0.5ω = . This value corresponds to row s  in the matrix 
T . We find a number s  as follows:  

( )
( )

0

0

0.5 1
50 25

0.5 1m

s m
ω ω
ω ω

− −−
≈ = =

− − −
               (58) 

This yields  

1 1 2 2 3 3 4 47.0579 0.0089 0.2400 0.0016s s s st t t t t t t t= = − = = − = = = =  

and hence  

( ) ( ) ( ) ( )0.5 * * * *
1 2 3 47.0579 0.0089 0.2400 0.0016u p u p u p u p u≈ − − + +    (59) 

where ( )* 50 , 1, 2,3, 4ip x i∈ =  are the columns in the loadings matrix P , see 
Figure 1.  

The Figure 1 depicts the power function uω  vs. its PCT with 4 components; 

[ ] [ ]0.5,1.5 , 1,2u ω∈ ∈ − ; the error is estimated as 5

1

0.0001
σ
σ

=  and the Hill 

function 
1

1 12.2

q

q q

u
u +

 vs. its PCT with 12 components;  

[ ] [ ] [ ]1,3.5 , 0.05,10 , 0.01,5u q θ∈ ∈ ∈ ; the error is estimated as 13

1

0.0013
σ
σ

= . 

The Figure 2 depicts the cumulative normal distribution function  

1 1 erf
2 2

u µ
θ

 − 
+  

  
 vs. its PCT with 27 components and  

[ ] [ ] [ ]2,2 , 0.01,0.99 , 0.1,0.7u µ θ∈ − ∈ ∈ ; the error is estimated as 28

1

0.0019
σ
σ

=  

and the normal distribution function ( )
( )2

22
2

1 e
2 π

u

x u
µ

θ

θ

−
−

=  vs. its PCT with 

25 PCs; [ ] [ ] [ ]2.5,1.5 , 1.5,0.5 , 0.1,1u µ θ∈ − ∈ − ∈ ; the error is estimated as 

26

1

0.0029
σ
σ

= . 
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(a)                                                             (b) 

Figure 1. (a) The power function and its PCT; (b) The Hill function and its PCT. 
 

 
(a)                                                             (b) 

Figure 2. (a) The cumulative normal distribution function and its PCT; (b) The normal distribution function and its PCT. 

4. PCT of Products of Functions 

To calculate PCT of products of parametrized functions we need to apply the 
theory of tensor products of Hilbert spaces and compacts operators. Appendix 
5.2 includes all the necessary details we need in this section. 

Below we use the following notation (where 1, 2τ = ): 
• NUτ ⊂  , M

τΩ ⊂   are compact sets;  
• 1 2U U U= × , 1 2Ω = Ω ×Ω ;  
• ( )2H L Uτ τ= , ( )2K Lτ τ= Ω , ( )2H L U= , ( )2K L= Ω ;  
• ( ) ( ),x uτ

τ τω , u Uτ τ∈ , τ τω ∈Ω  are square integrable functions and 
( ) ( ) ( )1 1 2 2, , , ;x u x u x uω ω ω=   

• ( )( )( ) ( ) ( ) ( ), d
U

X h x u h u u
τ

τ τ
τ τ τ τ τ τ τω ω= ∫  so that ( ) :  X H Kτ

τ τ→ ;  

• ( )( ) ( ) ( ), d
U

Xh x u h u uω ω= ∫  so that : X H K→ .  
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4.1. Products of Parametrized Functions 

Theorem 5. In the above notation: 
• 1 2H H H= ⊗ , 1 2K K K= ⊗   
• ( ) ( )1 2X X X= ⊗   
Proof. We use the definition of the tensor product from Appendix 5.2. 
Let ( )2H L Uτ τ=  have an orthonormal basis ( ) ( ) ( ){ }1 2, , , , ,ie e eτ τ τ

   so that 
any h Hτ τ∈  can be represented as  

( ) ( ) ( )
1

1, 2 ,i i
i

h c eτ τ
τ τ

∞

=

= =∑                   (60) 

where ( ) 2

1
.i

i
c τ

∞

=

< ∞∑  

We prove now that the set ( ) ( ){ }1 2 , ,i jE e e i j≡ ∈  is an orthonormal basis in 
the space ( )2H L U= . Its orthonormality follows directly from its definition. It 
remains therefore to check that the set of all linear combinations of the elements 
from E  is dense in H . Indeed, the set of continuous functions, and hence the 
set P  of polynomials ( )P u , on U  is dense in H . On the other hand, the 
set P̂  of polynomials of the form ( ) ( )( ) ( ) ( )( )1 1 2 2P u P u  spans the set P  and, 
finally, the set E  spans the set P̂ . Thus, E  spans H  and we have proved 
that any h H∈  can be represented as the 2L -convergent series  

( ) ( )1 2

, 1
ij i j

i j
h c e e

∞

=

= ∑                       (61) 

for some set ijc  satisfying  

2

, 1
ij

i j
c

∞

=

< ∞∑                         (62) 

Defining  
( ) ( )( )( ) ( ) ( ) ( ) ( )1 2 1 2

1 2i j i je e u e u e u⊗ ≡                (63) 

and comparing the Representation (61) with the Formula (94) proves the equal-
ity 1 2H H H= ⊗ . The equality 1 2K K K= ⊗  can be checked similarly. 

Let us now prove the last formula of the theorem. First of all, we remark that 
the Definition (63) implies  

( ) ( ) ( )( )1 1 2 2 1 2g g g gω ω ω= ⊗                 (64) 

for any ,  1, 2g Hτ τ τ∈ = . 
By the assumptions on the kernels, the operators in this equality are linear and 

bounded. Therefore, it is sufficient to check the equality for 1 2h h h= ⊗  (see 
Appendix 5.2).  

( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )( )( ) ( )( )( ) ( )( ) ( )( )( )( )

1 2
1 1 2 2 1 1 2 2 1 2

1 2

1 2
1 1 1 1 1 2 2 2 2 2

1 2

1 2 1 2
1 1 2 2 1 2

, d

, , d d

, d , d

U

U U

U U

Xh x u h u u

x u x u h u h u u u

x u h u u x u h u u

X h X h X h X h

ω ω

ω ω

ω ω

ω ω ω

×

=

=

=

= = ⊗

∫

∫

∫ ∫
   (65) 



I. Zabrodskii, A. Ponosov 
 

467 

due to (64). Hence ( ) ( )( ) ( )( )1 2
1 2 1 2Xh X h h X h X h= ⊗ = ⊗ . Comparing this for- 

mula with the Definition (100) completes the proof of the theorem. 

4.2. PCT Preserves Tensor Products 

The main theoretical result of this subsection is the following theorem:  
Theorem 6. 

( ) ( )( ) ( )( ) ( )( )1 2 1 2PCT PCT PCTX X X X⊗ = ⊗


           (66) 

Proof. For 1, 2τ =  we have by definition  

( )( ) ( )( ) ( )

1
PCT , ,i i

i
X p tτ τ τα α

∞

=

= ∑                  (67) 

where ( )
ip τ  are normalized, mutually orthogonal eigenvectors of the operator 

( )( ) ( )*
X Xτ τ  corresponding to the eigenvalues ( )( )2τσ  and ( ) ( )( ) ( )

i it X pτ τ τ= . 

Put ( ) ( )1 2X X X= ⊗  and ( ) ( )1 2
ij i jp p p= ⊗ . Using the properties of the tensor 

product listed in Appendix 5.2 we obtain  

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( ) ( )( ) ( ) ( )

( )( ) ( ) ( )( ) ( ) ( ) ( )( )

1 2 1 2 1 2

* *1 1 2 1 2(2)

* *1 1 1 2 2 2

2 21 1 1

*

2

*

2 2 ,

ij i j

i j

i i

i i j i i j ij

X X p X X X X p p

X X X X p p

X X p X X p

p p pσ σ σ σ

= ⊗ ⊗ ⊗

 = ⊗ ⊗ 
 
      = ⊗            
   = ⊗ =   
   

       (68) 

where  

( ) ( ) ( )( ) ( ) ( )( )( ) ( ) ( )( ) ( ) ( )( )1 2 1 2 1 1 2 2, , , ,

1 if , and 0 otherwise

ij lm i j l m i l j mp p p p p p p p p p

i l j m

= ⊗ ⊗ =

= = = =
     (69) 

This proves that ijp  are normalized, mutually orthogonal eigenvectors of the 
operator *X X  corresponding to the eigenvalues ( ) ( )1 2

i jσ σ . 
On the other hand,  

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )

1 2 1 2

1 1 2 2 1 2

ij i j

i i i j ij

Xp X X p p

X p X p t t t

= ⊗ ⊗

⊗ = ⊗ ≡
              (70) 

Therefore,  

( ) ( )( )( )( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( )( )

1 2
1 2 1 2

1 1

1 1 2 2
1 1

1 1

1 2

PCT ,

, ,

PCT PCT ,

ij ij
i j

i i i i
i j

X X p t

p t p t

X X

α α α α

α α

∞ ∞

= =

∞ ∞

= =

⊗ ⊗ = ⊗

  = ⊗  
   

= ⊗

∑∑

∑ ∑





 (71) 

which proves the theorem.   
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Remark 3. Theorem 6 is only valid for the full PCT. The truncated versions of 
PCT are not necessarily valid, as the order of the singular values ( ) ( )1 2

ij i jσ σ σ=  
depends on the magnitude of the eigenvales ( )1

iσ  and ( )2
jσ .  

4.3. Examples of Products of Parametrized Functions 

In this subsection we describe the kernels of the integral operators related to 
products of parametrized functions from Subsection 0. These examples are of 
importance in systems biology. 

Example 1. Consider the following function  

( ) 1 2
1 2 1 2 1 2 1 2 1 2, , , , , , ,x u u u u u u Uω ωω ω ω ω= ∈ ∈Ω           (72) 

Assume that [ ] [ ], ,  , ,  0,  0,1 .U a b a b a= ∈ > Ω =  Then, using Formulas (14) 
and (15), we obtain the following representations of the kernels γ  and δ   

( )

( ) ( )

( ) ( )

( ) ( )

1 2 1 2

1 2

2 1

1 2 1 2 1 2 1 2 1 2

1 1

1 1 2 2 1 2
0 0
1 1

2 2 2 1 1 1
0 0

1 1 2 2

1 1 2 2

, , , d d

d d

d d

1 1
,

ln ln

u u v v u u v v

u v u v

u v u v

u v u v
u v u v

ω ω ω ω

ω ω

ω ω

γ ω ω

ω ω

ω ω

Ω

=

=

=

− −
= ⋅

∫∫

∫∫

∫ ∫
 

( ) 1 2 1 2

1 1 2 2

1 1 2 2

1 1 1 1 1 1 2 2

1 2 1 2 1 2 1 2 1 2

1 2 1 2

1 1 2 2

1 1 1 1

1 1 2 2

, , , d d

d d

d d

1 1

U

U
b b

a a
c

u u u u u u

u u u u

u u u u

b a b a

ω ω ξ ξ

ω ξ ω ξ

ω ξ ω ξ

ω ξ ω ξ ω ξ ω ξ

δ ω ω ξ ξ

ω ξ ω ξ

+ +

+ +

+ + + + + + + +

=

=

=

− −
= ⋅

+ + + +

∫∫

∫∫

∫ ∫
 

Example 2. Consider the function  

( ) 1 1 2 2
1 2 1 2 1 2 1 2, , , ,  , ,  ,u ux u u e e u u Uω ωω ω ω ω− −= ⋅ ∈ ∈Ω     (73) 

Assume that [ ] [ ], ,  ,  0,  , ,  , ,  0.U c c c c a b a b a= − ∈ > Ω = ∈ >   Then, us-
ing Formulas (14) and (15), we obtain the following representations of the ker-
nels γ  and δ  

( )

( ) ( )

( ) ( )

( ) ( )( )

1 1 2 2 1 1 2 2

1 1 1 2 2 2

1 1 1 2 2 2

1 2 1 2 1 2

|
1 2

1 2

, , , d d

d d

d d

1 ,

u u v v

u v u v

b b
u v u v

a a

b u v a u v

u u v v e e e e

e e

e e

e e
u v

ω ω ω ω

ω ω

ω ω

γ ω ω

ω ω

ω ω

− − − −

Ω

− + − +

Ω

− + − +

− + − +

=

=

=

= −
− −

∫∫

∫∫

∫ ∫
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( )

( ) ( )

( ) ( )

( )( )
( ) ( )( ) ( ) ( )( )

1 1 2 2 1 1 2 2

1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 1 1 1 2 2 2 2 2 2

1 2 1 2 1 2

1 2

1 2

1 1 2 2

, , , d d

d d

d d

1

u u u u

U

u u

U
c c

u u

c c

u u u u

e e e e u u

e e u u

e u e u

e e e e

ω ω ξ ξ

ω ξ ω ξ

ω ξ ω ξ

ω ξ ω ξ ω ξ ω ξ

δ ω ω ξ ξ

ω ξ ω ξ

− − − −

− + − +

− + − +

− −

− + + − + +

=

=

=

= − ⋅ −
+ +

∫∫

∫∫

∫ ∫
 

Example 3. For the Hill function we obtain  

( )
1 2

1 1 2 2

1 2
1 2 1 2

1 1 2 2

, , ,
q q

q q q q

u ux u u
u u

ω ω
θ θ

=
+ +

             (74) 

Assume that  

[ ], , , , , 0,iu U U a b a b a∈ = ∈ >  

( ) [ ]0 0 0, ,  , , , ,  0,i i i i m mq q q q q q qω θ= ∈ ∈ >   

[ ]0 0 0, , , ,  0,  1, 2.i m m iθ θ θ θ θ θ∈ ∈ > =   

Putting [ ] [ ]0 0, ,m mq q θ θΩ = ×  and ( ), , 1, 2.i i iq iξ θ′ ′= =  Then, using Formu- 
las (14) and (15), we obtain the following representations of the kernels γ  and 
δ   

( )
1 2 1 2

1 1 2 2 1 1 2 2

1 2 1 2
1 2 1 2 1 2

1 1 2 2 1 1 2 2

, , , d d ,
q q q q

q q q q q q q q

u u v vu u v v
u u v v

γ ω ω
θ θ θ θΩΩ

=
+ + + +∫∫   (75) 

( )
1 2 1 2

1 1 2 2 1 1 2 2

1 2 1 2
1 2 1 2 1 2

1 1 2 2 1 1 2 2

, , , d d
q q q q

q q q q q q q q
U

u u u u u u
u u u u

δ ω ω ξ ξ
θ θ θ θ

′ ′

′ ′ ′ ′=
′ ′+ + + +∫∫   (76) 

Remark 4. The eigenfunctions of the integral operators with the kernels that 
are products of parametrized functions are, according to Subsection 5.2, also 
products of the respective eigenfunctions of the factors.  

5. Conclusions 

The main results of the paper can be summarized as follows. We defined the 
distance in the space of parameterized functions. We defined the k -th Principal 
Component Transform (PCT) and the Full Principal Component Transform of 
functions ( )2x L U∈ ×Ω . The kth PCT is the best approximation of the given 
function, i.e. it minimizes ( )dist ,⋅ ⋅ . We proved that if the sequence of functions 

( ) ( )nx s  converge to the continuous function ( )x s , then the sequence of the 
PCT of ( ) ( )nx s  will converge to the PCT of ( )x s . Some properties of PCT 
were considered. These results can also serve as theoretical background for the 
design of some metamodels. Using the theory of the tensor product of Hilbert 
spaces and compact operators we calculated the PCT of products of functions. 
We provided several examples of the discrete approximations and products of 
the parametrized functions. 

We will emphasize that our study is related to systems biology. In future 
works we aim to investigate the problem of “sloppiness” in nonlinear models [1] 
and create an effective parameter estimation method for the “S-systems” ([10], 
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Chapter 2, p. 51). 

Acknowledgements 

The work of the second author has been partially supported by the Norwegian 
Research Council, grant 239070. 

References 
[1] Tafintseva, V., Tøndel, K., Ponosov, A. and Martens, H. (2014) Global Structure of 

Sloppiness in a Nonlinear Model. Journal of Chemometrics, 28, 645-655.  
https://doi.org/10.1002/cem.2651 

[2] Tøndel, K., Gjuvsland, A., Måge, I. and Martens, H. (2010) Screening Design for 
Computer Experiments: Metamodelling of a Deterministic Mathematical Model of 
the Mammalian Circadian Clock. Journal of Chemometrics, 24, 738-747. 
https://doi.org/10.1002/cem.1363 

[3] Martens, H., Måge, I., Tøndel, K., Isaeva, J., Gjuvsland, A., Høy, M. and Sæbø, S. 
(2010) Multi-Level Binary Replacement (MBR) Design for Computer Experiments 
in High-Dimensional Nonlinear Systems. Journal of Chemometrics, 24, 748-756.  
https://doi.org/10.1002/cem.1366 

[4] Martens, H., Veflingstad, S.R., Plahte, E., Martens, M., Bertrand, D. and Omholt, 
S.W. (2009) The Genotype-Phenotype Relationship in Multicellular Pattern-Gene- 
rating Models—The Neglected Role of Pattern Descriptors. BMC Systems Biology, 
3, 87. http://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-3-87  

[5] Isaeva, J., Sæbø, S., Wyller, J.A., Liland, K.H., Faergestad, E.M., Bro, R. and Martens, 
H. (2010) Using GEMANOVA to Explore the Pattern Generating Properties of the 
Delta-Notch Model. Journal of Chemometrics, 24, 626-634.  
https://doi.org/10.1002/cem.1348 

[6] Isaeva, J., Sæbø, S., Wyller, J.A., Wolkenhauer, O. and Martens, H. (2012) Nonli-
near Modelling of Curvature by Bi-Linear Metamodeling. Chemometrics and Intel-
ligent Laboratory Systems, 117, 2-12.  

[7] Konevskikh, T., Blümel, R., Lukacs, R., Ponosov, A. and Kohler, A. (2015) Fringes 
in FTIR Spectroscopy Revisited: Understanding and Modelling Fringes in Infrared 
Spectroscopy of Thin Films. Analyst, 140, 3969-3980.  
https://doi.org/10.1039/C4AN02343A 

[8] Gohberg, I.C. and Krein, M.G. (1969) Introducion to the Theory of Linear Nonsel-
fadjoint Operators in Hilbert Space. American Mathematical Society, Providence. 

[9] Hutson, V., Pym, J.S. and Cloud, M.J. (2005) Applications of Functional Analysis 
and Operator Theory. Elsevier Science, Amsterdam. 

[10] Voit, E.O. (2000) Computational Analysis of Biochemical Systems. A Practical 
Guide for Biochemists and Molecular Biologists. Cambridge University Press, 
Cambridge. 

[11] Burlakov, E., Ponosov, A., Wyller, J. and Zhukovskii, E. (2015) Existence, Unique-
ness and Continuous Dependence on Parameters of Solutions to Neural Field Equa-
tions. Memoirs on Differential Equations and Mathematical Physics, 65, 35-55. 

[12] Mestl, T., Plahte, E. and Omholt, S.W. (1995) A Mathematical Framework for De-
scribing and Analysing Gene Regulatory Networks. Journal of Theoretical Biology, 
176, 291-300.  

https://doi.org/10.1002/cem.2651
https://doi.org/10.1002/cem.1363
https://doi.org/10.1002/cem.1366
http://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-3-87
https://doi.org/10.1002/cem.1348
https://doi.org/10.1039/C4AN02343A


I. Zabrodskii, A. Ponosov 
 

471 

Appendix 

1. Allahverdiev’s theorem 
Let K  and K  be two real separable Hilbert spaces, equipped with the sca-

lar products ( ), H⋅ ⋅  and ( ), K⋅ ⋅  and the corresponding norms 
H⋅  and 

K⋅ , 
respectively. Assume that :X H K→  is a linear compact operator. Its norm is  
defined as 

1
sup

H
KX X

α
α

≤
= . 

Put  

( ) ( ){ }, is a linear bounded operator from to such that dim Im .k H K Y H K Y k= ≤  

We want to find an operator ( ),k kX H K∈  for which minkX X− → . 
This construction is very close to the finite dimensional singular value decom-
position. 

Assume that * :X H K→  is the adjoint of X . Then the linear compact op-
erators * : ,X X H H→  * :XX K K→  are self-adjoint and positive-definite. 
Let 2 2 2

1 2 3 0σ σ σ≥ ≥ ≥ → , 0iσ >  be all positive eigenvalues of the operator 
*X X , the associated normalized eigenvectors being 1 2 3, , ,p p p H∈ , respec-

tively:  
* 2 , 1, .i i i iX Xp p p iσ= = ∈                 (77) 

It is well-known that ip  can always be chosen to be orthogonal: 
, .i jp p i j⊥ ≠  By the Hilbert-Schmidt theorem, for any Hα ∈  there is a  

unique set ic ∈ , i∈  and a unique ( )*
0 Nullp X X∈  for which 

0
1

i i
i

p c pα
∞

=

= +∑  and, moreover, 22 2
0

1
.iH H

i
p cα

∞

=

= +∑  Thus, the operator X  

can be represented as  

( )
1 1

, ,i i i iH
i i

X p t c tα α
∞ ∞

= =

= =∑ ∑                  (78) 

where i it Xp= , and the convergence is understood in the sense of the norm in 
the space K . We define the linear bounded operators ( ),k kX H K∈  by  

( )
1 1

,
k k

k i i i iH
i i

X p t c tα α
= =

= =∑ ∑                  (79) 

The following result is known as Allahverdiev’s theorem, see e.g. [8]: 
Proposition 7. For any linear compact operator :X H K→   

( ) 1,
min

k
k kY H K

X Y X X σ +∈
− = − =


              (80) 

Proof. First of all, we prove that 1k kX X σ +− = . By definition,  

( )
1

22 sup
H

k k K
X X X X

α
α

≤

− = −                (81) 

From (79) and (78) we get  

( )
1 1 1

k

k k i i i i i i
i i i k

X X X X c t c t c tα α α
∞ ∞

= = = +

− = − = − =∑ ∑ ∑         (82) 

We calculate the norm of kX X−  using (81), (82):  
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1 1 1

2
2 2 2

1 1 1
sup sup sup ,

H H H

k i i i i i iK
i k i k i kH

X X c t c t c
α α α

σ
≤ ≤ ≤

∞ ∞ ∞

= + = + = +

− = = =∑ ∑ ∑     (83) 

because  

( ) ( ) ( )
( ) ( )

2 *

2 2 2 2

, , ,

, ,

i i i i i i iK K K H

i i i i i i i i iHHH

t t t Xp Xp X Xp p

p p p p pσ σ σ σ

= = =

= = = =
         (84) 

and  

( ) ( ) ( ) ( )* 2, , , , 0 ifi j i j i j i i jH
t t Xp Xp X Xp p p p i jσ= = = = ≠      (85) 

As 0
1

i i
i

p c pα
∞

=

= +∑ , 0 ip p⊥  ( i∈ ) and 22 2
0

1
1iH

i
p cα

∞

=

= + ≤∑ , we ob-

tain 2

1
1i

i
c

∞

=

≤∑ . As 1k iσ σ+ ≥  for all 1i k> + ,  

2
1

1
max ,i i k

i k
cσ σ

∞

+
= +

→ =∑                    (86) 

if 1 2 31, 0k k kc c c+ + += = = =  and 0 0p = . 
Hence,  

1k kX X σ +− =                       (87) 

Secondly, we prove that  
( )for all ,k kH HX Y X X Y H K− ≥ − ∈            (88) 

Let 1, , ky y  be a basis in ImY . Then there exist some 1, , kz z  from H 
such that  

( )
1

,
k

i iH
i

Y z yα α
=

= ∑                       (89) 

We want to prove that  

{ } { } { }1 1 1span , , span , , 0k kz z p p⊥
+∩ ≠             (90) 

If { }1span , , ,kz zα ⊥∈   then 0.Yα =  

If { }1 1span , , ,kp pα +∈   then 1 1 1 1, ,1 1.k k ip p i kα α α α+ += + + ∈ ≤ ≤ +   
Therefore  

{ } { } { }1 1 1 1span , , span , , 0 , , such that the systemk k kz z p p z z⊥
+∩ ≠ ⇔ ∃    

( ) ( )1 1 1 1, , 0, 1 hasnon trivialsolutions.i k k ip z p z i kα α + ++ + = ≤ ≤ −  (91) 

This homogeneous system has 1k +  unknowns and k  equations, so that 

there is 
1

1

k

i i
i

c pα
+

=

= ∑  such that 
1

2

1
1

k

i
i

c
+

=

=∑  and 0Yα = . Therefore  

( )
21 12 22 2 2

1
1 1

,
k k

i i i i kKK
i iK

X Y X Y c t c tα σ
+ +

+
= =

− ≥ − = = ≥∑ ∑    (92) 

as 1 1i i k kK Kt tσ σ + += ≥ =  for 1.i k> +   
  

2. Tensor product of operators in Hilbert spaces 
Let 1 2,H H  and 1 2,K K  be real separable Hilbert spaces, where 
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• 1H  has an orthonormal basis ( ) ( ) ( ){ }1 1 1
1 2, , , , .ie e e    

• 2H  has an orthonormal basis ( ) ( ) ( ){ }2 2 2
1 2, , , , .je e e    

• 1K  has an orthonormal basis ( ) ( ) ( ){ }1 1 1
1 2ˆ ˆ ˆ, , , , .ie e e    

• 2K  has an orthonormal basis ( ) ( ) ( ){ }2 2 2
1 2ˆ ˆ ˆ, , , , .je e e    

Let  

( ) ( ) ( )

1
, , 1, 2i i i

i
h c e cτ τ τ
τ τ

∞

=

= ∈ =∑                (93) 

Now, we define the tensor product 1 2H H H= ⊗  of the spaces 1H  and 2H  
as the real separable Hilbert space, which has the basis ije  consisting of all or-
dered pairs ( ) ( )( )1 2,i je e , and we put ( ) ( )1 2 .ij i je e e≡ ⊗  By definition, any h H∈  
can be uniquely represented as  

2

, 1 , 1
,ij ij ij

i j i j
h c e c

∞ ∞

= =

= < ∞∑ ∑                   (94) 

Definition 2. The scalar product ( ),⋅ ⋅  in H  is defined as  

( )
, 1

, ,ij ij
i j

g h c d
∞

=

= ∑                      (95) 

where 
, 1 , 1

,ij ij ij ij
i j i j

g c e H h d e H
∞ ∞

= =

= ∈ = ∈∑ ∑ . 

Evidently, the set i je e⊗  is an orthonormal basis of the space 1 2H H⊗  and 
therefore  

( ) 2 22

, 1 , 1
, ij ij

i j i j
h h e c

∞ ∞

= =

= =∑ ∑                  (96) 

is the norm on H . The series  

, 1
,ij ij ij

i j
c e c

∞

=

∈∑   

converges in this norm. It is also straightforward to check that  

1 21 2 1 2H Hh h h h⊗ =                     (97) 

for all 1 1h H∈ , 2 2h H∈ . 
Let us consider two compact linear operators  

( ) ( )1 2
1 1 2 2: , :X H K X H K→ →               (98) 

For all 1 1 2 2,h H h K∈ ∈  we have  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 2 2 2 2
1 2

1 1
,i i i i

i i
X h c X e X h c X e

∞ ∞

= =

= =∑ ∑           (99) 

We define the tensor product ( ) ( )1 2
1 2 1 2:X X H H K K⊗ ⊗ → ⊗  of ( )1X  and 

( )2X  as  

( ) ( ) ( ) ( )( )1 1 2 2

, 1
,ij i j

i j
Xh c X e X e

∞

=

= ⊗∑                (100) 

where h H∈  is given by (94). 
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Proposition 8. If ( ) ( )1 2
1 1 2 2: , :X H K X H K→ →  are linear compact ope- 

rators, then so is the operator ( ) ( )1 2
1 2 1 2:X X H H K K⊗ ⊗ → ⊗ .  

Proof. Linearity of ( ) ( )1 2X X X≡ ⊗  follows directly from the definition. 
Taking an arbitrary h H∈  satisfying (94) we obtain  

( ) ( ) ( ) ( )( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
222 1 1 2 2 1 2 2(1)

, 1 , 1

2 2 2 22 21 2 1 2

, 1

ij i j ij i j
i j i j

ij
i j

Xh c X e X e c X e X e

c X X X X h

∞ ∞

= =

∞

=

= ⊗ ≤ ⊗

≤ =

∑ ∑

∑
 (101) 

Therefore X  is bounded, and in particular,  
( ) ( )1 2X X X≤                     (102) 

To prove compactness we choose an arbitrary 0ε >  and linear bounded fi-
nite dimensional operators :Y H Kτ τ τ→  for which ( )1,2X Yτ τ ε τ− < = . 

Evidently,  
( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( ) ( )( )

1 2 1 2 1 1 2 2

1 1 2 1 2 2   

X X Y Y X Y X Y

X Y Y Y X Y

⊗ − ⊗ = − ⊗ −

+ − ⊗ + ⊗ −
 (103) 

Using (102) we obtain  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( )

1 2 1 2 1 1 2 2

1 1 2 1 2 2

1 22

 

X X Y Y X Y X Y

X Y Y Y X Y

X Xε ε ε ε ε

⊗ − ⊗ ≤ − −

+ − + −

< + + + +

   (104) 

Therefore, the operator ( ) ( )1 2X X⊗  can be approximated in norm by finite 
dimensional operators of the form ( ) ( )1 2Y Y⊗  with an arbitrary precision. Thus, 

( ) ( )1 2X X⊗  is compact. 
  

Proposition 9. For all linear compact operators ( )1
1 1:X H K→  and 

( )2
2 2:X H K→  we have  

( ) ( )( ) ( )( ) ( )( )* * *1 2 1 2X X X X⊗ = ⊗                (105) 

Proof. The set of linear combinations 1 2i f f⊗∑  is dense in 1 2H H⊗ , i.e. 
for all 1 2h H H∈ ⊗  there is a sequence of linear combinations of 1 2h h⊗  
which converges to h  in the norm. As the operators ( )1X  and ( )2X  are li-
near and bounded, it is sufficient to prove the equality in the lemma for the spe-
cial case of 1 2 1 2h h h H H= ⊗ ∈ ⊗ , where we by definition have the formula 

( ) ( )( )( ) ( )( ) ( )( )1 2 1 2
1 2 1 2X X h h X h X h⊗ ⊗ = ⊗            (106) 

Let 1 2 1 2,α α α β β β= ⊗ = ⊗ . where 1 2 1, Hα α ∈  and 1 2 2, Hβ β ∈ . Then  
( ) ( )( )( ) ( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )

1 2 1 2 1 2
1 2 1 2 1 1 2 2

* * * *1 2 1 2
1 1 2 2 1 2 1 2

* *1 2

, , , ,

, , ,

,

X X X X X X

X X X X

X X

α β α α β β α β α β

α β α β α α β β

α β

⊗ = ⊗ ⊗ =

    = = ⊗ ⊗    
    
 = ⊗ 
 

 (107) 
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Hence ( ) ( )( ) ( )( ) ( )( )* * *1 2 1 2X X X X⊗ = ⊗ .  

  
Proposition 10. If ( ) ( )( ),qτ τλ  is the eigenpair of the operator ( ) ;X H Kτ

τ τ→  
( 1, 2τ = ), then ( ) ( ) ( ) ( )( )1 2 1 2,q qλ λ ⊗  is the eigenpair of the operator ( ) ( )1 2X X⊗ . 

Proof.  
( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )

1 2 1 2 1 1 2 2

1 1 2 2

1 2 1 2

( )X X q q X q X q

q q

q q

λ λ

λ λ

⊗ ⊗ = ⊗

= ⊗

= ⊗

       (108) 
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