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Abstract 
In this paper we present a generalized perturbative approximate series expan-
sion in terms of non-orthogonal component functions. The expansion is 
based on a perturbative formulation where, in the non-orthogonal case, the 
contribution of a given component function, at each point, in the time do-
main or frequency in the Fourier domain, is assumed to be perturbed by con-
tributions from the other component functions in the set. In the case of or-
thogonal basis functions, the formulation reduces to the non-perturbative case 
approximate series expansion. Application of the series expansion is demon-
strated in the context of two non-orthogonal component function sets. The 
technique is applied to a series of non-orthogonalized Bessel functions of the 
first kind that are used to construct a compound function for which the coef-
ficients are determined utilizing the proposed approach. In a second applica-
tion, the technique is applied to an example associated with the inverse prob-
lem in electrophysiology and is demonstrated through decomposition of a 
compound evoked potential from a peripheral nerve trunk in terms of con-
tributing evoked potentials from individual nerve fibers of varying diameter. 
An additional application of the perturbative approximation is illustrated in 
the context of a trigonometric Fourier series representation of a continuous 
time signal where the technique is used to compute an approximation of the 
Fourier series coefficients. From these examples, it will be demonstrated that 
in the case of non-orthogonal component functions, the technique performs 
significantly better than the generalized Fourier series which can yield non-
sensical results. 
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1. Introduction 

We propose the following novel approximate generalized series expansion for a 
function ( )tψ  in terms of a finite number of component functions ( ){ } 1

m
n n

tλ
=

 
where the component functions do not necessarily satisfy the orthogonality 
condition or form a basis for the function space: 

( ) ( ) ( )
1

.
m

n n
n

t t tψ ψ β λ
=

∼ = ∑

                  (1) 

Let ( ) [ ]: ,t a bψ →   be a square-integrable function and let 

( ) ( )f tψΨ =                         (2) 

be the Fourier transform of ( )tψ . 
In the expansion proposed in Equation (1), the component functions ( )n tλ  

may be orthogonal or non-orthogonal. In the event that there is an infinite 
number of component functions that are orthogonal, satisfying the condition 
that any ( )a tλ  and ( )b tλ , on the interval 1 2tτ τ≤ ≤  are such that  

( ) ( )2

1
d 0a bt t t

τ

τ
λ λ =∫ , the expansion is exactly yielding an equality in the expre- 

ssion shown in Equation (1). For a finite set of non-orthogonal component 
functions, the expansion is approximate. 

The coefficients nβ  may be determined using a perturbative approach where 
it is assumed that, at any given value of t , the contribution of each component 
function ( )n tλ  to the function ( )tψ  is perturbed by contributions from the 
other component functions in the set. From the perspective of the Fourier 
domain, it may be said that each frequency component of ( )fΨ  consists of 
contributions from the corresponding frequency component of each component 
function ( )n fΛ  where 

( ) ( )n nf tλΛ =                          (3) 

is the Fourier transform of the thn  component function ( )n tλ . 
The above description associated with a perturbed contribution of each of the 

component functions ( )n fΛ  to the corresponding frequency components of 
( )fΨ  can be written mathematically as shown in Equation (4). The 

coefficients ,i j  are the variables associated with the relative magnitude of the 
perturbative contribution of the other component functions to the frequency 
component of the component function ( )n fΛ . 
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          (4) 

The expression in Equation (4) may be written more compactly as in Equation 
(5). 
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Evaluating Equation (4) or Equation (5) at a specific frequency kf  for 
1k l= 

 and re-arranging so as to isolate the terms with the variables ,i j  on 
the right hand side yields Equation (6). 

( ) ( ) ( ),
1 11

m mm

k i k i j j k
i ji

i j

f f f
= ==
≠

Ψ − Λ = Λ∑∑∑                  (6) 

The system of equations described by Equation (6) is such that 2l m m> −  
which constitutes an over-determined linear system. The value of l  is the 
chosen number of frequency points at which (6) is evaluated. It is then possible 
to solve the linear equations, in the least squares sense, for the complex values of 
the variables ,i j . 

Using the decomposition in Equation (4), we define the following super- 
position of each component function , 1n n mΛ =   to be n nB Λ : 

( ) ( ) ( )
( ) ( ) ( )

1, 1,

1, , .
n n n n n n n

n n n n m n n

B f f f

f f f
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+
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 
         (7) 

The complex estimator , 1, 2, ,nB n m∀ =

  is defined as: 

1, 1, 1, ,1 .n n n n n n m nB − += + + + + + +

                  (8) 

Since nB  is complex, its magnitude nB  will yield the multiplicative 
coefficient nβ  by which each component function must be scaled as per 
Equation (1) 

,n n n nB B Bβ ∗= =                          (9) 

where nB∗
  is the complex conjugate of nB . 

2. Examples 
2.1. Example 1. Bessel Functions 

In this first example, we utilize the proposed series expansion to estimate the 
coefficients associated with the sum of non-orthogonal Bessel functions ( )nJ t  
of the first kind, where n  is a positive integer, as described in Equation (10) 
[1]: 

( ) ( )
( )

2

0

1
.

! ! 2

z z n

n
z

tJ t
z z n

+∞

=

−  =  +  
∑                (10) 

A compound function was generated through the superposition of a series of 
Bessel functions of the first kind with a set of coefficients as per Equation (11): 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

6 7 8 15

16 17 18 19

15 6 2 4

4 7 12 9 .

t J t J t J t J t

J t J t J t J t

ψ = + + +

+ + + +
         (11) 
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Figure 1 illustrates the results of the proposed series expansion for determin- 
ing the coefficients of a series of superposed non-orthogonal Bessel functions. A 
comparison is shown in a) of the template compound function ( )tψ  with the 
estimated compound function ( )tψ  generated using the estimated coefficients 

nβ . The graph in b) is a comparison of the actual distribution coefficient values 

nβ , shown in the histogram, with the estimated distribution coefficient values 

nβ . A graph of the error magnitude is given in c) between the actual distribution 
coefficients and the estimated coefficient values n nβ β−   as well as the error 
magnitude between the actual distribution coefficients and the generalized 
Fourier series coefficients n naβ − . The generalized Fourier series coefficients 

na  are found from Equation (12) 

( )
( ) ( )2 0

1 df
n n

n

a t t t
t

τ
ψ= Λ

Λ
∫                 (12) 

where ( ) ( ) ( )2

0
df

n n nt t t t
τ

Λ = Λ Λ∫  [2]. 

2.2. Example 2. The Inverse Problem in Electrophysiology 

The inverse problem in electrophysiology involves utilization of recorded 
biopotentials to determine the characteristics of the biological signal generator 
that gives rise to the recorded biopotential signals. A specific situation, in the 
context of the inverse problem, arises when it is necessary to determine the 
conduction velocity or size distribution of a population of peripheral nerve fibers 
from a recorded compound evoked potential. The compound evoked potential, 
to a first approximation, may be viewed as the superposition of the single fiber 
evoked potentials associated with the individual nerve fibers in the nerve trunk 
that have been electrically activated. Information related to the size distribution, 
which is linearly related to the conduction velocity distribution of nerve fibers in 
the evoked population, is of clinical use because different disease processes 
selectively impact different segments of the nerve population having different 
diameter or size [3] [4]. 

When the separation of nerve fiber sizes is relatively large, the resultant single 
fiber evoked potentials are orthogonal to each other and a generalized Fourier 
series may be used to estimate the size distribution. In the event that the fiber 
size classes are such that there is significant temporal overlap between their 
associated single fiber evoked potentials, the generalized Fourier series can yield 
nonsensical results. In such cases, the perturbative decomposition outlined in 
this paper may be used to obtain an estimate of the coefficients associated with 
the series expansion shown in Equation (1) as first demonstrated by Szlavik [5]. 

( )
( ){ }2 2 2 2 2 2

,

exp exp 1 exp

y y yv t rλ δ

α α

 ⋅ − 

     = Φ −Γ ϒ − −Γ Ξ + − −Γ Θ     
       (13) 
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2

4π
y

e y

D
aσ

Φ =                       (14) 
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(a) 

 
(b) 

 
(c) 

Figure 1. Graphs illustrating the results of the proposed series expansion for determining 
the coefficients of a series of superposed non-orthogonal Bessel functions. A comparison 
is shown in (a) of the template compound function ( )tψ  with the estimated compound 

function ( )tψ  generated using the estimated coefficients nβ . The graph in (b) is a 

comparison of the actual distribution coefficient values nβ , shown in the histogram, 

with the estimated distribution coefficient values nβ . A graph of the error magnitude is 
given in (c) between the actual distribution coefficients and the estimated coefficient 

values n nβ β−   as well as the error magnitude between the actual distribution coeffi- 

cients and the generalized Fourier series coefficients n naβ − . The generalized Fourier 

series coefficients na  are found from Equation (12). 
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y

v t s
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( )y y y

y
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a
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Θ =                    (18) 

To illustrate the applicability of the perturbative expansion to the case where 
the single fiber evoked potentials are non-orthogonal, we generated a population 
of one hundred nerve fibers, using the distribution shown in Equation (19), with 
diameters ranging from 16 μm  to 20 μm  using a technique outlined by 
Szlavik et al. [6]. The population was generated with the parameters shown in 
Table 1 which were established from an empirical study [7]. 

( ) ( )2
4

2
1

exp
22π

y hh
d y

h hh

d
p d

µσ
γγ=

 −
 = −
 
 

∑             (19) 

Each fiber y  in the population of z  fibers was then sorted into one of the 
fiber size classes n , for 1 30n =  , having a separation in diameter of 0.2 μm  
where the single fiber evoked potentials, shown in Equations (13) through (18), 
associated with the thn  size classes are not orthogonal and are generated using the 
function proposed by Fleisher et al. in Equation (6) of their paper [8]. All parameters 
in Equations (13) through (18) are as described in Fleisher and were assigned values 

2y ya d= ,  1y ys a= ⋅ ,  1  mmr = ,  y yv c d= ⋅ ,  0.998α = ,  1.0 S meσ = , 
 
Table 1. Parameter values used in the fiber diameter distribution shown in Equation (19). 

1σ  0.05 

( )1 μmγ  0.1274 

( )1 μmµ  0.5 

2σ  0.25 

( )2 μmγ  0.8493 

( )2 μmµ  3 

3σ  0.3 

( )3 μmγ  1.699 

( )3 μmµ  7.5 

4σ  0.4 

( )4 μmγ  1.699 

( )4 μmµ  13 
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( ) ( )y y y yD a s r s= + + , ( ) ( )1 1y yu s α α= + − , y yx vδ =  where yd  is the 
fiber diameter and x  is the propagation distance. The function has been 
normalized to the current through the second pole such that y g Iλ =  where 

1 AI = . 
An activation function ( )ydξ  was used to determine what stimulus current 

amplitude was sufficient to excite each fiber with diamater yd  as per Equation 
(20) where 10 mAζ =  and 5 13.5 10  mη −= × . 

( ) expy yd dξ ζ η = −                      (20) 

The time domain representation of the compound evoked potential ( )tψ  
may be written as a summation over z  fibers in the population, as per 
Equation (21), where the contribution of a given single fiber evoked potential of 
a given class ( )n y  associated with the thy  fiber is only added in when the 
stimulus current amplitude Ω  is greater than the activation current for the 
given fiber diameter as quantified in Equation (20) [9]. 

( ) ( ) ( ) ( ) ( )( )
1

,
z

y n y n y n y
y

t u d v t rψ ξ λ δ
=

  = Ω − ⋅ −   ∑           (21) 

Figure 2 illustrates the results of the proposed series expansion for estimating 
the diameter distribution of the nerve fibers contributing to the compound 
evoked potential for the population generated as described earlier. A comparison 
is shown in a) of the template compound evoked potential ( )tψ  with the 
estimated compound evoked potential ( )tψ  generated using the estimated 
coefficients nβ . The graph in b) is a comparison of the actual fiber diameter 
distribution coefficient values nβ , shown in the histogram, with the estimated 
fiber diameter distribution coefficient values nβ . A graph of the error magni- 
tude is given in c) between the actual distribution coefficients and the estimated 
coefficient values n nβ β−   as well as the error magnitude between the actual 
distribution coefficients and the generalized Fourier series coefficients n naβ −  
where the coefficients na  are found using Equation (12). 

2.3. Example 3. Continous Time Signals 

In the theory of continuous time signals, a periodic square waveform with a 
periodicity of T , a fundamental frequency of 1of T=  or 2πo ofω =  in 
radians per second may be represented using a trigonometric Fourier series 
expansion as per (22) [10]: 

( ) ( ) ( )
1

cos sin .o n o n o
n

x t a n t n tα ω β ω
∞

=

 = + + ∑          (22) 

For a square waveform of the type shown in Figure 3, the average value of the 
waveform is zero yielding a coefficient 0 0a = . The waveform may be appro- 
ximated as a superposition of an infinite series of sinusoidal waveforms and thus 
the coefficients of the cosine term in the series expansion of (22) are 0nα = . 
Evaluation of the Fourier coefficients for the sinuosidal term in (22) yields 

( )4 πn nβ =  for odd n  and 0nβ =  for even n . 
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(a) 

 
(b) 

 
(c) 

Figure 2. Graphs illustrating the results of the proposed series expansion for determining 
the diameter distribution of the nerve fibers contributing to a compound evoked potential. 
A comparison is shown in (a) of the template compound evoked potential ( )tψ  with 

the estimated compound evoked potential ( )tψ  from the estimated coefficients nβ . 

The graph in (b) is a comparison of the actual fiber diameter distribution coefficient 
values nβ  with the estimated fiber diameter distribution coefficient values nβ . A graph 
of the error is given in (c) between the actual distribution coefficients and the estimated 

coefficient values n nβ β−   as well as the error magnitude between the actual distribu- 

tion coefficients and the generalized Fourier series coefficients n naβ −  where the 

coefficients na  are found using Equation (12). The parameters for the neural simulation 
were 0.998α = , 1 S meσ = , 5 15 10  sc −= × , where 30m =  is the number of diameter 
classes, 50 μAΩ =  is the stimulus current amplitude, 0.05 mx =  is the propagation 
distance and 31.74 10l = ×  is the number of equations as per (6). 
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Figure 3. Square wave with fifty percent duty cycle and zero volt DC offset. 
 

An approximation to (22) may be obtained if we limit the number of terms in 
the series expansion to a finite value as in (23): 

( ) ( ) ( )
1

sin .
m

n o
n

x t x t n tβ ω
=

∼ = ∑

                (23) 

If we apply the perturbative approach, the sinusoidal functions in (23) may be 
considered to form the component functions ( )n tλ . The coefficient estimates 

nβ  may be determined using the technique proposed herein.  
Figure 4 illustrates application of the perturbative approach to a square 

waveform of the type shown in Figure 3 for an approximate series consisting of 
20m =  terms and a fundamental frequency ( )1 10πof = . A comparison is 

shown in a) of the template square waveform estimate ( )tψ  with the approxi- 
mated waveform ( )tψ  from the estimated Fourier coefficients nβ . The graph 
in b) is a comparison of the actual Fourier series coefficient values nβ  with the 
estimated coefficient values nβ . A graph of the error is given in c) between the 
Fourier series coefficients and the estimated coefficient values n nβ β−  . The 
perturbative expansion provides a robust estimate of the Fourier series coeffi- 
cients. The accuracy of the estimated coefficients is not unexpected since the 
component functions are orthogonal. 

3. Conclusions  

The perturbative based series expansion proposed in this paper provides the 
mathematical framework that may be used to estimate coefficients of an appro- 
ximate series expansion of a compound function consisting of the superposition 
of a set of component functions that may or may not be orthogonal. It has been 
demonstrated, by way of the examples presented earlier, that, in the case of 
non-orthogonal component functions, the technique performs significantly 
better than the generalized Fourier series which can yield nonsensical results 
such as negative coefficient values. As may be seen from specific examples rela-  
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(a) 

 
(b) 

 
(c) 

Figure 4. Graphs illustrating the results of the proposed perturbative expansion for 
determining estimates of the Fourier series coefficients. A comparison is shown in (a) of 
the template square waveform estimate ( )tψ  with the approximated waveform ( )tψ  

from the estimated Fourier coefficients nβ . The graph in (b) is a comparison of the 

actual Fourier series coefficient values nβ  with the estimated coefficient values nβ . A 
graph of the error is given in (c) between the Fourier series coefficients and the estimated 

coefficient values n nβ β−  . The parameters for the approximated square waveform were 

20m =  and ( )1 10πof = . 
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ted to the inverse problem in electrophysiology presented in Szlavik [5], the 
accuracy of the estimated series coefficients degrades as the degree of temporal 
overlap, or non-orthogonality, of the component functions increases. 

The technique would appear to have broad applicability in electrophysiology 
and the neurosciences particularly with respect to determination of the charac- 
teristics of signal generators as related to the inverse problem. Currently investi- 
gation of the decomposition of postsynaptic potentials into the contributions of 
constituent receptor-ligand complexes is being undertaken. The technique is 
general in the sense that it may be applied in situations where a compound 
function is known to consist of the superposition of orthogonal or non-ortho- 
gonal component functions which are also known. 
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