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Abstract 
We propose a new scalarization method which consists in constructing, for a 
given multiobjective optimization problem, a single scalarization function, 
whose global minimum points are exactly vector critical points of the original 
problem. This equivalence holds globally and enables one to use global opti-
mization algorithms (for example, classical genetic algorithms with “roulette 
wheel” selection) to produce multiple solutions of the multiobjective problem. 
In this article we prove the mentioned equivalence and show that, if the or-
dering cone is polyhedral and the function being optimized is piecewise diffe-
rentiable, then computing the values of a scalarization function reduces to 
solving a quadratic programming problem. We also present some preliminary 
numerical results pertaining to this new method. 
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1. Introduction 

Scalarization is one of the most commonly used methods of solving multiobjec-
tive optimization problems. It consists in replacing the original multiobjective 
problem by a scalar optimization problem, or a family of scalar optimization 
problems, which is, in a certain sense, equivalent to the original problem. The 
existing scalarization methods can be divided into two groups: 

1) Methods that use some representation of a given multiobjective problem as 
a parametrized family of scalar optimization problems. Such scalarization methods 
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should have the following two properties (see [1], p. 77): (i) an optimal solution 
of each scalarized problem is efficient (in some sense) for the original multiob-
jective problem, (ii) every efficient solution of the multiobjective problem can be 
obtained as an optimal solution of an appropriate scalarized problem by adjust-
ing the parameter value. Some examples of possible scalarizations of this kind 
are given, for instance, in [1] (pp. 77-78) and [2]. 

2) Methods that use local equivalence of a multiobjective optimization prob-
lem and some scalar optimization problem whose formulation depends on a 
given point. Such equivalence enables one to solve the multiobjective problem 
locally by using necessary and/or sufficient optimality conditions formulated for 
the scalar problem (for examples of such an approach, see [3], Thm. 1 and [4], 
Prop. 2.1 and 2.2). 

There are also scalarization approaches which combine properties of both 
groups such as the Pascoletti-Serafini scalarization [5] (for a survey of different 
scalarization methods, see [6], Chapter 2; for adaptive algorithms using different 
scalarizations, see [6], Chapter 4; for scalarizations in the context of variable or-
dering structures, see [7], Chapters 4 and 5). 

In this paper, we propose a new scalarization method different from the 
above-mentioned ones. It consists in constructing, for a given multiobjective op-
timization problem, a single scalarization function, whose global minimum 
points are exactly vector critical points in the sense of [8] for the original prob-
lem. This equivalence holds globally and enables one to use global optimization 
algorithms designed for scalar-valued problems (for example, classical genetic 
algorithms with “roulette wheel” selection) to solve the original multiobjective 
problem. We also show that, if we consider an order defined by a polyhedral 
cone and the function being optimized is piecewise differentiable, then compu-
ting the values of a scalarization function reduces to solving a quadratic pro-
gramming problem. 

So far, the term “scalarization function” has been used for a scalar-valued 
function defined on the image space of an optimization problem, which trans-
forms a vector-valued objective function into a scalar-valued one (see [9], Thm. 
1.1). However, by using such a scalarization, we are able to find only some 
(usually a small part of) Pareto solutions, or efficient points, of the original mul-
tiobjective optimization problem, while the other Pareto solutions are lost. Con-
trary to this approach, our scalarization function is defined on the space of feasi-
ble solutions of the original problem and attains the minimum (zero) value on 
the set of vector critical points for this problem. The set of vector critical points 
is larger than the set of efficient solutions and can serve as an approximation of 
the latter one. 

The purpose of this research is to describe the idea of our new scalarization 
method and to present some underlying theory for the case of an unconstrained 
multiobjective optimization problem. The extension to constrained optimization 
is also possible and will be the subject of further investigations. 
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2. A Global Scalarization Function for an Arbitrary Ordering 
Cone 

Let Ω  be an open set in n , and let ( )1, , : p
pf f f= Ω→   be a locally 

Lipschitzian vector function. Suppose that C is a closed convex pointed cone in 
p  with nonempty interior. We denote by C+ the positive polar cone to C, i.e., 

{ }: : , 0, ,pC z z y y C+ = ∈ ≥ ∀ ∈                  (1) 

where ,⋅ ⋅  is the usual inner product in p . The partial order relation in 
p  is defined by 

if and only if ,y z z y C− ∈                    (2) 

for all , py z∈ . We consider the following multiobjective optimization prob-
lem: 

( )minimize subject to .f x x∈Ω                   (3) 

Definition 1 [10] We define the (Clarke’s) generalized Jacobian of f at x ∈Ω  
as follows: 

( ) ( ) ( ){ }: co lim : , exists ,n n nn
f x Jf x x x Jf x

→∞
∂ = →           (4) 

where ( )Jf x  denotes the usual Jacobian matrix of f at x whenever f is Fréchet 
differentiable at x, and “co” denotes the convex hull of a set. 

We will denote by p n×  the vector space of all p n×  real matrices. It fol-
lows from ([10], Prop. 2.6.2(a)) that ( )f x∂  is a nonempty convex compact 
subset of p n× . The calculation of Clarke’s generalized Jacobian in the general 
case can be quite difficult due to the lack of exact calculus rules. For piecewise 
differentiable functions, however, there is a representation of the generalized Ja-
cobian as the convex hull of a finite number of Jacobian matrices, which was ob-
tained by Scholtes in [11]. To formulate this result, we need some additional de-
finitions. 

Definition 2 Let Ω be an open subset of n  and let : ,i pf Ω→ 
= 1, ,i k , be a collection of continuous functions. 
(i) A function : pf Ω→   is said to be a continuous selection of the func-

tions 1, , kf f  on the set U ⊂ Ω  if f is continuous on U and  
( ) ( ) ( ){ }1 , , kf x f x f x∈   for every x U∈ . 
(ii) A function : pf Ω→   is called a PC1-function if for every x ∈Ω  there 

exists an open neighborhood U ⊂ Ω  and a finite number of C1-functions  
: , 1, ,i pf U i k→ =  , such that f is a continuous selection of 1, , kf f  on U. 

In this case, we call 1, , kf f  the selection functions for f at x . 
(iii) Let : pf Ω→   be a PC1-function and let x U∈ ⊂ Ω  (U open). Sup-

pose that f is a continuous selection of 1, , kf f  on U. We define the set of 
essentially active indices for f at x  as follows: 

( ) { } ( ) ( ){ }( ){ }: 1, , : cl int : .e i
fI x i k x x U f x f x= ∈ ∈ ∈ =       (5) 

Proposition 3 ([11], Prop. 4.3.1) If Ω is an open subset of n  and : pf Ω→   
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is a PC1-function with C1 selection functions : , 1, ,i pf U i k→ =  , where  
x U∈ ⊂ Ω , then 

( ) ( ) ( ){ }co : .i e
ff x Jf x i I x∂ = ∈                  (6) 

Definition 4 [8] Let x ∈Ω . We say that 
(i) x  is a vector critical point for problem (3) if there exist { }0 pz C+∈   

and ( )A f x∈∂  such that 
T 0 ,nz A =                           (7) 

where 0n  is the zero vector in n ; 
(ii) x  is an efficient solution for (3) if 

( ) ( )( ) ( ) { }0 ;pf f x CΩ − ∩ − =                 (8) 

(iii) x  is a weakly efficient solution for (3) if 

( ) ( )( ) ( )int ;f f x CΩ − ∩ − = ∅                 (9) 

(iv) x  is a local weakly efficient solution for (3) if there exists a neighbor-
hood U of x  such that 

( ) ( )( ) ( )int .f U f x CΩ∩ − ∩ − = ∅              (10) 

It is obvious that implications ( ) ( ) ( )ii iii iv⇒ ⇒  hold in Definition 4. The 
implication ( ) ( )iv i⇒  (for locally Lipschizian f) follows from [12] (Thm. 5.1 
(i)(b)). Some opposite implications can be obtained under additional assump-
tions of generalized convexity type. In particular, Gutiérrez et al. [8] have identi-
fied the class of pseudoinvex functions for which ( ) ( )i iii⇒  holds, and the class 
of strong pseudoinvex functions for which ( ) ( )i ii⇒  holds. 

Definition 5 [13] Let C be a nontrivial convex cone in p . A nonempty 
convex subset B of C is called a base for C if each nonzero element z C∈  has a 
unique representation of the form z bλ=  with 0λ >  and b B∈ . 

Remark 6 If B is a base of the nontrivial convex cone C, then 0 p B∉ . 
Lemma 7 (a finite-dimensional version of [13], Lemma 2.2.17) Let C be a 

nontrivial closed convex cone in p  with int C ≠ ∅ . If inty C∈ , then the set 

{ }: : , 1B z C z y+= ∈ =                    (11) 

is a compact base for C+ . 
In the sequel, we consider a fixed vector inty C∈  and a base B for C+  de-

fined by (11). In order to define a global scalarization function for problem (3), 
we first consider the following mapping : p p n nh ×× →   : 

( ) T, : .h y A y A=                        (12) 

Lemma 8 A point x ∈Ω  is a vector critical point for problem (3) if and only 
if 

( )( )0 .n h B f x∈ ×∂                       (13) 

Proof. If x ∈Ω  is a vector critical point for problem (3), then equality (7) 
holds for some { }0 pz C+∈   and ( )A f x∈∂ . Since B is a base for C+ , there 
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exist > 0λ  and b B∈  such that z bλ= . Then, by (7), 

( ) T, 0 ,nh b A b A= =                       (14) 

so that (13) holds. Conversely, if (14) is true for some b B∈  and ( )A f x∈∂ , 
then by Definition 5 and Remark 6, we have { }\ 0 pb C+∈ . Taking z b=  in 
Definition 4, we see that x  is a vector critical point for (3).                 

For a nonempty subset S of n , let ( )d , : nS⋅ →   be the distance func-
tion of S, defined as follows: 

( ) { }d , : inf : ,x S x u u S= − ∈                   (15) 

where ⋅  denotes the Euclidean norm. We now introduce the following scalari- 
zation function [ ): 0,s Ω→ +∞ : 

( ) ( )( )( ): d 0 , .ns x h B f x= ×∂                    (16) 

Note that s  depends on the choice of y . The name “scalarization function” 
is justified by the following. 

Theorem 9 A point x ∈Ω  is a vector critical point for problem (3) if and 
only if ( ) 0s x = . 

Proof. If x  is a vector critical point for (3), then by Lemma 8, condition (13) 
holds, which gives ( ) 0s x = . Conversely, suppose that ( ) 0s x = . Since h is 
continuous and the sets B and ( )f x∂  are compact in p  and p n× , respec-
tively, the set ( )( )h B f x×∂  is also compact; hence it is closed. Therefore, the 
equality ( ) 0s x =  implies condition (13).                               

Having defined the scalarization function s, we can now replace problem (3) 
by the following scalar optimization problem: 

( )minimize subject to .s x x∈Ω                  (17) 

Obviously, problems (3) and (17) are not equivalent because there may exist 
vector critical points which are not (weakly) efficient solutions for (3). Never-
theless, by solving problem (17) we can obtain some approximation of the set of 
solutions to (3). 

Computing the distance function in (16) is not easy in the general case, but 
under additional assumptions on both C and f, it is possible to apply some ex-
isting algorithms to perform this task. The details are described below. 

Definition 10 ([14], p. 170) A convex set D in p  is called polyhedral if it 
can be expressed as the intersection of some finite collection of closed half- 
spaces, that is, there exist vectors i pb ∈  and numbers iβ  such that 

{ }: , , 1, , .p i
iD y y b i mβ= ∈ ≤ =              (18) 

A convex cone which is a polyhedral set is called a polyhedral cone. 
Theorem 11 Suppose that the ordering cone C in p  is polyhedral and the 

function : pf Ω→   is PC1. Let inty C∈ , let B be a base for C+  defined by 
(11) and let h be the function defined by (12). Then, for each x∈Ω , the set 

( )( )h B f x×∂  is polyhedral, or equivalently, it can be represented as the convex 
hull of a finite number of points in n . 
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Proof. It follows from ([14], Thm. 19.1) that a convex set D in p  is poly-
hedral if and only if it is finitely generated, which means that there exist vectors 

1, , la a  such that, for a fixed integer k, 0 k l≤ ≤ , D consists of all the vectors 
of the form 

1 1
1 1 ,k k l

k k lx a a a aλ λ λ λ+
+= + + + + +               (19) 

where 

1 1, 0 for 1, , .k i i lλ λ λ+ + = ≥ =                 (20) 

In particular, if D is bounded, then no iλ  can be arbitrarily large, which im-
plies that k l= , and conditions (19) - (20) reduce to 

{ }1co , , .kx a a∈   

By assumption, C is polyhedral, hence, by [14] (Corollary 19.2.2), C+  is also 
a polyhedral cone, which implies that its base B is a polyhedral set. By Proposi-
tion 3, ( )f x∂  is the convex hull of a finite collection of p n×  matrices, so it is 
a polyhedral set in p n× . It is easy to prove that the Cartesian product of two 
polyhedral sets is a polyhedral set and that the image of a polyhedral set under a 
linear transformation is a polyhedral set (see [15], Proposition A.3.4). Therefore, 

( )( )h B f x×∂  is a polyhedral set in n .                                 
Theorem 11 reduces the problem of computing the values ( )s x  given by (16) 

to the problem of computing the Euclidean projection of 0n  onto the polyhe-
dron ( )( )h B f x×∂ . This is a particular case of a quadratic programming prob-
lem (see [16], p. 398). There are also specialized algorithms designed for compu-
ting such projections (see [17] [18]). 

3. The Case of Two Objectives 

For two objectives, under differentiability assumptions, it is possible to find 
some representation of the scalarization function s in terms of the gradients 

1f∇  and 2f∇ . Let p = 2 and suppose that the mapping ( )1 2,f f f=  is conti-
nuously differentiable on n . Denote by ( )if x∇  the gradient of fi at x (i = 1, 
2). Then (4) implies 

( ) ( ){ } ( )
( )

1

2

.
f x

f x Jf x
f x

∇ 
∂ = =  ∇ 

                 (21) 

The following theorem will help to compute the scalarization function (16) for 
bi-objective problems. 

Theorem 12 Let p = 2, inty C∈ , and let B be the compact base for C+  
defined by (8). Then there exist vectors ( )1 2, , 1, 2i i ib b b B i= ∈ = , such that 

( )( ) ( ) ( ) ( ) ( ){ }1 1 2 2
1 1 2 2 1 1 2 2co , .h B f x b f x b f x b f x b f x×∂ = ∇ + ∇ ∇ + ∇      (22) 

Proof. It follows from (8) that B is a subset of some line in 2 . Moreover, by 
Lemma 7, B is compact and convex, so it must be a closed line segment. Denote 
by ( )1b  and ( )2b  the endpoints of B. Using (21) and the linearity of h with respect 
to the first argument, we obtain 
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( )( ) { } ( ){ }( )
( ) ( )( ){ }( )
( )( ) ( ) ( )( ){ }
( )( ) ( )( ){ }

( ) ( ) ( ) ( ){ }

1 2

1 2

1 2

1 2

1 1 2 2
1 1 2 2 1 1 2 2

co ,

1 , : 0 1

, 1 , : 0 1

co , , ,

co , .                        

h B f x h b b Jf x

h b b Jf x

h b Jf x h b Jf x

h b Jf x h b Jf x

b f x b f x b f x b f x

λ λ λ

λ λ λ

×∂ = ×

= + − ≤ ≤

= + − ≤ ≤

=

= ∇ + ∇ ∇ + ∇ 

 

Pareto Optimization 

We now consider the case of classical Pareto optimization, i.e., when 2C +=  . 
We have C C+ = . Let ( )1,1 inty C= ∈ , then by Lemma 7 the set 

{ }1 2: : 1B z C z z+= ∈ + =  

is a compact base for C+ , and B is the closed line segment joining the two 
points ( ) ( )1 1,0b =  and ( ) ( )2 0,1b = . According to Theorem 12, we have 

( )( ) ( ) ( ){ }1 2co , ,h B f x f x f x×∂ = ∇ ∇  

hence, the scalarization function has the form 

( ) ( ) ( ){ }( )1 2d 0,co , .s x f x f x= ∇ ∇  

For any point nx∈ , there are two possible cases: 
(i) ( ) ( )1 2f x f x∇ = ∇ . Then ( ) ( ) ( )1 2s x f x f x= ∇ = ∇ . 
(ii) ( ) ( )1 2f x f x∇ ≠ ∇ . Then ( )s x  is the distance from 0 to the line segment 

S joining ( )1f x∇  and ( )2f x∇ . 
We now consider case (ii). The line L passing through ( )1f x∇  and ( )2f x∇  

is parametrized as ( )L t b ta= +  where ( )1:b f x= ∇  is a point on the line, and 
( ) ( )2 1:a f x f x= ∇ −∇  is the line direction. The closest point on the line L to 0 is 

the projection of 0 onto L which is equal to 

0 0 2

, ,
: , where .

,
a b a b

q b t a t
a a a

= + = − = −  

Using the same parametrization, we can represent the line segment S as fol-
lows: 

{ }: 0 1 .S b ta t= + ≤ ≤  

Therefore, if 0 0t ≤ , then the point in S closest to 0 is b. Similarly, if 0 1t ≥ , 
then the point in S closest to 0 is b a+ . Finally, if 00 1t< < , then the point in S 
closest to 0 is q. Hence, the function s can be described as follows: 

( )
0

0 0

0

if 0,
if 0 1,
if 1.

b t
s x b t a t

b a t

 ≤
= + < <
 + ≥

                (23) 

Taking into account the definitions of a  and b  above, we see that this sca-
larization function depends on the values of gradients of 1f  and 2f  only, so it 
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is easily computable. 
Example 13 (problem FON in [19], p. 187) Let ( ) 3 2

1 2, :f f f= →   be 
defined by 

( )
23

1
1

11 exp ,
3i

i
f x x

=

   = − − −    
∑               (24) 

( )
23

2
1

11 exp .
3i

i
f x x

=

  
 = − − +    
∑               (25) 

The authors of [19] consider problem (3), where [ ]34, 4Ω = − , and state that 
the set of efficient (Pareto) solutions for this problem is equal to the set of points 

( )1 2 3, ,x x x x=  satisfying 

1 2 3 1 3 ,1 3 .x x x  = = ∈ −                  (26) 

Here the set Ω  is closed (contrary to the rest of our paper), but this con-
straint is in fact inessential and the problem can also be considered on the whole 
space 3 . Computing the partial derivatives of 1f  and 2f , we obtain from 
(24) - (25) 

( )
23

1

1

1 12 exp , 1,2,3,
3 3j i

ij

f x x x j
x =

 ∂    
 = − − − =    ∂     
∑      (27) 

( )
23

2

1

1 12 exp , 1,2,3.
3 3j i

ij

f x x x j
x =

 ∂     = + − + =    ∂     
∑      (28) 

We have designed a program in Maple to compute ( )s x , using formulae (23) 
and (27) - (28). This program consists of three nested loops for the values of the 
variables 1 2 3, ,x x x , each variable taking values from −4 to 4 in steps of 0.01. We 
have obtained 0=)(xs  for each x satisfying (26), and ( ) 0s x >  for all other 
points x. However, there are some points x for which the values ( )s x  are very 
small; the smallest value obtained is 

( ) ( ) 264, 4, 4 4, 4, 4 : 0.79802094823 10 .s s α −= − − − = = ×       (29) 

There are no other points at which ( )s x α< , except the Pareto optimal solu-
tions (26). 

This example shows that one must be careful when using global optimization 
algorithms to minimize s because points like the ones appearing in (29) can be 
easily misclassified as vector critical points. 

4. Conclusion 

We have presented a new scalarization method for solving multiobjective opti-
mization problems which is based on computing the Euclidean distance from 
the origin to some subset determined by the generalized Jacobian of the map-
ping being optimized. This article contains the main underlying theory and only 
some preliminary numerical computations pertaining to this method. More nu-
merical results will be presented in another research. 
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