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Abstract 
In this paper, the problem of chaos, stability and estimation of unknown parameters 
of the stochastic lattice gas for prey-predator model with pair-approximation is stu-
died. The result shows that this dynamical system exhibits an oscillatory behavior of 
the population densities of prey and predator. Using Liapunov stability technique, 
the estimators of the unknown probabilities are derived, and also the updating rules 
for stability around its steady states are derived. Furthermore the feedback control 
law has been as non-linear functions of the population densities. Numerical simula-
tion study is presented graphically. 
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1. Introduction 

A lattice model usually represents the motion of a network of particles, where the mo-
tion is produced by forces acting between the neighboring particles. Lattice models also 
are used to simulate the structure of polymers and can exhibit its dynamic behaviors.  

The interaction between particles of the systems, which is the subject of this study, 
is continuous-time Masrkov process on certain spaces of configurations of particles. 
These systems began as a branch of probability theory in the 1960’s. Most of the inputs 
came from the work of Spitzer in United States [1] and of Dobrushin in the Soviet Un-
ion [2]. From a mathematical point of view, interacting particles systems represent a 
natural departure from the established theory of Markov processes. The lattice can be 
in one, two, three or complex dimensions. The one-dimensional lattices consider a li-
near arrangement between the sequences of particles, and each particle connected to 
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the next one by a spring depends upon a condition. There are many classifications for 
the two-dimension lattice, such as a centered rectangular lattice, a hexagonal lattice, 
square lattice and so on (see Figure 1). 

Many of models of interacting particles system have shown a chaos behavior. The 
problems of estimating and controlling stochastic systems are far from solved, and a 
considerable amount of research is under way. Estimation of the internal states of a 
stochastic dynamical system is a topic with important applications in different fields 
such as physics, biology and medicine [3]-[5]. 

A spatial stochastic model to discuss strategies to control the epidemic was intro-
duced by Schinazi [6]. El-Gohary has proposed a stochastic model to study the problem 
of optimal controlling the epidemic [3] [4]. El-Gohary and Al-Ruziza have suggested a 
non-linear stochastic model to investigate the optimal control of a non-homogenous 
prey-predator model. They have derived the feedback control law as non-linear func-
tions of the population densities [7] [8]. El-Gohary has studied the problems of chaos 
and optimal control cancer model with complete unknown parameters [9]. Al-Mahdi 
and Khirallah have studied stability and bifurcation analysis of a model of cancer [10] 
[11]. Alwan and El-Gohary have studied the chaos, estimation and optimal control of 
habitat destruction model and genital herpes epidemic models with uncertain para-
meters [12] [13].  

A stochastic lattice gas model is proposed to describe the dynamics of two animals 
populations, one being a prey and the other a predator [14]. El-Gohary and Alwan have 
discussed the problem of chaos and control of a stochastic lattice gas model for prey- 
predator when one-site approximation is used. They have studied stability of the system 
and derived the optimal control inputs. They have also derived the estimators of the un-
known parameters and probabilities [15]. This paper is considered as an extension of the 
paper [15] where it will discuss the stability and estimation of the unknown parameters of 
the stochastic lattice gas model for prey-predator when two-site approximation is used. 

 

 
Figure 1. Linear, square and simple 3D lattices. 
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This paper has the following structure. In section 2, the stochastic probability model 
and its proposed rules will be discussed, and also the pair approximation mathematical 
model and its analytical solution will be presented. In section 3, stability analysis of the 
system will be studied and presented graphically. Estimation of the unknown parame-
ters and the updating rules are derived in section 4. In section 5, numerical solutions 
are derived and presented graphically. Finally, conclusions are provided in Section 6.  

2. Stochastic Probability Model 

In this section, we will describe the stochastic rules of the proposed stochastic lattice gas 
model for prey-predator.  

The lattice gas models describing special chemical reaction. Let us consider a lattice 
of N sites, every site can be either empty (O) or occupied by a prey (1) or occupied by a 
predator (2). At any time step a site is randomly chosen. For that site, we suppose that 

1n  and 2n  are the numbers of the nearest neighbors of that site occupied by prey or 
predator, respectively and S is the total number of nearest neighbors of this site. The 
transition matrix of the model is given in Table 1 or graphically in Figure 2. 

This Markov process contains three probability parameters 1p , 2p  and 3p , which 
are associated to the process: birth of prey process, death of prey and simultaneous 
birth of predator, and spontaneous death of the predator [14]-[17]. The parameters 

1p , 2p  and 3p  satisfy the condition: 
 

Table 1. The transition matrix of the model. 

 O 1 2 

O 1 11 p n S−  1 1p n S  0 

1 0 2 21 p n S−  2 2p n S  

2 3p  0 31 p−  
 

 
Figure 2. The transitions of the model. 
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1 2 3 1p p p+ + = .                           (1) 

Let us consider the system state as ( )1 2, , , Nµ µ µ µ=   where , 0,1 or 2i iµ =  ac-
cording whether the state i empty, occupied by prey or occupied by predator respectively. 
Let ( ),P tµ  be the probability of the state μ at time t. The time evolution of the proba-
bility of the state μ ( ),P tµ  and the mathematical system is given in details in [14]. The 
final mathematical expression of the model is a hierarchical system of equations, where 
the one-site correlations ( )1iP θ  involve the two-site correlations ( )1 2ijP θ θ  and the 
two-site correlations involve three-site correlation ( )1 2 3ijkP θ θ θ  and so on, where 1 2,θ θ  
and 3θ  take one values of 0, 1, or 2 (see Equation (6) in [14]). The mean field ap-
proximation theory is used to derive a closed set of equations. The one-site approxima-
tion of this hierarchical system of Equation (6) in [14] is accomplished by writing the 
two-site correlation ( )1 2ijP θ θ  as the product ( ) ( )1 2i jP Pθ θ  in the hierarchical system. 
The two-site approximation model which is the subject of this paper will be discussed 
in the next section. 

Pair Approximation Mathematical Model 

In this section, the two-site approximation will be presented and the final mathematical 
model will be written.  

In the hierarchical system Equation (6) in [14], the mean field theory is suggest an ap-
proximation to derive a closed set of equations as: The thee-site correlations ( )1 2 3ijkP θ θ θ  
can be expressed in terms of two-site and one-site correlations as follows 

( ) ( ) ( )1 2ij i jP P Pθ θ θ θ≈                         (2) 

( ) ( ) ( )
( )

1 2 2 3
1 2 3

2

ij jk
ijk

j

P P
P

P
θ θ θ θ

θ θ θ
θ

≈                     (3) 

where sites i and k are the nearest neighbors of site j. We also seek for spatially homo-
geneous and isotropic solutions of Equation (6) in [14]. In this case we may drop the 
indexes in ( )1iP θ  and ( )1 2ijP θ θ . We then have three one-site correlations 
( ) , 0,1 or 2iP θ θ = , and nine two-site correlations ( ) , , 0,1 or 2ijP θϕ θ ϕ = , which are 

presented in the transition matrix in Table 1. However, only five of them are indepen-
dent. We choose them to be ( )1P x=  (the prey density), ( )2P y=  (the predator 
density), ( ) ( )3 01P P u= = , ( ) ( )12 4P P v= = , and ( ) ( )02 5P P w= = . Let us con-
sider also ( )0 1P z x y= = − −  (the vacuum site density). The equations for these va-
riables and the final mathematical system according this pair approximation are given 
by: 

( ) ( ) ( )1 2
d 1 3 4 ,
d

P p P p P
t

= −                                       (4a) 

( ) ( ) ( )2 3
d 2 4 2
d

P p P p P
t

= − ,                                      (4b) 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )2

1 2 3 1

3 3 3 4 3d 13 4
d 1

qP P P P PSP p p p P p
t S z P S

 −−
= − + −  

 
,   (4c) 
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( ) ( ) ( ) ( ) ( )
( )

( ) ( )
2

1 2 2 3

3 5 4 4 4d 14 4
d 1

P P rP P PSP p p p p P
t S z P S

 −−
= + − −  

 
,   (4d) 

( ) ( ) ( )
( )

( ) ( ) ( )( )2 1 3

3 4 3 5d 15 5
d 1

P P P PSP p p p l P
t S P z

 −
= − + −  

 
,           (4e) 

where  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 1 1 2 ,

00 3 5 ,

11 1 3 4 ,

22 2 4 5

z P P P

q P z P P

r P P P P

l P P P P

= = − − 


= = − − 


= = − − 
= = − − 

                     (5) 

and S is the total number of nearest neighbors of the site. This is a nonlinear system of 
differential equations. The analytical solution for this system is given by solving the 
system of equation: 

( )d 0, 1,2, ,5
d

P i i
t

= =  .                        (6) 

By Maple program and [14], when 4S = , the system in Equation (6) has the fol-
lowing general solution 

( ) ( )( )( ) 1

1 1 3 1 1 2 1 11 1 2 1P u p p u uα α β
−

= + + + − + ,            (7a) 

( ) ( )1 1 32 1P p P u p= ,                                   (7b) 

( ) ( ) 13 1P P u= ,                                        (7c) 

( ) ( ) 1 1 24 1P P u p p= ,                                  (7d) 

( ) ( ) ( ) ( )( )1 1 25 1 1 2P u P Pβ α= − − − ,                       (7e) 

where, 

( )( ) ( )1 3 2 22 1 ,p S p S p Sα = + − −  ( )( ) ( )2 2 3 22 1 ,p S p S p Sα = − − −  

1 1 21 2 ,p pβ = +  ( )2 3 12 1 ,Sp p Sβ = −  

( )( )1 22
1 4 2 ,u B B AC A= − −  ( )( )1 11 1 ,A β β= − +  

( ) ( ) ( ) ( )2 1 1 1 2 1 21 1 2 ,B γ α β β α α β β= + + + − + +  

( )( )2 1 2 2 22C γ α α α β α= + + +  and ( ) ( )3 21 1s p p Sγ = − −  

(for more details, see [14]), and the following two trivial fixed stationary states as special 
solutions: ( ) ( )1 , , , , , 1,0,0,0,0,0D z x y u v w= =  corresponds to the vacuum-absorbing 
state, and ( ) ( )2 , , , , , 0,1,0,0,0,0D z x y u v w= =  corresponds to the prey-absorbing state.  

3. Stability Analysis 

Study of the stability and the chaos of the system will be discussed in this section, also 
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some of the equilibrium point will be presented.  
For the case of 2S = , the system has only special stationary solution which is prey- 

absorbing state ( ) ( ), , 0,1,0o x y =  [14]. This solution is unstable when 2 3p p> , and 
the general stationary solutions: ( ) ( )( )2 3 1 3p p p p− + , 23p p ,  

( ) ( )1 2 3 2 1 3p p p p p p− +    is unstable also, when 2 3p p<  as in [15]. For the case 
4S = , the system (3) has two trivial fixed stationary states, that are given by:  
( ) ( )1 , , , , , 1,0,0,0,0,0D z x y u v w= = , that correspond to the vacuum-absorbing state, 

and ( ) ( )2 , , , , , 0,1,0,0,0,0D z x y u v w= = , that correspond to the prey-absorbing state. 
The Jacobian matrix of the system (4) is given by  

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

a a a a a
a a a a a

J a a a a a
a a a a a
a a a a a

 
 
 
 =
 
 
 
 

                      (8) 

where 

11 12 13 1 14 2 15 21 22 3 230, , , 0, , 0,a a a p a p a a a p a= = = = − = = = − =  
( ) ( ) ( )
( ) ( )

( ) ( )
( )

2
2

24 2 25 31 1 2

2 3 3 5 3 41, 0, ,
1 1 2 1
P P P p P PSa p a a p

S P P P
 − −−

= = = +  − −   
( ) ( ) ( )
( ) ( )

2

32 1

2 3 3 51 ,
1 1 2
P P PSa p

S P P
 − −−

=   − − 
 

( ) ( ) ( ) ( )
( ) ( )

( )
( )

2 1
33 1

1 1 2 4 3 5 41 ,
1 1 2 1

P P P P p P pSa p
S P P P S

 − − − −−
= − −  − −   

( )
( )

2
34 3

31 ,
1

p PSa p
S P

 −−
= +  

   

( )
( ) ( )

1
35 3

31 ,
1 1 2

p PSa p
S P P

 −−
= +  − −   

( ) ( )
( ) ( )( )

( ) ( )
( )

1 2
41 2 2

3 5 3 41 ,
11 1 2

p P P p P PSa
S PP P

 −  = +
 − − 

 

( ) ( )
( ) ( )( )

( )
( ) ( )

( )
( )

1 1 2
42 432

3 5 5 41 1, ,
1 1 2 11 1 2

p P P p P p PS Sa a
S S P P PP P

   − − = = −  − − − −     
( ) ( ) ( )

( )
2

44 2 3
1 3 4 41 ,

1
P P P pSa p p

S P S
 − −−

= − −  
   

( )
( ) ( )
1

45
31 ,

1 1 2
p PSa

S P P
 −

=   − −   

( ) ( )
( )

( ) ( )
( ) ( )( )

2 1
51 2 2

3 4 3 51 ,
1 1 1 2

p P P p P PSa
S P P P

 −−  = −
 − −   

( ) ( )
( ) ( )( )

1
52 32

3 51 ,
1 1 2

p P PSa p
S P P

 −  = − +
 − −   

( )
( )

( )
( ) ( )

2 1
53

4 51
1 1 1 2

p P p PSa
S P P P

 −−
= −  − −   
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( )
( )

( )
( ) ( )

2 1
54 3 55 3

3 31 1, 2 .
1 1 1 2

p P p PS Sa p a p
S P S P P

   −− −
= − = −      − −     

The Jacobian matrix in Equation (8) of the system in Equation (4) evaluated at the 
vacuum-absorbing state 1D  is converges to 

2

21

3 2

1 31

3

3 3 3

0 00
00 0

0 00 2
0 2 00 0

20 0

pp
p p

JD pp
p p

p p p

− 
 − 
 ≈
 

− 
 − − 

                  (9) 

and its eigenvalues just are the elements of the main diameter, which are 

2
1 2 3 3 1 4 3 5 30, 0, 0, , 2 0

2
2

pp p p pλ λ λ λ λ= = − < = > = − = − < .       (10) 

Using the linear stability analysis, since 3λ  is a positive eigenvalue at least, hence 
this stationary solution is absolutely unstable.  

Similarly, we get the Jacobian matrix in Equation (8) of the system in Equation (4) 
evaluated at the prey-absorbing state 2D  converges to 2 1JD JD= . Accordingly 2JD  
has the same eigenvalues. Therefore, the stationary state 2D  is also absolutely unsta-
ble. The linear stability analysis for these two stationary states indicates sufficiently that, 
the system of stochastic lattice gas of prey-predator system according to the pair-appro- 
ximation is absolutely unstable at least in two dimensions. But the stability conditions 
are requiring more study. 

Such behavior for the system in prey, predator and vacuum densities in Figures 
3(a)-(c) respectively, represents an oscillatory behavior. For limit-cycle that appear in 
Figures 3(d)-(f) where all the neighboring trajectories tend to a limit-cycle at time 
tends to infinity, causing the so-called a stable limit-cycle, which indicates that the sys-
tem stochastic lattice gas of prey-predator system according to the pair-approximation 
has an oscillatory behavior.  

4. Estimations of the Unknown Probabilities 

In this section we will derive the dynamic estimators of the unknown probabilities 

1 2,p p  and 3p  from the conditions of the asymptotic stability of the system in Equa-
tion (4) about its stationary states assistance of some feedback variables. 

At the beginning, let us assume the modified model with unknown probabilities in 
Equation (4) to become as follows 

( ) ( ) ( ) ( ) ( )1 12
d ˆ ˆ1 3 4
d

P p t P p t P E
t

= − +                  (11a) 

( ) ( ) ( ) ( ) ( )2 23
d ˆ ˆ2 4 2
d

P p t P p t P E
t

= − +                (11b) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )2

1 2 33 1

3 3 3 4 3d 1 ˆ ˆ ˆ ˆ3 4
d 1

qP P P P PSP p t p t p t P p t E
t S z P S

 −−
= − + − +  

 
 (11c) 
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( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

2

1

4

2

2 3

3 5 4 4d 1 ˆ ˆ4
d 1

4
ˆ ˆ 4

P P rP PSP p t p t
t S z P

P
p t p t P E

S

 −−
= +  

 

− − +

       (11d) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )( )

2

3

1

5

3 4 3 5d 1 ˆ ˆ5
d 1

ˆ 5

P P P PSP p t p t
t S P z

p t l P E

 −
= −  

 
+ − +

           (11e) 

where ( )ˆ sp t  are the estimators of the unknown probabilities ( ), 1, 2,3sp s =  and 
, 1, ,5jE j =   are the control inputs that will be derived to make the trajectory of the 

system specified by the steady-states 1D , 2D  and the general solution in Equation (7) 
to any of these states. If 0, 1, ,5jE j= =  , then the system in Equation (11) has an un-
stable special solution: 

 

 
Figure 3. The densities of the prey, predator and vacuum sites and their limit cycle, respectively 
for 1 20.49, 0.49p p= =  and 3 0.02p = , at the initial densities  

| 0 0.25, | 0 0.5, | 0 0.305, | 0 0.29x y u v= = = =  and | 0 0.2.w =  
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( ) ( ) ( ) ( )ˆ, 1, ,5 and , 1,2,3s sP j P j j p t P s= = = =            (12) 

where ( ) , 1, ,5P j j =   are the steady-states of the uncontrolled system in Equation 
(4) that should be stabilized by finding the controllers 𝐸𝐸𝑗𝑗  that causes the system in Eq-
uation (11) to follow a stable trajectory. Therefore, the problem is now equivalent to 
stabilize the steady-states in Equation (12) and determine the update rules of the 
estimators ( )ˆ sp t  of the system in Equation (11) with the help of the controllers 

, 1, ,5.jE j =   
To solve the problem of this stabilization, we will use the Liapunov stability tech-

nique. Constructive upon this, let us consider the following positive definite form of 
Liapunov function 

( )( ) ( ) ( )( ) ( )
5 32 2

1 1

ˆ ˆ2 , ; s
j

s
s

sV P j p t P j P j p p
= =

= − + −∑ ∑            (13) 

then  

( )( ) ( ) ( )( ) ( ) ( ) ( )
5 3

1 1

ˆ ˆ ˆ, ; s
j

s s
s

sV P j p t P j P j P j p p p t
= =

= − + −∑ ∑  .        (14) 

By substituting ( ) , 1, ,5P j j = 

  from Equations (11) and choosing the following 
controllers inputs 

( ) ( ) ( ) ( )( )1 2 1 14 3 1 1E p P p P k P P= − − −                   (15a) 

( ) ( ) ( ) ( )( )2 3 2 22 4 2 2E p P p P k P P= − − −                  (15b) 

( ) ( )( ) ( ) ( )
( )

( ) ( ) ( ) ( )( )

2
1 2

3

1
3 3

3 3 3 41
1

3
4 3 3

p P qP p P PSE
S z P

p P
p P k P P

S

 −−  = +
 
 

− + − −

            (15c) 

( ) ( )( )
( )

( ) ( )

( ) ( ) ( ) ( )( )

2
2 1

4

2 3 4

4 4 3 51
1

4
4 4 4

p P rP p P PSE
S P z

P
p p P k P P

S

 −−  = −
 
 

+ + − −

            (15d) 

( ) ( ) ( ) ( )
( )

( )( ) ( ) ( )( )

5 1 2

3 5

3 5 3 41
1

5 5 5

P P P PSE p p
S z P

p l P k P P

 −
= −  

 
− − − −

                 (15e) 

and the following update rules of the unknown probabilities  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

2

1

1 1 1

3 1 3 3d ˆ 3 3
d

3 513 1 1

ˆ5 5 4 4

P S qP P
p t P P

t S z

P PSP P P
S z

P P P P m p t p t

 − − −
= − − 

  
−

− − +

 × − − − − − 

       (16a) 
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( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )

( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )

2

2

2 22

d ˆ 4 1 1 2 2 4 4
d

4 4 4 3 41 1
(1) 1

ˆ3 3 5 5

p t P P P P P P P
t

P rP P P PS S
S S P S P

P P P P m p t p t

 = − − − + − 

 −− −
× − + 
  
 × − − − − − 

      (16b) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )( ) ( ) ( )( )33 3

3
d ˆ 2 2 2 4 4 4 3 3
d

ˆ5 5 5

p t P P P P P P P P
t

P P l P m p t p t

 = − + − − − 

− − − − −
  (16c) 

the total time derivative of the Liapunov function in takes the form: 

( ) ( )( ) ( )
5 32 2

1 1

ˆj s s
j s

sV k P j P j m p p
= =

= − − − −∑ ∑               (17) 

where , 1, ,5jk j =   and , 1, 2,3sm s =  are non-negative control constants. In this case 
V  is a negative definite if 0jk >  and 0sm >  and a negative semi-definite if 0jk =  
and 0sm = . This implies that, under the action of the controllers in Equation (15) and 
updating rules in Equation (16) of the unknown system probabilities, the solution in 
Equation (7) of the systems in Equation (4) and Equation (17) is asymptotic stable in 
the Liapunov sense if 0jk >  and 0sm >  and only stable but not necessarily asymp-
totic stable if 0jk =  and 0sm = . Since V is radially unbounded, and widen over time, 
therefore the solution in Equation (12) is globally asymptotically stable which com-
pletes the proof.  

By substituting Equation (15) in the modified controlled system in Equation (11), in 
addition the update rules in Equation (16) we get the final system as follows 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )1 1 1 2 2ˆ ˆ1 1 1 3 4P k P P p t p t P p t p t P= − − + − − −      (18a) 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )22 2 33ˆ ˆ2 2 2 4 2P k P P p t p t P p t p t P= − − + − − −    (18b) 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )
( ) ( )( ) ( )2 3

2

3 1 1

2 3

3 3 31ˆ3 3 3

3 41ˆ ˆ ( ) 4
1

qP P PSP k P P p t p t
S z S

P PSp t p t p t p t P
S P

 −−
= − − + − −  

 
 −

− − + −  
 



  (18c) 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )
( )

( )

4 1 1

2

22

3 51ˆ4 4 4

4 4 41ˆ
1

P PSP k P P p t p t
S z

rP P PSp t p t
S P S

−
= − − + −

 −−
+ − −  

 



             (18d) 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )
( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( )( )

2

3

5 2

1 1

3

3 41ˆ5 5 5
1

3 51ˆ

ˆ 5

P PSP k P P p t p t
S P

P PSp t p t
S z

p t p t l P

 −
= − − + −   

 
 −

− −  
 

+ − −



           (18e) 
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( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )

2

1 1 1 1

3 3 31ˆ ˆ 3 3

3 513 1 1 5 5 4 4

P qP PSp t m p t p t P P
S S z

P PSP P P P P P P
S z

 −−
= − + − − 

  
−  − − + − − − 



   (18f) 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )( ) ( ) ( )( )

2 2 2 2

2

ˆ ˆ 4 1 1 2 2

4 4 414 4
(1)

3 41 3 3 5 5
1

p t m p t p t P P P P P

P rP PSP P
S S P

P PS P P P P
S P

 = − − + − − − 
 −−

+ − − 
  

−  + − − − 



      (18g) 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )

3 3 3 3ˆ ˆ 2 2 2 4

4 4 3 3 5 5 ( 5

p t m p t p t P P P P

P P P P P P l P

= − − + − +

 × − − − − − − 



    (18h) 

where , ,z q r  and l  as defined in Equation (5). This system of nonlinear differential 
equations will be solved numerically and displayed some graphical solutions as exam-
ples. 

5. Numerical Solution 

This section presents some numerical solutions of the controlled nonlinear system of 
the stochastic lattice gas of prey-predator model in Equation (18) and the estimators of 
the system unknown probabilities to show how the control for this system is possible. 
Also, numerical examples for controlled stochastic lattice gas of prey-predator model 
were carried out for various probabilities values and different initial densities. For illu-
stration purpose, we display the numerical solutions of the system graphically. Fur-
thermore, the percentage error in the estimate for real values of the parameters will be 
calculated. The percentage error p̂PE  of the estimator p̂  of the parameter p  is giv-
en by the following rule: 

ˆ

ˆ
p

p p
PE

p
−

= .                           (19) 

The following figures display two examples of numerical solutions of the non-linear 
system in Equation (18). The first solution is shown below. 

Clearly, the densities ( )2P  to ( )5P  in Figures 4(b)-(e) respectively, tend to the 
steady states. While, the density ( )1P  in Figure 4(a) converges to the steady state. 
Also, the estimator ( )1p̂ t  in Figure 4(f) tends to the real value 1p . While the esti-
mators ( )2p̂ t  and ( )3p̂ t  in Figure 4(g) and Figure 4(h) converge to the real values 

2p  and 3p  respectively. The steady state and the real values are represented by the 
dotted lines.  

The second numerical example of solution is given below.  
The densities ( ) ( )1 , 4P P  and ( )5P  in Figure 5(a), Figure 5(d) and Figure 5(e) 

respectively, tend to the steady states. While, the densities ( )2P  and ( )3P  in Figure 
5(b) and Figure 5(c) respectively, converge to the steady state. Also, the estimators  
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Figure 4. The controlled densities and the estimators of the unknown parameters of the stochas-
tic lattice gas of prey-predator model with pair approximation for some values of parameters and 
initial densities as follows:  

1k  2k  3k  4k  5k  1m  2m  3m  ( )1p t  ( )2p t  ( )3p t  
1 0.45 0.3 1 1 5 5 5 0.22 0.35 0.45 

 
1 0|P  2 0|P  3 0|P  4 0|P  5 0|P  1 0ˆ |p  2 0ˆ |p  3 0ˆ |p  

0.2 0.15 0.25 0.25 0.15 0.4 0.25 0.35 
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Figure 5. The controlled densities and the estimators of the unknown parameters of the stochas-
tic lattice gas of prey-predator model with pair approximation for some values of parameters and 
initial densities as follows: 

1k  2k  3k  4k  5k  1m  2m  3m  ( )1p t  ( )2p t  ( )3p t  
2 5 3 2 1 1 2 2 0.4 0.4 0.2 

 
1 0|P  2 0|P  3 0|P  4 0|P  5 0|P  1 0ˆ |p  2 0ˆ |p  3 0ˆ |p  

0.4 0.1 0.05 0.25 0.65 0.35 0.05 0. 6 
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Table 2. The estimated values of the unknown parameters against the real values, and the per-
centage errors for some real values. 

1p  1p̂  1PPE
 2p  2p̂  2PPE

 3p  3p̂  3PPE
 

0.4 4.00000E−01 7.19101E−11 0.4 4.00000E−01 1.64001E−11 0.2 2.00000E−01 1.72100E−11 

0.3 3.00000E−01 6.07999E−11 0.3 3.00000E−01 1.38334E−11 0.4 4.00000E−01 5.43746E−12 

0.33 3.30000E−01 6.49486E−11 0.33 3.30000E−01 1.47910E−11 0.34 3.40000E−01 7.52927E−12 

0.15 1.50000E−01 2.76466E−11 0.65 6.50000E−01 1.51383E−12 0.2 2.00000E−01 2.61000E−12 

0.46 4.60000E−01 7.41087E−11 0.22 2.20000E−01 3.52318E−11 0.32 3.20000E−01 1.26968E−11 

0.1 1.00000E−01 2.11099E−11 0.3 3.00000E−01 1.62000E−12 0.6 6.00000E−01 4.28361E−13 

0.5 5.00000E−01 7.77060E−11 0.4 4.00000E−01 2.21476E−11 0.1 1.00000E−01 4.64799E−11 

0.002 2.00000E−03 5.23409E−09 0.661 6.61000E−01 3.54767E−12 0.337 3.37000E−01 3.63507E−12 

0.1 1.00000E−01 9.38000E−12 0.8 8.00000E−01 1.93734E−13 0.1 1.00000E−01 7.25114E−13 

0.5 5.00000E−01 7.66520E−11 0.25 2.50000E−01 3.48760E−11 0.25 2.50000E−01 1.82880E−11 

 
( )1p̂ t  and ( )2p̂ t  in Figure 5(f) and Figure 5(g) tends to the real values 1p  and 2p  

respectively. While the estimator ( )3p̂ t  in Figure 5(h) converges to the real values 

3p . The steady states and the real values are represented by the dotted lines. The pre-
vious figures show the approaching of the trajectories of the system to its steady states 
and approaching of the estimated values to the real values of the system unknown pa-
rameters over time.  

In the following, numerical calculation for the percentage error in each estimate for 
different real values of the system unknown parameters. 

Table 2 represents the comparing between the real values of the unknown parame-
ters and its estimated values, in addition to the infinitesimal values of the percentage 
errors indicate to a strong convergence between the assumed real values and its es-
timated values so they are almost equally. These so good results are shown a high effi-
ciency of the proposed Liapunov technique in the estimation process. 

6. Conclusion 

In this paper, we have introduced the mathematical model of stochastic lattice gas of 
prey-predator model with pair-approximation. The stability for this model has been 
discussed and it is found that this system has a chaos behavior. The estimators of the 
unknown parameters and the updating rules are derived according the conditions of 
the asymptotic stability. Some numerical solutions to show the stable system are pre-
sented graphically. 
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