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Abstract 
Kelvin-Helmholtz instability (KHI) appears in stratified two-fluid flow at surface. 
When the relative velocity is higher than the critical relative velocity, the growth of 
waves occurs. It is found that magnetic field has a stabilization effect whereas the 
buoyancy force has a destabilization effect on the KHI in the presence of sharp inter-
face. The RT instability increases with wave number and flow shear, and acts much 
like a KHI when destabilizing effect of sheared flow dominates. It is shown that both 
of ablation velocity and magnetic field have stabilization effect on RT instability in 
the presence of continued interface. In this paper, we study the effect of magnetic 
field on Kelvin-Helmholtz instability (KHI) in a Couple-stress fluid layer above by a 
porous layer and below by a rigid surface. A simple theory based on fully developed 
flow approximations is used to derive the dispersion relation for the growth rate of 
KHI. We replace the effect of boundary layer with Beavers and Joseph slip condition 
at the rigid surface. The dispersion relation is derived using suitable boundary and 
surface conditions and results are discussed graphically. The stabilization effect of 
magnetic field takes place for whole waveband and becomes more significant for the 
short wavelength. The growth rate decreases as the density scale length increases. 
The stabilization effect of magnetic field is more significant for the short density 
scale length. 
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Dispersion Relation 

 

1. Introduction 

Kelvin-Helmholtz instability is one of the basic instabilities of two-fluid systems, which 
affects an interface. The prototypical case is that with one layer of lighter fluid overlying 
another of denser fluid, and the two moving horizontally in the same direction but with 
different velocities. 

It is not uncommon for environmental fluids to be subject simultaneously to the 
destabilizing effect of a velocity shear and the stabilizing effect of density stratification, 
and, when such competition occurs, the outcome is often the so-called Kelvin-Helmholtz 
(KH) instability [1]. Ever since von Helmholtz [2] and Kelvin [3] developed the theory, 
this instability has become a standard staple of fluid mechanics, and the basic theory 
can be found in numerous textbooks, for example Lamb ([4], pp. 373-374), Turner ([5], 
pp. 93-96), Kundu ([6], pp. 373-381) and Scorer ([7], pp. 231-234) to cite a few up to 
the present time. Investigations into the details of the instability, including secondary 
instabilities [8] have been carried out perhaps with far more depth than for any other 
type of fluid instability. 

The importance of the Kelvin-Helmholtz (KH) instability of parallel flows in labora-
tory, geophysical, or astrophysical systems, recognized many years ago, has generated a 
huge literature. The study of the Kelvin-Helmholtz instability has a long history in hy-
drodynamics, The basic linear stability analysis of the magnetohydrodynamvic (MHD) 
K-H instability was carried out long ago (Chandrasekhar [8]). There is now also a 
growing literature of the nonlinear evolution of the MHD K-H instability beginning 
from a variety of possible initial Ñow configurations, at least in the earlier evolution 
stages in two dimensions. Strong magnetic fields, through their tension, are well known 
to stabilize the K-H instability. However, the considerable potential for much weaker 
fields to modify the nonlinear instability and, in particular, to reorganize the subse-
quent flow has only recently been emphasized. 

Malik and Singh [9] investigated the nonlinear Kelvin-Helmholtz properties of (2 + 1) 
dimensional wave packets propagating at the interface of two superposed Ferrofluids. 
They considered that the fluids as moving with uniform speeds parallel to the common 
interface and subjected to a tangential magnetic field. They derived a nonlinear equa-
tion which governs the evolution of the amplitude of the system. The effect of a time- 
dependent acceleration in the presence of a tangential magnetic field on the nonlinear 
Kelvin-Helmholtz instability has been discussed by El-Dib [10]. El-Sayed [11] investi-
gated the RTI problem of rotating stratified conducting fluid layer through porous me-
dium in the presence of an inhomogenous magnetic field. This problem corresponds 
physically (in astrophysics) to the RTI of an equatorial section of a planetary magne-
tosphere or of stellar atmosphere when rotation and magnetic field are perpendicular to 
gravity. The KHI of two superposed viscous fluids in a uniform vertical magnetic field 
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is discussed in the presence of effects of surface tension and permeability of porous me-
dium by Bhatia and Sharma [12]. Following Babchin et al., [13] and Rudraiah et al., 
[14], a simple theory based on Stokes and lubrication approximations is used in this 
study with the primary objective of using porous layer to suppress the growth rate of 
KHI. 

In the above studies the fluid has been considered to be Newtonian. In the recent 
years a great deal of interest has been focused on the understanding of the couple stress 
effects occurring in the flow of non-Newtonian fluids through porous media. This 
problem appears to be, at this time, of special interest in oil reservoir engineering, 
where an increasing interest is being shown in the possibility of improving oil recovery 
efficiency from water flooding projects through mobility control with non-Newtonian 
displacing fluids. Consequently, it has become essential to have an adequate under-
standing of the couple stress effect of non-Newtonian displacing and displaced fluids in 
an oil displacement mechanism. Many technological processes involve the parallel flow 
of fluids of different viscosity, elasticity and density through porous media. Such flows 
exist in packed bed reactors in the chemical industry, petroleum engineering, boiling in 
porous media and in many other processes. Should the interface between the two fluids 
become unstable, a substantial increase in the resistance to the flow will result. This in-
crease in resistance, in turn, may cause flooding in counter current packed chemical 
reactors and dry out in boiling porous media. In the same vein, in petroleum produc-
tion engineering, such instabilities lead to emulsion formation. Hence, the knowledge 
of the conditions for the onset of instability will enable us to predict the limiting opera-
tion conditions of the above processes. 

El-Dib and Matoog [15] have studied the Electrorheological Kelvin-Helmholtz insta-
bility of a fluid sheet. This work deals with the gravitational stability of an electrified 
Maxwellian fluid sheet shearing under the influence of a vertical periodic electric field. 
The field produces surface charges on the interfaces of the fluid sheet. Due to the rather 
complicated nature of the problem a mathematical simplification is considered where 
the weak effects of viscoelastic fluids are taken into account. The effect of boundary 
roughness on Kelvin-Helmholtz instability in Couple stress fluid layer bounded above 
by a porous layer and below by rigid surface is studied by Chavaraddi et al., [16]. Re-
cently, they [17] have observed the effect of surface roughness on Kelvin-Helmholtz in-
stability in presence of magnetic field. The objective of this paper is to study the effect 
of magnetic field on Kelvin-Helmholtz discontinuity between two couple-stress viscous 
conducting fluids in a transverse magnetic field through a porous medium in the pres-
ence of the effects of surface tension at the interface. 

The paper is organized as follows. The basic equations are established in Section 2 
together with Maxwell’s equations. The basic equations are simplified and non-dimen- 
sionalized using the following Stokes and lubrication approximations in this section. 
The resulting dispersion relation is derived using suitable boundary and surface condi-
tions in Section 3. The cutoff and maximum wave numbers and the corresponding 
maximum growth rate are also obtained in Section 3. The results are discussed in 
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Section 4 and some important conclusions are drawn in final section of this paper. 

2. Mathematical Formulation 

The physical configuration is shown in Figure 1. We consider a thin target shell in the 
form of a thin film of unperturbed thickness h (Region 1) filled with an incompressible, 
viscous, poorly electrically conducting light fluid of density fρ  bounded below by a 
rigid surface at y = 0 and above by an incompressible, viscous poorly conducting heavy 
fluid of density pρ  saturating a dense porous layer of large extent compared to the 
shell thickness h. The co-ordinates x and y spans the horizontal and vertical directions. 
The interfacial y h=  is denoted by ( ),x tη . When the interface is flat then 0η =  
when y h= . The fluid velocity vector ( ),u v=q  and the fluid is assumed to be 
non-Newtonian (couple-stress fluid), viscous electrically conducting and incompressi-
ble. The viscosity of fluid (porous medium) is given by ( )f pµ µ , ε  the porous para-
meter, κ  the permeability of the porous medium and α  is the slip parameter at the 
interface. The stress gradient δ  is related to the gravitational acceleration through the 
relation ( )p fgδ ρ ρ= − . The perturbed interface ( ),x tη  is along the y direction. 

The basic equations for clear fluid layer (region 1) and those for porous layer (region 
2) are as given below: 

Region-1: 

( ) ( )2 4
0p

t
ρ µ λ µ∂ + ⋅∇ = −∇ + ∇ − ∇ + × ∂ 

q q q q q J B            (2.2) 

Maxwell’s Equations: 

0, 0, ,
t t

∂ ∂
∇ ⋅ = ∇ ⋅ = ∇× = − ∇× = +

∂ ∂
B DE H E H J            (2.3) 

and the auxiliary equations 
 

 
Figure 1. Physical configuration. 
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[ ]0 0, ,ε µ σ= = × = + × ×D E B H J B E q B B               (2.4) 

Region-2: 

k pQ
xµ
∂

= −
∂

                          (2.5) 

where ( ),u v=q  the fluid velocity, E  the electric field, H  the magnetic field, J  
the current density, D  the dielectric field, B  the magnetic induction, σ  the elec-
trical conductivity, k the permeability of the porous medium, p the pressure, 0µ  
magnetic permeability, ( ), 0, 0Q=Q  the uniform Darcy velocity, µ  the fluid viscos-
ity, λ  the couple-stress parameter and ρ  the fluid density. 

The basic equations are simplified using the following Stokes and lubrication and 
electrohydrodynamic approximations (See Rudraiah et al. [14]): 

1) The electrical conductivity of the liquid, σ, is negligibly small, i.e., 1σ  . 
2) The film thickness h is much smaller than the thickness H of the dense fluid above 

the film. That is h H  
3) The surface elevation η is assumed to be small compared to film thickness h. That 

is hη   
4) The Strauhal number S, a measure of the local acceleration to inertial acceleration 

in Equation (2.2), is negligibly small. 
That is 

1LS
TU

=   

where U Lν=  is the characteristic velocity, ν  the kinematic viscosity, L γ δ=  
the characteristic length and 3 2T hµγ δ=  the characteristic time. 

Under these approximations Equations (2.1) and (2.2) for fluid in the film, after 
making dimensionless using 

2 2 2, , , , , ,
ff f f

u v p Q t x yu v p Q t x y
h h h hh h hδ δ µδ µ δ µ δ µ

∗ ∗ ∗ ∗ ∗ ∗ ∗= = = = = = =  (2.6) 

become (after neglecting the asterisks for simplicity). 
Region 1: 

0 u v
x y
∂ ∂

= +
∂ ∂

                                  (2.7) 

2 4
2 2
02 40 p u uM M u

x y y
∂ ∂ ∂

= − + − −
∂ ∂ ∂

                  (2.8) 

0 p
y
∂

= −
∂

                                     (2.9) 

where 2
0M hλ µ=  is the couple-stress parameter and 

2 2 2
02 h f

f

H h
M

µ σ
µ

=  the Hart-  

mann number. 
Region 2: 
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2
1

p

pQ
xσ
∂

= −
∂

                         (2.10) 

where p h kσ =  is the porous parameter. 

3. Dispersion Relation 

To find the dispersion relation, first we have to find the velocity distribution from Equ-
ation (2.8) using the following boundary and surface conditions: 

0 at 0u y= =                                (3.1) 

( ) at 1p p B
u u Q y
y

α σ∂
= − − =

∂
                  (3.2) 

where 

at 1Bu u y= =  

at 1v y
t
η∂

= =
∂

                                (3.3) 

2

2
1 at 1.p y
B x

ηη ∂
= − − =

∂
                        (3.4) 

Here 2B hδ γ=  is the Bond number and ( ), ,x y tη η=  is the elevation of the  
interface. 

The solution of (2.8) subject to the above conditions is 

( ) ( ) ( ) ( )1 1 2 1 3 2 4 2 2
1cosh sinh cosh sinhu C y C y C y C y P

M
α α α α = + + + −  

   (3.5) 

where 
2 2 2 2

0 02 2
1 22 2

0 0

1 1 4 1 1 4
, ,

2 2
M M M MpP

x M M
α α

+ − − −∂
= = =
∂

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1 2 1 1 1

3 2 2 2 4 2 2 2

2 2 2 2
5 1 1 6 1 1 7 7 2 8 2 2

1 22 2

sinh cosh , cosh sinh

sinh cosh , cosh sinh

cosh , sinh , cosh , sinh

1 1, ,

p p p p

p p p p

p

p

a a

a a

a a a a

b b
M M

α α α σ α α α α σ α

α α α σ α α α α σ α

α α α α α α α α
α
σ

= + = +

= + = +

= = = =

= = −

 

( )
( ) ( )

( )
( ) ( )

2 2
1 2 1 1

1 32 2 2 2
1 2 1 2

2 2 2 2 2 2
3 8 1 1 4 7 1 1 8 2 1 4 5 1 2 1 8 1 2 8 2 2

2 2 2
4 6 2 8 1 2

2 2 2 2 2 2
3 6 1 1 2 7 1 1 6 2 1 2 5 1 2 1 6 1 2 6 2 2

4 2 2
4 6 2 8 1 2

, ,Pb PbC C

P a a b a a b a b a a b a a b a b
C

a a a a

P a a b a a b a b a a b a a b a b
C

a a a a

α α
α α α α

α α α α α α

α α

α α α α α α

α α

= − =
− −

− − + − +
=

− −

− − − + − +
=

− −

 

After integrating Equation (2.7) with respect to y between y = 0 and 1 and using Eq-
uation (3.5), we get 



K. B. Chavaraddi et al. 
 

2027 

( )
2 4

12 4
11v
Bx x

η η ∂ ∂
= + ∆ ∂ ∂ 

                     (3.6) 

where 

( ) ( )( ) ( ) ( )( )31 2 4
1 1 1 2 2 2

1 1 2 2

1sinh cosh 1 sinh cosh 1CC C C
M

α α α α
α α α α

∆ = + − + + − − . 

Then Equation (3.3), using Equations (3.6) and (3.4), becomes 
2 4

12 4
1

t Bx x
η η η ∂ ∂ ∂
= + ∆ ∂ ∂ ∂ 

.                     (3.7) 

To investigate the growth rate, n, of the periodic perturbation of the interface, we 
look for the solution of Equation (3.7) in the form 

( ) { }expy i x ntη η= +                       (3.8) 

where   is the wave number and ( )yη  is the amplitude of perturbation of the inter-
face. 

Substituting Equation (3.8) into (3.7), we obtain the dispersion relation in the form 
2

2 1n
B

 
= − ∆ 

 



 .                         (3.9) 

where 1∆ = −∆ . 
Also, Equation (3.9) can be expressed as 

b an n vβ= −                            (3.10) 

where 
2 2

1
3bn

B
 

= − 
 

  ,  
2

1
B

β
 

= ∆ − − 
 



 , 
21 3 1

3av
B

 − ∆ = −  ∆  

 . 

Setting n = 0 in Equation (3.9), we obtain the cut-off wavenumber, ct  in the form 

ct B=                             (3.11) 

because   and ∆  are non-zero. 

The maximum wavenumber, m  obtained from Equation (3.9)) by setting 0n∂
=

∂
 

is 

2 2
ct

m
B

= =


                          (3.12) 

because   and ∆  are different from zero. 
The corresponding maximum growth rate, nm, is 

4m
Bn = ∆                             (3.13) 

Similarly, using 2m B= , we obtain 

12bm
Bn =                              (3.14) 
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and hence 

3m
m

bm

nG
n

= = ∆ .                         (3.15) 

The growth rate given by Equation (3.9) is computed numerically for different values 
of parameters and the results are presented graphically in Figures 2-5. 
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Figure 2. Growth rate, n versus the wavenumber,   for different values of Hartmann number 
M when 0.1, 4, 0.02p p Bα σ= = =  and 0 0.3M = . 

 

 
Figure 3. Growth rate, n versus the wavenumber,   for different values of Couple-stress para-
meter 0M  when 0.1, 4, 0.02p p Bα σ= = =  and 5M = . 
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Figure 4. Growth rate, n versus the wavenumber,   for different values of Bond number B, 
when 00.1, 4, 0.3p p Mα σ= = =  and 5M = . 
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Figure 5. Growth rate, n versus the wavenumber,   for different values of porous parameter 

pσ  when 00.1, 0.3, 0.02p M Bα = = =  and 5M = . 

4. Results and Discussion 

In this study we have shown the effect of physical parameters involved in the problem 
on effect of magnetic field on surface instability of KH type in a couple- stress fluid lay-
ers bounded above by a porous layer and below by a rigid boundary. Numerical calcu-
lations were performed to determine the growth rate at different wavenumbers for var-
ious fluid properties like couple stress parameter M0, Hartmann number M, Bond 
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number B and porous parameter pσ . We have plotted the dimensionless growth rate 
of the perturbation against the dimensionless wavenumber for some of the cases only. 
In the linear stage, all perturbed values grow exponentially in agreement with the dis-
persion relation Equation (3.9). At this stage the interface between the layers acquires a 
sinusoidal shape of small amplitude. 

We have investigated the role of the magnetic field on the two-layer channel flow 
problem, demonstrated that either destabilization or stabilization can be obtained and 
presented growth rates in situations where the magnetic field is stabilizing over a broad 
range of wavenumbers for increasing in Hartmann number M in Figure 3 where 

0.1, 4, 0.02p p Bα σ= = =  and 0 0.3M = . The increasing the Hartmann ratio results in 
slightly increasing the critical wavenumber and decreasing the maximum growth rate. 
It thus has a stabilizing effect for the selected values of input parameters due to the in-
creased in Hartmann ratio (Lorentz force to viscous force). 

Also, when fix all the input parameters we find that the higher the couple-stress pa-
rameter the more stable the interface is. In Figure 2, we have plotted the growth rate 
against the wavenumber in the case where 0.1, 4, 0.02p p Bα σ= = =  and 5M =  for 
different values of the couple-stress parameter M0. Increasing the couple-stress ratio 
results in slightly increasing the critical wavenumber and decreasing the maximum 
growth rate this is because of the action of the body couples on the system. Thus, it has 
a stabilizing effect for the selected values of input parameters due to the increased in the 
couple-stress parameter. 

In addition, we have investigated the effect of the surface tension of the fluid on the 
instability of the interface. In our sample calculations, we have taken 0.1pα = , 5M = , 

0 0.3M =  and 4pσ =  and varied the Bond number B. For this input parameters, the 
critical wavenumber and maximum growth rate decreased as the ratio of the Bond 
number B decreased from 0.4 to 0.1 as observed in Figure 4. The Bond number is reci-
procal of surface tension and thus showing that an increase in surface tension decreases 
the growth rate and hence make the interface more stable. 

However, in order to understand the effect of the porous properties on the instability, 
we now fix values of other parameters 0.1pα = , 0.02B = , 0 0.3M =  and 5M =  
and vary the ratios of the porous parameters. Figure 5 displays the results of our calcu-
lations, showing that increasing the ratio of porous parameters σp from 20 to 100 (and 
thus increasing the Darcy resistance compared to the viscous force) increases the criti-
cal wavelength and decreases the maximum growth rate, thus having a stabilizing effect 
by this parameter. We conclude that an increase in pσ  also stabilizes the KHI due to 
the resistance offered by the solid particles of the porous layer to the fluid. 

5. Conclusions 

Kelvin-Helmholtz instability is one of the basic mechanisms, which influence the 
two-phase flow. When relative velocity is larger than the critical velocity, the instability 
occurs. With instability, flow regime is changed, and also interface surface is significant 
enlarged, which influence the heat and mass transfer. With linearised Navier-Stokes 
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equations we can analytically predict onset of instability and wavelength for inviscid 
flow. 

We have studied the linear stability of a two-fluid flow in a channel where the fluids 
are assumed to be Newtonian with different fluid properties (Hartmann number, 
couple-stress ratio, Surface tension and porous parameter) and subjected to magnetic 
field normal to their interface. For this purpose, we have derived and then linearized 
the equations of motion where the interaction between the hydrodynamic and couple- 
stress problems occurs through the stress balance at the fluid interface. The growth rate 
of the perturbation was then computed by using the normal mode method and its vari-
ation studied as a function of the dimensionless parameter Hartmann number M, 
couple-stress parameter M0, as well as Bond number B and porous parameter pσ . 
While two layer flows in channels of small dimensions are rather stable, the instability 
of the fluid-porous interface is highly desirable in certain cases, particularly for chemi-
cal industry, in petroleum production engineering applications where the mixing of 
reagents are crucial steps in the process. However, in systems of larger scale, the insta-
bility of the fluid-porous interface in a channel is often an undesired physical pheno-
menon. In such situations, controlling the flow requires the stabilization of the interface. 
In searching for a method capable of either stabilizing a potentially unstable interface 
or destabilizing a potentially stable one, we have investigated the role of the magnetic 
field on the two-layer channel flow problem, demonstrated that either destabilization or 
stabilization can be obtained and presented growth rates in situations where the mag-
netic field is stabilizing over a broad range of wavenumbers for increasing in Hartmann 
number M as same behavior observed by varying the couple-stress parameter. But in 
the case of variation in Bond number is to increase in surface tension decreases the 
growth rate and hence make the interface more stable. Also we conclude that the in-
crease in the porous parameter is to decrease the growth rate showing thereby the stabi-
lizing effect on the interface. 
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