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Abstract 
This work presents an application of the Simplex Method for solving an optimal 
planning problem for cancer treatment by radiotherapy. Linear Programming can 
aid the optimal planning for radiation therapy, where the concern is to apply a high 
enough radiation in the tumor while saving significantly healthy regions or critical 
organs. 
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1. Introduction 

Among the problems of global health, cancer has become one of the main subjects of 
research for different fields of knowledge. Many of these researches are conducted with 
the goal of developing and evaluating new forms of therapy or just new methodologies 
or treatment protocols. As there is a wide variety of algorithms for tomographic recon-
struction and absorbed dose calculation in radiation therapy applications involving 
various mathematical techniques have been proposed and are still constantly improved 
[1]. 

From a mathematical point of view, the challenge is to deliver a high radiation dose 
to the tumor, enough to eliminate them, and simultaneously minimize radiation in the 
surrounding regions, composed of healthy tissue, while minimizing the complications 
in these regions. 

Among these techniques, linear programming stands out for its intense and wide ap-
plication and the results obtained are considered promising. The objective of treatment 
is to eliminate tumor cells by radiation, and at the same time it seeks to prevent the de-
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struction of surrounding healthy cells also affected by radiation. For planning the 
treatment with radiosurgery computerized tomography images are scanned and 
merged with magnetic resonance images obtained previously. From these images criti-
cal structures and tumor are located and then many computations may be performed to 
determine three-dimensional isocenters, isodose curves, dose to be prescribed, position, 
number and its weight conformal isocentric fields, among others. Such plan is prepared 
by the surgical team in order to obtain an adequate and optimal treatment for each case. 

The treatment plans are commonly based on the desired dose levels for specific types 
of tumors and organs at risk in the irradiated region. These levels’ dose is chosen so 
that high probability of cure is achieved, while the likelihood of complications in any 
organ is minimal risk. The aim of this paper is to show the optimal planning in radio-
therapy looking for an optimal solution using the Simplex Method and its comparison 
with Interior Points Methods. 

2. Linear Programming in Radiotherapy 

In recent decades, the impact of cancer in society got large attention, becoming a global 
concern, and in Brazil one of the top positions in the macro-regions mortality rates, 
along with the diseases of the circulatory system, external causes, among others. Cancer 
is a disease that begins when a genetic mutation in the DNA of the cell, where the con-
trol mechanism of normal tissue growth is changed. The methods for cancer treatment 
are: surgery, radiotherapy and chemotherapy. 

The radiotherapy treatment aims elimination of cancerous cells through radiation or 
relief of symptoms and at the same time seeking to avoid destruction of surrounding 
healthy cells also affected by radiation. From a mathematical point of view, the chal-
lenge is to deliver a high dosage radiation into the tumor, sufficient for eliminating and 
stopping the growth of tumor cells, whilst minimizing the radiation neighboring re-
gions composed of healthy tissue, while minimizing complications in those regions 
which are often critical. 

At the beginning of the use of radiotherapy, was applied high doses of radiation, as 
well as the patient be able to afford. The dose constraint was generally established the 
tolerance of the skin [2]. There are two main types of radiation: brachytherapy and te-
letherapy. Give yourself will focus in this work to the second type. In this case, neither 
the radiation source nor device that emits, are in direct contact with the patient. 
Therefore, the radiation reaches beyond the tumor all organs and tissues that are in the 
way. In the brachytherapy radiation source is placed inside the patient in the region 
that would receive treatment. It is a kind of non-permanent radioactive implant [3]. 
Usually for the treatment using a beam with rectangular form, which passes through 
different types of patient body tissues, and depending on the attenuation and the depth 
of tissue, a large amount of energy is deposited at various points within the body. For 
radiotherapy treatment should take into account the depth dose distribution in the 
central axis and characterizing the radiation beam. To represent and to have the con-
cept of the dose distribution and absorption throughout the volume and makes up the 
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isodose curve, which are lines representing points of the same dose in a given arrange-
ment of radiation beams. For the mathematical calculation, they are used clinical tumor 
data for each patient treated. These calculations can be performed by mathematical 
models through linear programming. 

Mathematical Formulation 

When cancer is diagnosed and there are medical indications for treatment by radiothe-
rapy, various tests are performed on the patient, in order to learn about the location, 
form and tumor volume, as well as critical tissues in the region to be treated. The use of 
computerized tomography exams for reliable data collection and in the radiosurgery is 
required along with a computed tomography an magnetic resonance exam. 

Based on these data, the dose to be received in the tumor and the volume to be irra-
diated may be prescribed by the doctor radiotherapist. Together with a physical, the 
radiation oncologist can then by the analysis of isodose curves can define the best type 
of treatment and the technique to be used. After obtaining the images by computed 
tomography or magnetic resonance imaging, the minimum dose to be applied to the 
tumor is prescribed as the maximum doses that critics and healthy tissue can receive. 
Through these images, it makes the selection of the anatomical structures of interest. 

On the images obtained, the structures of interest can then be mapped (and critical 
lesion tissue) through a pixelation. Each pixel is related to an electron density and rece-
ives specific coordinates (i,j), which will be used in the creation of conformational 
planning or 3D treatment planning, as shown in Figure 1. 

To illustrate, suppose a dimensional image m × n where each element’s image is 
called pixel representing a part of the human body. Also, consider que each angle is 
composed of sub-rays. Modern processing systems are capable of performing complex 
combinations between these sub-beams. The number of angles is fixed such that are 
considered k angles locations to issue the main beam Radiation. Each one containing 
η  sub-beams. Modern processing systems are able to perform combinations among 
these sub-beams to use them over a full arc, making planning using η  sub-beams. 
This decomposition of the radiation beams is based on the theoretical and practical 
foundations of radiotherapy with modulated intensity. The geometry of a model using 
elementary beams, where 2n = , 4p =  and 4η =  is shown in Figure 2. The inter- 

vals between the angles π
4

 and the initial angle is (usually) zero. 

 

 
Figure 1. Image in pixels. 

Pixel p
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Figure 2. Geometry of an image. 

 
In the treatment planning, once defined the coordinates (i,j) of pixels, with 11 i η≤ ≤ , 

21 j η≤ ≤ , one computes the total dose ( ),i jD  being received by the patient in each 
pixel coordinates (i,j). Thus, one can estimate the dose to be received in each patient’s 
tissue (critical, healthy and tumor), the area to be treated worrying not to exceed the 
dose supported by healthy and critical tissues and a dose sufficient enough to eliminate 
the tumor. 

This model can be represented by the following: 

( )
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1 1
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where, 
• ijD  represents the total dose received by the patient in position (i,j); 
• ijA  represents the nominal dosage issued by the radius p in position (i,j); 
• w represents the weight of the dosage emitted by beams; 
• l represents the minimum dose to be received by the tumor; 
• Γ  represents the subset of positions where the tumor is located; 
• n represents the number of rays; 
• m represents the total number of pixels. 

It is possible to formulate a model with weights in each region of the patient privi-
leged or penalize some areas the dosing quantity to be received. Given the delineation 
of structures, the treatment plan should be developed in order to manage the radiation 
dose on the tumor, thus seeking the homogeneity of the treatment plan, according to 
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the determination of the dose prescription of regions of interest. 
Defining the following subsets: 

• R represents the subset of positions where critical tissue (healthy) or critical frame-
work; 

• N represents the subset of positions where the other healthy tissues. 
It is possible to formulate a model with weights in each region of the patient privi-

leging or penalizing some areas where the dosing quantity is received. 
Given the delineation of structures, the treatment plan should be developed in order 

to manage the radiation dose to the tumor, thus seeking the homogeneity of the treat-
ment plan, according to the determination of the dose prescription of regions of inter-
est. 

Holder [4] formulates some models of Linear Programming by weightings in each 
region of the patient’s image, considering or privileging the type of tissue to be exposed 
to radiation doses. 

As ( ),x a i  the dose over the i-th subfeixe, to 1, 2, ,i η=   a-th angle to 1,2,a =  
,k  and ( ), ,p a id  the distance between the source positioned at an angle to sending 

subfeixe i (de dose ( ),a ix ) and pixel p. The dose deposition in the pixel p due i-th sub-
feixe of the a-th angle ( ), ,p a iA  is defined as: 

( )
( ), ,

, , e ,p a id
p a iA S µ−

=                                (1.1) 

The term S represents the geometric area of pixel p which receives the dose ( ),x a i . 
With the component ( ), ,p a iA  may be constructed the dose deposition of matrix A, 
where the rows in A are indexed by p and the columns are indexed by ( ),a i , as shown 
in the matrix (1.2), thus the matrix A has dimension m kη× . 

1 1 1 1 1 1 1 10 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 10 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 10 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 10 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2

 
 
 
 
 
 
 
 
 
 
 

           (1.2) 

Most research has used optimization models with linear constraints, with one of the 
two most obvious objective functions, maximizing the dose to the tumor and minimize 
the dose to the critical structure. Since this often leads maximization at high doses, 
other studies seek to maximize the minimum dose of the tumor or reduce the maxi-
mum dose of critical structure [5]. 

The goals listed below indicate that this problem has many parameters to consider in 
deciding what would be desirable for a treatment plan: 
• Transmitting a uniformly lethal dose in the tumor region; 
• Transmitting radiation as small as possible in critical structure; 
• Obtain a total dose as small as possible; 
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• Reducing the frequency of high doses outside the region of the tumor; 
• Controlling the number of rays used in the treatment plan. 

In search of uniform doses, Holder proposed a linear optimization model to assist in 
the optimal planning of radio surgery. This model has been widely cited in the litera-
ture by presenting good results in terms of conformal plans. So we opted for the study 
and implementation of this model, which will be discussed below. 

Consider, Tm  tumor pixel number, Cm  the number of pixels of the critical struc-
ture and Gm  the number of pixels of healthy tissue. Therefore the total number of pix-
els is given by T C Gm m m m= + + . Thus, in the model of Holder, the dose deposition 
matrix is divided into three parts: 

T

C

G

A
AA
A

 
 =  
  

                                  (1.3) 

The rows of the dose deposition matrix are rearranged so that T is related to the set 
of pixels comprising the lesion or tumor, C to pixel set included the critical tissue or 
organs at risk and G to the pixel set of remaining healthy tissue. 

Thus, the sectional image of computed tomography is converted into an array of pix-
els, which are classified to represent tumor and non-tumor regions. Due the division 
into pixels, the model that will be presented, the prescription dose is given in the form 
of vector and defined by four boundaries, with the following notation: 
• tu  represents the upper limit vector to radiation in the tumor ( Tm

tu R∈ ); 
• tl  represents the lower limit vector to the tumor radiation ( Tm

tl R∈ ); 
• cu  represents the upper limit vector for radiation in the critical structure 

( Cm
cu R∈ ); 

• gu  represents the upper limit vector to radiation in the remaining healthy tissue 
( Gm

gu R∈ ). 
Obviously 0 , 0t t cl u u< ≤ ≥  and 0gu ≥  hold. If an uniform lethal dose is transmit 

ted to the tumor, the upper and lower limit to the tumor pixels are obtained through 
the established goals. 

Assuming that the targets set for a cell are gt , the values tiu  and til  they are gen-
erally (1 + ε) gt  and (1 − ε) gt , respectively, where ε  is the percentage of variation 
for tumor strength and uniformity is termed the tumor level. Typical values ε  are 
found in the literature varying from 0.02 to 0.15. 

The vector gu  represents the largest amount of radiation allowed for any pixel 
(healthy). Generally healthy tissues should not receive more than 10% of the dose es-
tablished for the tumor. That is, ( )1 0.10g gu t= + . The rows of dose deposition array 
are rearranged in row a representing cancer regions critical structures and the remain-
ing healthy tissue. This reordering is represented by the TA , CA  and GA  as shown 
in (1.3). 

The sub-beams that do not reach the tumor are removed by the elimination of the 
columns that have the zero vector in the corresponding column of submatrix TA . Thus, 
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without loss of generality let us assume that the TA  matrix does not have null columns. 
Therefore, m nA R ×∈ , Tm n

TA R ×∈ , Cm n
CA R ×∈  and Gm n

GA R ×∈ . 

3. Linear Optimization Problem 

The model proposed by [4] allows a number of constraints on the amount of limitation 
of the dose in each tissue type. The objective function is represented by the weighted 
sum of three goals: 
• Tl t , which measures how close the minimum dose the found plan apply in the tu-

mor region; 
• T

cu c , which measuring the amount of radiation received by the prescribed critical 
region; 

• T
gu g , which measuring the amount of radiation prescribed gin other healthy tissues. 

The positive scalar w weight the importance of formulating a plan to get the mini-
mum dose in the tumor region, i.e., large values of w make Tl t  to be as small as possi-
ble. It would be desirable if there were a finite value for 0w ≥  such that the optimal 
value of the component Tl t  were zero which would ensure the tumor receives as 
much radiation level as possible. 

The proposed model can be represented as follows: 

Minimize

Subject to

0

0
0.

T T T
c g

t T t

C c C

G g G

t

c C

G

wl t u c u

l Lt A x u
A x u U c
A x u U g

Lt l
u U c

U g
x

+ +

− ≤ ≤

≤ +

≤ +

≤ ≤

− ≤

≥

≥

                            (1.4) 

where, 
• w: positive scalar; 
• x: dose of sub-beams entering the image to reach the pixel p, ( nx R∈ ); 
• , 0Tmt R t∈ ≥ ; 
• : Cmc c R∈ ; 
• , 0Gmg R g∈ ≥ . 

The constraints ,t T C c Cl Lt A x A x u U c= ≤ ≤ + , and G g GA u U g≤ + , are called elastic 
constraints, since their limits may vary according to the vectors t, c and g, respectively. 

The matrices , CL U  and GU  define how to measure elasticity, and , cl u  and gu  
control the penalty or reward relative to elasticity. 

Fixed values ,, ,,c g Cl u u L U  and GU  define a set of elastic functions. And these are 
incorporated for the following reasons: 

1) The elastic constraint ensures that a set of elastic functions is always strictly feasible; 
2) The difference of the limits on the elastic functions allow us to incorporate differ-

ent treatment goals. 
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As previously discussed, the model (1.4) is a linear programming problem and can be 
solved by the simplex method. To solve this problem, means determining * * *, ,x t c  
and *g  that optimize the objective function and achieve the goals set the best way 
possible. 

Thus, with the optimal dose of vector x is possible to compute the total dose of radia-
tion, or total for each pixel. Given the optimal dose distribution in tissues it is possible 
to construct isodose curves. 

4. Simplex Method Applied to the Treatment Model for  
Radiotherapy 

As the image is in pixels, the dose limits should be divided by the number of pixels of 
the respective bodies, to ensure the uniformity of the dose [6]. Therefore, the objective  

function, the values dose limits will be 1 1, c
T C

l e u e
m m

= =  and 1
g

G

u e
m

= , where  

Tml R∈ , Cm
Cu R∈ , Gm

Gu R∈  and e is unit vector. 
Supposing, TA x a= , and replacing bounded constraint t tl t a u− ≤ ≤ , as L = I, Uc = 

I and gU I= , we obtain following problem: 

( )

Minimize

Subject to

0
0

, , , , , , , , 0.

1 1 1T T T

u t

l t
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C c

t t

u l c g

C G

t

T

a s u
a t s l
A x a
A x s c
t s

w e t e c e g
m m

u

t c g a s s s s
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s

+ =

+ − =

− =
+ − =
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                      (1.5) 

Thus, we obtain the following constraint matrix: 

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

00 0 0 0 0 0 0 0
00 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

t

t

T

uC

l cG

c t

g

t

a
x
t uI I
c lI I I
gI A
sA I I
s uA I I
s uI I
s
s

 
 
 
    
    −     
    −
 ⋅ =   

−     
    −            
 
 
 
 

               (1.6) 

5. Computational Results 

This section will present and discuss some results obtained in the computational im-
plementation of the mathematical model (1.4), aiming to help in optimal radiotherapy 
planning. The problem was solved in a Microcomputer-macbook pro, 2.5 GHz proces-



T. R. Salvador et al. 
 

2237 

sor, i5, 4 GB memory, 1600 MHz, DDR3. 
Following the described methodology, initially the cancer is diagnosed and indicated 

with radiation therapy. Thereafter, they are carried tomography computed or tumor 
sizing and location of the regions of interest (tumor, healthy and critical). Thus, the 
doctor determines the dose to be applied in the tumor ( gt ). 

The Image tomography and divided into pixels and are obtained as Geometric Posi-
tions of pixels locations relating to tissues Critics, healthy and tumor to be used in dos-
es of Matrix Construction [ ]TT C GA A A A=  as defined in (1.3). 

For the computational experiment, it is considered hypothetically, that the patient 
has a spherical tumor with a diameter of 15 mm, surrounded by critical tissue, exem-
plifying a spinal cord tumor, where there is difficulty in planning due to cancer was 
fully surrounded by a critical structure [7]. 

In this case, it has been indicated a radiotherapy treatment with tumor dose of 80 Gy, 
where Gy represents the amount of absorbed ionizing radiation energy (or dose) for 
mass unit (1 Gray (Gy) = 1 J/kg). It was considered a percentage change 2%ε = , and 
the critical structure can accommodate up to 40 Gy and healthy at most 60 Gy. As the 
positive scalar (w) considering the importance that the tumor receives the dose mini-
mum, two values was considered for comparison, namely 0.1w =  and 40w = . Other 
bounds are given on the Table 1. 

The considered lesion contains four pixels (2 × 2 pixels), the critical tissue around 
the lesion comprises 16 pixels (4 × 4 pixels). The developed planning system uses a grid  

of 16 × 16 pixels, with 4 angles from 0, π
2

, π  and 3π
2

 degrees, where each beam is 

composed by six sub-beams. 
To improve the computational performance, we have considered only the region that 

tends to form hot pixels, which are pixels that receive radiation being considered 
healthy structure with 36 pixels. The pixels that will not receive radiation are called cold 
pixels [8]. 

The 1.5 objective function is the sum of three goals: to achieve a high enough dosage 
to eliminate the cancer and not exceed the maximum dose in healthy tissues and critical. 
The Table 2 summarizes the numerical results obtained on the value of the objective 
function, number of iterations and run time in seconds. 

Analyzing the results in Table 2, we can see that the minimized function achieved a 
very low value, which is a good conformation of isodose curves, thus ensuring a safe 
 
Table 1. Values in the model relative the doses. 

Used Value Gy 

ut 81.6 

lt 78.4 

uc 40 

ug 60 

tg 80 
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Table 2. Numerical results in the objective function. 

Variables W = 0.1 W = 40 

Objective function value 2.9553 × 10−6 2.9800 × 10−6 

Iteration 38 38 

Time 0.010718 s 0.011471 s 

Tolerance 1.0 × 10−6 1.0 × 10−6 

Excess dose in the tumor 0.1232 × 10−6 0.1133 × 10−6 

Excess dose in critical tissue 0.1142 × 10−6 0.1242 × 10−6 

Excess dose in healthy tissue 0.0045 × 10−6 0.0045 × 10−6 

 
treatment. The dose of excesses in critical and healthy regions and the dose deficit in 
the tumor region is almost zero, thus showing that the tumor received the dose re-
quired for elimination and the dose limit allowed for other regions was not exceeded. 

The weight w decides the importance of dose uniformity in the tumor. As we can see 
the results, if w is small, indicates that finding a treatment plan reach the dose lower 
limit of the tumor is not so important. Increasing w increases the chances that the 
treatment plan to reach an uniform dose and tumor need. Thus, higher values for w 
force excess dose in the tumor to be as minimal as possible. 

Compared to the Interior Point Methods 

At this moment, we compare the dual simplex method with interior points methods to 
three real problems. 

Analysis report on the results obtained: 
In Table 3 and Table 4 the computational time for the dual simplex method is 

slightly less when compared to the interior point method, unlike what happens with the 
larger problem 1.5 which is easily explained as the interior point method always has 
good results for large problems [9], which does not occur with the Simplex method. In 
all other aspects the methods have the same performance. 

In Table 5 the computational time for the interior point methods is smaller com-
pared to the dual simplex method and this is common with increasing the dimension of 
the problem, since it is a robust method and very used in large problems. 

6. Conclusions 

This work presented an application of the simplex method in a cancer treatment plan 
for radiotherapy and a model based on linear programming for assistance in optimal 
planning. It can be seen that the mathematical model used in this paper can be a tool of 
great importance in the construction of optimized treatment plans; it provides a set of 
optimal solutions, which related to the treatment, may enable a high quality therapy 
[10]. 
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Table 3. Problem 342 Pixels. 

Method Dual Simplex IPM 

Iteration 12 12 

Time 4.535522 × 10−1 s 2.307250 s 

Function objective 3.042952 × 10−9 3.042952 × 10−9 

Excess dose in the tumor 4.153469 × 10−5 4.153469 × 10−5 

Excess dose un critical tissue 7.304035 × 10−6 7.304035 × 10−6 

Excess dose in healthy tissue 9.863899 × 10−8 9.863899 × 10−8 

 
Table 4. Problem 747 Pixels. 

Method Dual Simplex IPM 

Iteration 13 13 

Time 7.352247 × 10−1 9.160095 × 10−1 

Function objective 3.000177 × 10−9 3.000177 × 10−9 

Excess dose in the tumor 3.809950 × 10−5 3.809950 × 10−5 

Excess dose un critical tissue 6.134144 × 10−6 6.134144 × 10−6 

Excess dose in healthy tissue 7.212216 × 10−6 7.212216 × 10−6 

 
Table 5. Problem 3718 Pixels. 

Method Dual Simplex IPM 

Iteration 24 24 

Time 2.754705 s 2.738810 s 

Function objective 1.258780 × 10−9 1.258780 × 10−9 

Excess dose in the tumor 3.318770 × 10−5 3.318770 × 10−5 

Excess dose un critical tissue 2.010262 × 10−6 2.010262 × 10−6 

Excess dose in healthy tissue 4.522237 × 10−7 4.522237 × 10−7 

 
It is possible to consider the dual simplex method to ensure reliable treatment of me-

dium and small problems, since their computational cost is lower than the interior 
point methods, but its performance is very similar. 
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