Applied Mathematics, 2017, 8, 117-132
http://www.scirp.org/journal/am

ISSN Online: 2152-7393

ISSN Print: 2152-7385

/
oo Resmurch
0.00 Publishing

The Generalized r-Whitney Numbers

B. S. El-Desouky, F. A. Shiha, Ethar M. Shokr

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt

Email: b_desouky@yahoo.com, fshiha@yahoo.com, ethar.shokr@gmail.com

How to cite this paper: El-Desouky, B.S.,
Shiha, F.A. and Shokr, E.M. (2017) The
Generalized ~Whitney Numbers. Applied
Mathematics, 8, 117-132.
http://dx.doi.org/10.4236/am.2017.81010

Received: September 12, 2016
Accepted: January 22, 2017
Published: January 26, 2017

Copyright © 2017 by authors and

Scientific Research Publishing Inc.

This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

DOI: 10.4236/am.2017.81010

Abstract

In this paper, we define the generalized r~-Whitney numbers of the first and
second kind. Moreover, we drive the generalized Whitney numbers of the first
and second kind. The recurrence relations and the generating functions of
these numbers are derived. The relations between these numbers and genera-
lized Stirling numbers of the first and second kind are deduced. Furthermore,
some special cases are given. Finally, matrix representation of the relations
between Whitney and Stirling numbers is given.
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1. Introduction

The r-Whitney numbers of the first and second kind were introduced, respec-
tively, by Mezo [1] as

n

m"(x), :Z;)Wmvr(n,k)(mXH)k, (1)
(mx+r)" :kz;)\lvmyr(n,k)mk(x)k. ()

Many properties of these numbers and their combinatorial interpretations can
be seen in Mez6 [2] and Cheon [3]. At r=1 the r-Whitney numbers are
reduced to the Whitney numbers of Dowling lattice introduced by Dowling [4]
and Benoumbhani [5].

In this paper we use the following notations ( see [6] [7] [8]):

AN

Let E:(ao,al,n-,an_l) where ¢,,i=0,1---,n—1 are real numbers.
n-1 e

(@), = (o ;). (), =1and (@), =

j=0, j=i i

(x-a). (x@), =L @)

]
o
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[xal,, - i"_:[x_ai ], - & (14, ), . (4)
where ([x]:[@],) = (0], ~ (@], ) (1], ~[ea, ) (1, - [ns],)
l_ X
M, =g

This paper is organized as follows:

In Sections 2 and 3 we derive the generalized r-Whitney numbers of the first
and second kind.The recurrence relations and the generating functions of these
numbers are derived. Furthermore, some interesting special cases of these
numbers are given. In Section 4 we obtain the generalized Whitney numbers of
the first and second kind by setting r=1. We investigate some relations
between the generalized r~-Whitney numbers and Stirling numbers and genera-
lized harmonic numbers in Section 5. Finally, we obtain a matrix represen-

tation for these relations in Section 6.

2. The Generalized r-Whitney Numbers of the First Kind

Definition 1. The generalized r-Whitney numbers of the first kind w, .. (n,k)

with parameter

a=(aya, - a,,) aredefined by
m" (x;a), :iwmyr;a(n,k)(mx+ r)k, (5)
k=0

where w, .. (nk)=0 for k>n.

Theorem 2. The generalized r-Whitney numbers of the first kind w, .. (n,k)

a

(0,0)=w, ., (n,n)=1 and w

m,r;a

satisty the recurrence relation

Wo iz (M K) =W, o (N1 k=1)=(r+me, )W, ., (n—-1,k), (6)

for n>k=>1 and W, (n0)=(-1)"[](r+me._).

Proof.Since m"(x;@), =(mx+r—r—mg,,)m"*(x;a) ,,wehave
anwm,m2 (n,k)(mx+ r)k = niwmm (n—1,k)(mx+ r)k+1
k=0 k=0
—(r+man1):lwmyr;a(n—1,k)(mx+ r)k
=0
= kiwm;&(n—l,k—l)(mx+ r)k
=1
—(r+man71)niwmyrﬁ(n—l,k)(mx+ r).
k=0

Equating the coefficients of (mx+ r)k on both sides, we get Equation (6).
Using Equation (6) it is easy to prove that

W, (0,0)=(=1)" T (r+me;,).. O
Special cases:

L. Setting ¢; =0, for i=0,1---,n—1, hence Equation (5) is reduced to
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m"x" =§wm,r;o(n,k)(mx+ r). (7)
Thus
m"x" = Zn(;(kzn;(:‘)rk‘wmyr;o (n,k)J(mx)i , (8)
hence

i(r)rk_iwm,rzo(n’k):é‘ni' (9)

where 0=(0,0,---,0) and &; is Kronecker’s delta.
2. Setting o, =a, for i=0,1---,n—1, hence Equation (5) is reduced to

" (-ar)' = 3 (k) (mic )’ (10)

therefore we have

n

() (a3

i=0 i=0

Zn:(!‘)rk“wmm (n,k))mix‘. (11)
Equating the coefficient of X' on both sides, we get
m (1) (-a)"" = 2 (1) g (n1K), (12)

where a=(a,a, - a).

=
Il

3. Setting o, =i, for i=0,1,---,n-1, hence Equation (5) is reduced to
n
m"(x), :Zwmyr;i(n,k)(mx”)k, (13)
k=0

where i=(0,1---,n-1) and w, . (nk)=w, (nk) are the r-Whitney
numbers of the first kind.

4. Setting ¢, =i, for i=0,1,---,n-1, and r=-a hence w,

m,—a,a

(n,k) are
the noncentral Whitney numbers of the first kind, see [9].

5. Setting o, =—ia, for i=0,1,---,n-1, r=0 and m=1, hence Equation
(5) is reduced to

(xi=ar), = Dy (1K) (), (14)

k=0
()
where  —ia=(0,-a,--,—(n-1)a) and leo;fia(n,k):E are the

translated Whitney numbers of the first kind defined by Belbachir and Bousbaa
[10].

6. Setting «; =i°, for i=0,1---,n-1, hence Equation (5) is reduced to
n

m”ili(x—ip)zzw ,p(n,k)(mx+r)k. (15)

0 m,r;i

Sun [11] defined p-Stirling numbers of the first kind as

[1(x-") =25 (ni ).

i=0

therefore, we have

%%
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W (n,k)(mx+ r)k
rk—i

(k”;(r) (1))

Equating the coefficient of X' on both sides, we get

(P =) (k) a9

m"> s (nii, p)x' =§

where i” =(0°,2°---,(n-1)").

7. Setting aiz[ai]q, and X=[X]q for i=0,1,---,n-1, Equation (5) is
reduced to

m (Ix],i[l, ). = éwm,rmq (nk)(m[x], +r), (17)

where [E]q = ([ao ]q ,[al]q ,~--,[an_1]q) .
El-Desouky and Gomaa [12] defined the generalized g-Stirling numbers of the
first kind by

[l = 55 S, () a3

hence, we get

> () g (0 k)jmi X,

Equating the coefficient of [x]'q on both sides, we get
. 13 4
sqﬁ(n’l): n—i Z(Ik)rk Wm,r;[&] (n’k)' (20)

m" S q

3. The Generalized r-Whitney Numbers of the Second Kind

Definition 3. The generalized r-Whitney numbers of the second kind
W, . (n,k;a) with parameter Ez(ao,al,---,anfl) are defined by

(mx+1)"=>W, .. (nk)m* (x;a), , (21)

k=0

where W, . (0,0)=W, . (n,n)=1 and W, ., (nk)=0 for k>n.
Theorem 4. The generalized r-Whitney numbers of the second kind

W,, . (k) satisty the recurrence relation
W, 0 (N K) =W, 7 (N=1,k=1)+(r + me )W, .. (n—1,k) (22)
for n>k>1,and W, (n,0)=(r+me,)".

n-1

ra
Proof. Since (mx+r)" =(mx—me, +me, +r)(mx+r)"", wehave

120

K2
o5
“t:o

Scientific Research Publishing



B. S. ElI-Desouky et al.

n n-1

ENm,r;& (n’ k)mk (X;E)k = ENm,r;a(n_l’ k)mkﬂ(xia)kﬂ

k=0 k=0

n-1
+(r+me ) dW, .. (n-1,k)m* (xa),
k=0

2 Wi g (N=Lk=1)m" (@),

k=1
n-1

+(r+me ) YW, . (n-1k)m* (xa),.
k=0

Equating the coefficient of (x; a )k on both sides, we get Equation (22).
From Equation (22) it is easy to prove that W, ... (n,0)=(r+me,)". O
Theorem 5. The generalized r-Whitney numbers of the second kind have the

exponential generating function

tn (r-+meg )t

o (ta)= Z,era(n )= Zk) k . (23)
i 11 (mai—maj)

j=0, j=i

Proof. The exponential generating function of W, . (n,k) is defined by
_ S t"
? (t;a):Z\Nm’r;E(n,k)m (24)
n=k -

where W, .. (n,k)=0 for n<k.If k=0 wehave

0

— - t" r+me
o (6:) = 2 Wo iz (N, ) =2 (r+map)’ =l

n=0 ! n=0

Differentiating both sides of Equation (24) with respect to ¢, we get

0 tnfl

(bk (t;a):ENm.r:E(n’k)(n_l)! (25)

n=k

and from Equation (22) we have

o tnl tnl

¢k(t;a):ENm,r;a(n Lk- 1)( “1)! (r+mak)Z\Nmra(n 1k)( “1)!

B

The solution of this difference-differential equation is
L (Do (ta)=[1, (), (ba)dt, (26)
where
I (t)= eJ:(Hmak " g {rema)t, (27)
Setting k =1 in Equation (26) and Equation (27), we get
g (Ga) = e, (Ga)dt
_ Ie—(wmal)le(wmao)tdt

ef(

%%
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if t=0 then c= _—1, substituting in Equation (28), we get
me, —Mey
(r+mag)t (r+may )t
e e
o (ta)= + . (29)
:(t:2) m(a,—a) m(ey—ay)
Similarly at k=2,3, we get
(t. _) e(r+ma0)t N e(r+ma1)t
¢, (La)=
2 m’ (e —ay)(ag—a,) M (a,—ap)(a—a,) 30)
e(r+ma2)t
+— ,
m* (o, — oty ) (2, — )
and
(r+merpg )t (r+mey )t
— [S] €
Ps (t;a) = 3 + 3
[ [(a-a) m* [T (a-a)
i=1 i=0,i=1 (31)
e(r+ma2)t e(r+ma3)t
+ 3 + 2 '
m [T (@ -a) m[T(a-ct)
i=0, %2 i=0

by iteration we get Equation (23). [J
Theorem 6. The generalized r-Whitney numbers of the second kind have the

explicit formula
k 1 n
W, z(nk)=) —/———(r+meg;) . (32)
()= B (e
Proof. From Equation (23), we get
0 tﬂ k 1 0 n
Z(nk)—= r+me;,) —
ym,r,a( )nl ;mk(ai)k HZ::O( + a) n
2 & 1 n |t
= r+m —
;) ; mk (al K ( i ) !

Equating the coefficient of t" on both sides, we get Equation (32).
Special cases:

1. Setting ¢; =0, for i=0,1---,n—1, hence Equation (21) is reduced to
n . K oo n
(% J(mx) rE = 3W, g (n k) mex, (33)
= k=0

k=0
Equating the coefficients of x* on both sides, we get

(E)rn_k =Wy 0 (n.K), (34)

where W_ .. (n,k) denotes the generalized Pascal numbers, for more details see
[13], [14].
2. Setting o, =, for i=0,1,---,n—1, hence Equation (21) is reduced to
n
(mx+r)" =dW, .. (nk)m* (x—a)", (35)
k=0

hence we have

K2
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iGWmmmxxm“mﬁf. (6)

Equating the coefficients of x' on both sides, we get

(7)rm' =35 )W (nk)(a) " m. (37)
k=i
3. Setting «; =1, for i=0,1---,n—1, hence Equation (21) is reduced to
n
(mx+r)" =YW, . (nk)m*(x),, (38)
k=0
where W_ . (n,k)=W_ (n,k) arethe 7-Whitney numbers of the second kind.
Remark 7 Setting o; =i, 1=0,1,---,n-1 in Equation (23) and using the

identity T, ,.(i-§)=(-1)"(k=i)!j!, given by Gould [15), we obtain the

exponential generating function of r-Whitney numbers of the second kind, see
(1], [3].

4. Setting o, =1, for i=0,1,---,n-1, and r=-a hence Equation (21) is
reduced to the noncentral Whitney numbers of the second kind see, [9].

5. Setting «; =—ia, for i=0,1---,n—1, hence Equation (21) is reduced to

K =W, (1K) (5-01), 39)
k=0

where —ia =(0,-a,-,—(nN-1)a) and W, ;, (n,k)= {E}(a) are the translated
Whitney numbers of the second kind defined by Belbachir and Bousbaa [10].
6. Setting ¢, =(ip), for i=p-1p,---,n+p—2, hence Equation (21) is

reduced to
n p+k-1
(mx+r)" :kZ;Nm,r:p(n'k)mk I1 (X_(ip))' (40)
= i=p-1
Sun [11] defined the p-Stirling numbers of the second kind as
n . p+n-2
;sz(n,k, p)X = i_rp[l(x_(p)),

hence we have
30 i =3 S (s, (ki) 1
i-1 i=1 \k=i1

Equating the coefficients of x' on both sides, we get the identity

(in)rniimi - kZﬁ:lwm,r;p (n,k)mk52 (k,i, p),

where p=(p-1p,---,n+p-2).
7. Setting & =[e;] , and x=[x] for i=0,1--,n~1, hence Equation (21)

is reduced to
(m[x]q + r) = QNM[% (n,k)m" ([x]q ~[a], )K , (41)

El-Desouky and Gomaa [12] defined the generalized g-Stirling numbers of the
second kind as

K2
035: Scientific Research Publishing
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[, = 365, () [,
=5, ()[4, ),
therefore we have

W, () ([1], ~[ec, ), =

r"'m' ZSq,a (i, k)([x]q ;[a]q )K

k=0

[i(?)r"‘misq,,,(i.k)j([x]q;[a]q) |

k

Equating the coefficient of ([X]q ;[E]q )k on both sides we get

W

m,r;[&]q

(n,k)m* = ({‘)r”“misqﬁ(i,k).

n
i=k

4. The Generalized Whitney Numbers

When r =1, the generalized r-Whitney numbers of the first and second kind
W, . (nk) and W_,._(n k), respectively, are reduced to numbers which we
call the generalized Whitney numbers of the first and second kind, which briefly
are denoted by W, (n,k) and W, (nk).

4.1. The Generalized Whitney Numbers of the First Kind
Definition 8. The generalized Whitney numbers of the first kind W, (n,k)
with parameter a =(ay, e, +,a, ;) are defined by

" (), = 3 () (i)' 42)

where W, (0,0)=1 and W, ,(nk)=0 for k>n.
Corollary 1. The generalized Whitney numbers of the first kind W, (n,k)

satisty the recurrence relation

W, (k) =W, (n—1,k-1)—(1+me, ;) W, ., (n—-1,k), (43)

for k>1,and W, (n,0)=(-1)"[] ,(1+me).
Proof. The proof follows directly by setting r =1 in Equation (6). [
Special cases:
L. Setting ¢; =0, for i=0,1,---,n—1 in Equation (42), we get

2 (5)W,5 (nk) =8, (44)

n
k=i

2. Setting «;, = o, in Equation (42), for i=0,1,---,n—1, we get,

m™ (7)(=er)"™" = 2 () e (n,K). (45)

n
k=i

3. Setting o, =i, for i=0,1---,n-1, in Equation (42), we get

K2
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M (x), = S (n,K) (mx+1) (46)

k=0

where W, . (n,k)=w, (n,k) arethe Whitney numbers of the first kind.
4. Setting ¢, =i", for i=0,1,---,n—1, in Equation (42), we get

m”’isl(n,i,p):zn:(ik)v”v —(n,k). (47)

P
P m;i

5. Setting «; = [ai]q and xX= [X]q for i=0,1,---,n—1, in Equation (42), we
get

m™is,, (ni) = il (nk)(:‘) (48)

n ~
k=i
4.2. The Generalized Whitney Numbers of the Second Kind
Definition 9. The generalized Whitney numbers of the second kind
W, (n,k) with parameter @ =(cty,a,,-+,, ;) are defined by

(mx+1)" =Zn‘\/\7m;a(n,k)mk(x;a)k, (49)

k=0
where V\~/m;& (0,0)=1 and V\7m;5 (n,k)=0 for k>n.

Corollary 2. The generalized Whitney numbers of the second kind
W, (n,K) satisty the recurrence relation

W, (n,k)=W_._ (n-1,k -1)+(1+me, )W, (n-1,k), (50)

for k>1,and W, (n,0)=(1+me,)".
Proof. The proof follows directly by setting r =1 in Equation (22). O
Corollary 3. The generalized Whitney numbers of the second kind have the
exponential generating function

o (ta)= : (51)

i=0 ﬁ ‘(mai —maj)

Proof. The proof follows directly by setting r =1 in Equation (23). U
Corollary 4. The generalized Whitney numbers of the second kind have the

explicit formula

W (nk)=> ————(1+me,)". (52)

k 1
i=0 m* (ai )k

Proof. The proof follows directly by setting r =1 in Equation (32). O
Special cases:

1. Setting ¢; =0, for i=0,1,---,n—1, in Equation (49), then we get
(E):Wm;ﬁ(n'k)’ (53)

where Wm;6 (n, k) are the Pascal numbers.

2. Setting o, =, for i=0,1---,n—1, in Equation (49), then we get

(7)m =kzn;(ik)V\7m;a(n,k)mk. (54)

%%
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3. Setting «, =i, for i=0,1---,n-1, in Equation (49), then we get
(mx+2)" = SV, (nk)m* (x), (55)
k=0

where W, (n,k)=W, (n,k) are the Whitney numbers of the second kind.
Remark 10. Setting o, =i and r=1 in Equation (23) we obtain the

exponential generating function of Whitney numbers of the second kind, see [4].
4. Setting o; = (ip), for i=p-1p,---,n+ p—2, in Equation (49), we get

(in)mi = kzzr:;yvm;ﬁ (n’k)mksz (k’iv p)-

5. Setting ¢; = [ai ]q and x= [X]q for i=0,1,---,n-1, in Equation (49), we
get
wm;mq (n,k)m* zg(p)misqﬁ(i,k). (56)
5. Relations between Whitney Numbers and Some
Types of Numbers

This section is devoted to drive many important relations between the gene-
ralized r~-Whitney numbers and different types of Stirling numbers of the first
and second kind and the generalized harmonic numbers.

1. Comtet [7], [16] defined the generalized Stirling numbers of the first and
second kind, respectively by,

(xa), =Zs{;(n,i)x‘, (57)

X =38, (ki) (%), (58)

=i(i(?)wm,r;a(n,k)rk‘j(mx)i.

k=i

Equating the coefficients of X' on both sides, we have

5e (1) == 30 (F)r Wy (1K), (59)

k=i

This equation gives the generalized Stirling numbers of the first kind in terms
of the generalized r~-Whitney numbers of the first kind. Moreover, setting r =1,

we get

Sﬁ(n’i): n—i Z(I )szi(n’k)' (60)
2. From Equation (21) and Equation (58), we have

i%}va,;&(n,i)m‘ (xa), :Zn:(‘k‘)mkxkr”kzzn:(

k=0 i=0

(s o)),

K2
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Equating the coefficients of (x;a&), on both sides, we have

W, (ni)m' =3 (1)m s, (ki) (61)

k=i

which gives the generalized r-Whitney numbers of the second kind in terms of
the generalized Stirling numbers of the second kind. Moreover setting r =1,

we get

W, (n)m' =3 (2)m's, (k,i). (62)

k=i

3. El-Desouky [17] defined the multiparameter noncentral Stirling numbers of

the first and second kind, respectively by,

(x), :Zn:s(n,k;a)(x;a)k, (63)

(@), =2.5(nkia)(x),, (64)
using Equation (21) and Equation (2), we have

W, (0K (1), = DW, 0 (0 (x:2), (65)

from Equation (63) we get
iZn(;miwm,r;a(n,i)(x;E)i = kznan,r (n,k)mkizk(;s(k,i;&)(x;a)i
(Zn:mkw (n,k)s(k.i; a)J(x;a)i,

k=i

Il
M:

I
o

Equating the coefficients of (x;a&), on both sides, we have

W, (i) = m W (n,k)s(k,i;@). (66)

=~
N

=

This equation gives the generalized r~-Whitney numbers of the second kind in
terms of r-Whitney numbers of the second kind and the multiparameter

noncentral Stirling numbers of the first kind. Moreover setting r =1, we get
n . ~
>SmW, (nk)s(k,iza) =W, (n,i). (67)
k=i
4. From Equation (64) and Equation (5), we have

35 () () -

e (oK) (mx-+)"

(z (W () (),

Equating the coefficients of (x), on both sides, we get

m:l-—i iwmyr;&(n’k)wm,r(kli): (68)

k=i

- ZM=

S(ni;a)=

which gives the multiparameter noncentral Stirling numbers of the second kind
in terms of the generalized r-Whitney numbers of the first kind and r-Whitney

K2
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numbers of the second kind. Also, setting r =1, we get
S(n,i;a):#iwm;&(n,k)wm(k,i). (69)
k=i

5. Similarly, from Equation (65) and Equation (64), we get
n -
W, (nk)=3W, .. (ni)S(ika)m™ (70)
s
Equation (70) gives r~-Whitney numbers of the second kind in terms of the
multiparameter noncentral Stirling numbers and the generalized r-Whitney
numbers of the second kind. Setting r =1, we have
n

W, (n,k) =YW, (n,i)S (i, k;a)m'™. (71)

i=k

6. Cakic¢ [18] defined the generalized harmonic numbers as

From Eq (5), we have

m'(xa), = éwm,r;a(n,k)(mx+ r)k

0 n (72)
S S0 a0 0
j=0\ k=] -
Also,
n n n n-1
(xa@) =[[(x-e)= (_ai)(l_lj: (_ai).exp(zmg[l_in
i=0 i=0 Q; i=0 i=0 a;
k
n o Xk -1 1
=[(-a).exp| -> —> | —
|:o( I) p[ é k |o(a.] J
n 0 Xk
=[1(-) exp[—Z—Hn(k E)j
i=0 k=1 k
n » _1£ - K l
SIEN AU
i=0 (=0 Z' k=1 k
using Cauchy rule product, this lead to
@ Xk ! / © in
(Z—H n(k a)j =T1| X =—H. (k@)
k=1 j=1\ kj=1 kJ
L) 1 ¢ .
=2 2 [H. (k:a@) %',
j=0\ kg +ko+-+ky =] klkz k/ =1
therefore, we get
n © (_1)” © 1 ‘ _
CR (Ce > I+ (ki) ¢
R R ky+kg+oo kg =] kK, K, (73)

Ky +ko +:-+k, =] k1k2 e kg =1

<>z[z%[ > o= ﬁHn(k,;aj}xi-

3
128 o
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From Equation (72) and Equation (73) we have the following identity

3 () My (1K)
: / (79)
eSS T k|

ky+ko+-+k, =] klkz ot kg =1

From Equation (59) and Equation (74) we have

n

: = (-1) 1 _
(i) =1[(-a)2—- 2 M (k@) 5
i=0 o 0V Ui k= KKy oK,
this equation gives the generalized Stirling numbers of the first kind in terms of

the generalized Harmonic numbers.

6. Matrix Representation

In this section we drive a matrix representation for some given relations.

1. Equation (66) can be represented in matrix form as
W, s(@)=W,, ., (76)

where W, (n,k)=m'W, (nk), W, .(ni)=mW, . (n,i) and W, s(a)
and W . are nxn lower triangle matrices whose entries are, respectively,
the r-Whitney numbers of the second kind, the multiparameter noncentral
Stirling numbers of the first kind and the generalized r~-Whitney numbers of the

second kind.

For example if 0<n,k,i <3, and using matrix representation given in [19],
hence Equation (76) can be written as

1 0 0 0 1 0 0 0
rom 0 0 a, 1 00
r* m(2r+m) m’ 0 llay(arg-1) ay+a;-1 10
r’ m(3r2 +3mr+m2) m?(3r+3m) m’ J{ s(3,0;&) s(3L;a) s(3,2a) 1
1 0 0 0
(r+ma, m 0 0
B (r+may)’ (2r+ma, +ma,)m m? 0

(remey)’  W,..(31)  W,..(32) m
where
$(3,0;@) = ey (e —1) (o — 2),
s(3.L;@) =y (o —1)+ (e, —2) (g + o, 1),
s(3,2;a)=ay+a +a, -3,
W, o (3,1):((r+ma0)2 +(r+me )(2r +ma, +ma1))m,
W,z (3,2) = (3r + ma, + ma, +ma, )m?.

2. Equation (68) can be represented in a matrix form as

%%
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Wm,r;&V\?m,r = é(a)l (77)

where S(n,i;@)=m"S(n,i;a), and W, ., and S(&) are nxn lower
triangle matrices whose entries are, respectively, the generalized r-Whitney
numbers of the first kind and the multiparameter noncentral Stirling numbers of
the second kind.

For example if 0<n,k,i <3, hence Equation (77) can be written as

1 0 0 0
—-r—me, 1 0 0
(r+mag)(r+mey) —2r—ma, —mey 1 0
Wm,r;a (3’0) Wm,f;& (3’1) Wm,f;ﬁ (3’ 2) 1
1 0 0 0
r m 0 0
r m(2r+m) m? 0
r m(3r2+3mr+m2) m?(3r+3m) m’
1 0 0 0
—May, m 0 0
| mage, M (- -y +1) m’ 0

m*e,e,a, s(3La)  SBza) m
where
W, (3,0) = —(r+may)(r+mey ) (r+ma, ),
Wiz (1) = (r+mayg ) (r +may ) +(2r + mey +may ) (r +mar, )
W, 1z (3,2) = =3r—me, —ma, —ma,,
S(3,1;@) =M (@ + @, + ayat, — g — 4 — at, +1),
S(3,2;@)=m° (~a, — &, —a, +3).
3. Equation (70) can be represented in a matrix form as
W, .. S(@)=W,,, (78)

For example if 0<n,k,i <3, hence Equation (77) can be written as

1 0 0 0
(r+me,) m 0 0
(r+ma, )’ (2r+ma, +ma,)m m’ 0
(remey)’  W,,.(31)  W,,.(32) m
1 0 0 0
—a, 1 0 0
o, o, -y +1 1 0
ayya, S(3,1a) S(3,2a) 1

1 0 0 0
r m 0 0
| r? m(2r+m) m? 0
r m(3r2 +3mr+m2) m?(3r+3m) m’
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where
W, .. (31)= ((r +Mag ) +(r +may )(2r + ma, + mal)) m,
W,...» (3,2) = (3r + ma, + ma, +ma, )m?,
S(3.L;@) = ayey + o, + o, —ay — oy —ay +1,
S(3,2:@) =~y —a, — a1, +3.
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