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Abstract 
We formulate efficient polynomial expansion methods and obtain the exact traveling wave solu-
tions for the generalized Camassa-Holm Equation. By the methods, we obtain three types traveling 
wave solutions for the generalized Camassa-Holm Equation: hyperbolic function traveling wave 
solutions, trigonometric function traveling wave solutions, and rational function traveling wave 
solutions. At the same time, we have shown graphical behavior of the traveling wave solutions. 
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1. Introduction 
The study of dispersive waves originated from the study of water waves. To find the exact solutions of nonlinear 
evolution equation arising in mathematical physics plays an important role in the study of nonlinear physical 
phenomena. There exists an important class of solutions of nonlinear evolution equations is called traveling wave 
solutions which attract the interest of many mathematicians and physicists. The traveling wave solutions reduce 
the two variables, namely, the space variable x and the time variable t, of a partial differential equation (PDE) to 
an ordinary differential equation (ODE) with one independent variable x ctξ = −  where { }( )0c∈ −  is the 
wave speed with which the wave travels either to the right or to the left. There are many classical methods pro-
posed to find exact traveling wave solutions of PDE. For example, the homogeneous balance method [1], the 
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tanh method [2] [3], the Jacobi elliptic function expansion [4]-[14], differential quadrature method [15], the 
truncated Painleve expansion [16], Lie classical method [17], Hirota bilinear method [18], Darboux transforma-
tion [19], the trial Equation method [20]. Recently, more and more methods to find traveling wave solutions  

are made. In [21]-[26] introduced a method called the G
G
′

-expansion method and obtained traveling solution for  

the four well established nonlinear evolution equation; Seadawy et al. [27] proposed sech-tanh method to solve 
the Olver equation and the fifth-order KdV equation and obtained traveling wave solutions. Those methods are 
very efficient, reliable, simple in solving many PDEs. 

In 1993, Camassa and Holm used Hamiltonian method to derive a new completely integrable shallow water 
wave equation 

2 3 2 ,t x xxt x x xx xxxu u u uu u u uuκ+ − + = +                            (1) 

where u is the fluid velocity in the x direction (or equivalently the height of the water’s free surface above a flat 
bottom), κ  is a constant related to the critical shallow water wave speed, and subscripts denote partial deriva-
tives. This equation retains higher order terms (the right hand of) (1) in a small amplitude expansion of incom-
pressible Euler’s equations for unidirectional motion of wave at the free surface under the influence of gravity. 
Now, Equation (1) is called Camassa-Holm (CH) equation. In [28], the authors showed the smoothness of peri-
odic traveling wave solution of the CH equation with the wave length λ , where the periodic traveling wave 
solution is a special solution we obtained. In recently years, CH Equation has been generalized to the following 
generalized Camassa-Holm (GCH) equation 

( )12 2 ,
2t x xxt x xx xxxx

u u u f u u u uuκ+ − + = +                           (2) 

where ( )f u  is a function of u. In 2001, Dulin et al. considered a generalized CH equation 

( )2
0 3 2 0,t x x xxt x xx xxx xxxu c u uu u u u uu uα γ+ + − + + + =                     (3) 

which is called CH-γ equation. Here 0,cα  and γ are constants, and 0α ≠ . The CH-γ equation becomes the 
CH equation when 2

01, 2cα κ= =  and 0γ = . In [11] [12], the authors discussed the bifurcations of traveling 
wave solutions for the generalized Camassa-Holm Equation (2) and corresponding traveling wave system with 
( ) 2 3f u u uα β= + , i.e., 

2 312 2 .
2t x xxt x xx xxxx

u u u u u u u uuκ α β + − + + = +                        (4) 

In [13], the authors discussed the bifurcations of smooth and non-smooth traveling wave solutions for the 
generalized Camassa-Holm Equation (2). In [14], the author obtained the numerical solution of fuzzy Camassa- 
Holm equation by using homtopy analysis methods. We look for the traveling wave solutions of (4) in the form 
of ( ) ( ) ( ),u x t x ctφ φ ξ= − = , where c is the wave speed and x ctξ = − . In this paper, we pay attention to 
solve the (4) and get the traveling wave solutions for the Equation (4). 

This paper is organized as follows. In Section 1, an introduction is presented. In Section 2, a description of the 
polynomial expansion method is formulated. In Section 3, the traveling wave solutions of the GCH are obtained. 
Finally, the paper ends with a conclusion in the Section 4. 

2. Analysis of the Polynomial Expansion Methods 
In this section we describe the polynomial expansion methods for finding the traveling wave solutions of nonli-
near evolution equation. Suppose a nonlinear equation which has independent space variable x and time variable 
t is given by 

( ), , , , , , 0,x t xx xt ttP u u u u u u =                               (5) 

where ( ),u u x t=  is an unknown function, P is a polynomial of u and its partial derivatives and the polynomial 
P includes the highest order derivatives and the nonlinear terms. In following, we will describe the polynomial 
expansion methods. 

Suppose that ( ) ( ) ( ),u x t x ctφ φ ξ= − = , where c is the wave speed and x ctξ = − . The Equation (5) can be 
reduced to an ODE with variable ( )φ ξ  
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( ), , , 0,P φ φ φ′ ′′ =                                   (6) 

where “'” is the derivative with respect to ξ . 

2.1. Analysis of 
′G

G
-Polynomial Expansion Methods 

Step 1. Suppose the solution of Equation (6) can be expressed by a polynomial in G
G
′

 as follows, 

( )
0

,
iN

i
i

Ga
G

φ ξ
=

′ =  
 

∑                                   (7) 

where ia  are real constants with 0ia ≠  to be determined, N is a positive integer to be determined. The func-
tion ( )G ξ  is the solutions of the auxiliary linear ODE 

( ) ( ) ( ) 0,G G Gξ λ ξ µ ξ′′ ′+ + =                               (8) 

where λ  and µ  are real constants to be determined. 
Step 2. Substituting (7) into (6). At first, balancing two highest-order, get the value of N. Then separate all  

terms with same order of G
G
′

 together, the left hand of (6) is converted into anther polynomial of G
G
′

, where  

( )G ξ  is the solution of (8). Equating each coefficient of polynomial to zero. Then we obtain algebraic 
equations of 0 1, , , Na a a , ia s′ , c, λ  and µ  are solved by using Maple. 

Step 3. Since we can get the general solutions of Equation (8), then substituting 0 1, , , ,Na a a c  and the gen-
eral solutions of (8) into (7). Thus, we obtain more traveling wave solutions of nonlinear partial differential Eq-
uation (5). 

2.2. Analysis of Sech-Tanh Polynomial Expansion Methods 
Step 1. Suppose the solution of Equation (6) can be expressed by a polynomial in sech tanhi jξ ξ  as follows, 

( ) ( )1
0

1
sech sech tanh ,

N
i

i i
i

a a bφ ξ ξ ξ−

=

= + +∑                         (9) 

where 0 1, , , Na a a  and 1 2, , , Nb b b  are constants to be determined. 
Step 2. Equating two highest-order terms in the ODE (6) and getting the value of N. 
Step 3. Let the coefficients of sech tanhi jξ ξ  where 1, 2,i =   and 0,1j =  equate to zero. We have alge-

braic equations about the unknowns 0 1, , , Na a a  and 1 2, , , Nb b b . 
Step 4. By using Maple, we can solve the algebraic equations in step 2 and we obtain the traveling wave solu-

tions of (5). 

3. The Traveling Wave Solutions of GCH 
In this section, we will employ the proposed polynomial expansion methods to solve the generalized Camassa- 
Holm Equation (4). Substituting ( ) ( ) ( ),u x t x ctφ φ ξ= − =  into (4), we have 

( ) 232 2 ,
2

c cκ φ φ αφφ φ φ φ φ φφ′ ′′′ ′ ′ ′ ′′ ′′′− + + + + = +                       (10) 

where “'” is the derivative with respect to ξ . 

3.1. Application of 
′G

G
-Polynomial Expansion Method 

In this section, we apply the G
G
′

-polynomial expansion method to solve the Equation (10). 

Balancing the terms 2φ φ′  with φφ′′′ , we obtain 2N = . Therefore, we can write the solution of Equation 
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(10) in the form 

( )
2

0 1 2 ,G Ga a a
G G

φ ξ
′ ′   = + +   

   
                             (11) 

where 2 0a ≠  and ( )G G ξ= . From Equation (8) and (11), we obtain 

( )
1 12

0
,

i i i

i
i

G G Gia
G G G

φ ξ λ µ
+ −

=

 ′ ′ ′     ′ = − + +      
       

∑                                          (12) 

( ) ( ) ( ) ( )

( ) ( )

2 12
2

0

1 2
2

1 2 1 2

2 1 1 ,

i i i

i
i

i i

G G Gia i i i
G G G

G Gi i
G G

φ ξ λ λ µ µ

λµ µ

+ +

=

− −

 ′ ′ ′     ′′ = + + + + +      
     

′ ′   + − + −    
    

∑
                        (13) 

( ) ( )( ) ( ) ( )( )( )

( )( ) ( )( )( )

( ) ( )( )

3 2 12 2 2

0

1
2 3 2 2 2 2

2 3
2 2 3

1 2 3 1 3 3 1

6 2 3 3 1

3 1 1 2 .

i i i

i
i

i i

i i

G G Gia i i i i i
G G G

G Gi i i
G G

G Gi i i
G G

φ ξ λ λ µ µ

λ λµ λµ λ µ µ µ

λµ µ

+ + +

=

−

− −

 ′ ′ ′     ′′′ = − + + + + + + + + +      
     

′ ′   + + + + − + + +   
   

′ ′   + − + − −    
    

∑

     (14) 

Substituting (11), (12), (13), and (14) into Equation (10), let the coefficients of ( )0,1, 2,3, 4,5,6,7
iG i

G
′  = 

 
  

be zero, we obtain the algebraic equation system for 0 1 2, , , , , ,a a a c α β λ  and µ  as follows: 
7

3 2
2 2: 3 48 ;G a a

G
β

′  − + 
 

 

6
2 2 3

1 2 2 1 2 2
15: 118 50 3 ;
2

G a a a a a a
G

β λ βλ
′  − + + − 

 
 

5
2 3 2 2 2

0 2 2 1 2 2 1 2

2 2 2
2 0 2 1 1 2 2 2

15: 6 3 118 94
2

96 24 10 6 24 2 ;

G a a a a a a a a
G

a a a a a a ca aµ

β µβ λ λ βλ

β α

′  − − + + − 
 

+ + + − − −

 

4
2 2

2 1 2 1 2 1 2 2

2 2
0 1 2 1 2 0 2 1 0 2

2 3 2 3 2 2
0 1 1 2 1 2 1 2

: 54 6 3 68 148

9 89 54 6 6
9 36 24 22 2 ;
2 2

G ca a a a a a a a
G

a a a a a a a a c a a

a a a a a a a a

λ βλ α µ µλ

β λ λ βλ

µβ β λ λ αλ

′  − − − + + 
 

− + + − −

+ − − + + −

 

3
2 2 2 2

2 0 2 0 2 1 0 2

2 2 2 3
2 1 2 0 2 1 2 2 1

2 2 2 2
0 1 2 0 1 0 1 1 2 1

3 2 2 2
0 2 1 2 2 2 2 1

: 56 40 38 12 6

354 3 3 92 40
2

9 12 3 8 38

2 21 2 4 2 15 ;

G a a a a a a c a a
G

a a a a a a a c a a

a a a a a a a a ca a

a a a a ca a a a

µ µ λ λ β µ

µλ αλ β µλ µ βλ

βλ λ β µ λ α

α λ κ µα λ

′  + + − − 
 

+ − − + − −

− + − + − −

− + + − − +
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2
2 2
0 2 1 2 2 0 2 0 1

2 2 3
1 2 0 2 0 1 2 1 1 1

2 3 3 2 2 3
0 1 2 0 2 1 1 2 1

2 2 2 2
0 1 0 1 0 1 1 2 2 2

1

: 3 52 2 3

27 52 3 3 2 8
3 38 8 8 14
2 2
7 8 4 2 38

7

G a a a a ca a a a a
G

a a a a a a a a a a c

a a ca a a a a a a

a a a a a a a a ca a

a c

βλ µα µλ αλ βλ

µλ µλ µβ λ κ µ

β λ λ µλ µ µβ

λ α µ αλ κλ λ µ λ

′  − − − − − 
 

+ + − + − −

− − + + + +

+ − + − − + +

− 2
1 ;a cλ +

 

1
2 3

1 2 0 2 1 1 0 2

2 2 2 2 2
2 1 0 1 1 2 2 1

2 2 3 2 2 2 2
2 2 1 0 2 0 1 1

2 3 2
0 1 0 1 0 2 0 1

: 2 16 8 2

16 2 2 4

14 8 3 3 2
3 14 8 ;
2

G a c c a a a a c a c a a
G

ca a a a a a a a

ca a a a a a a a

a a a a a a a a

λ µ µ λ µλ µα

µ µ αλ µ λ µκ µα

µλ µ µλ µβ µβ κλ

βλ λ µλ µλ

′  + + − − − 
 

− − − + − +

− + + − + −

− + + +

 

0
3 2 2 2 2

1 2 2 1 1 0 1 1

2 2 2 2 2
1 1 1 1 1 0 2 0 1 1

: 4 6 2 2

32 6 2 .
2

G a a ca a c a a a a
G

a c a a a a a a a a a c

µ µ λ µλ µκ µα µ λ

µ µλ µ µ λ µβ µ

′  − − − + + − 
 

− + + + + −

 

Solving the algebraic equation system by Maple we obtained six types of solutions: 

( )

( )
( )

2 2 2
0 2 0 1 2 1

0 0 1 1 2 2 2 2
20 2 1 2

2 2 2 3 4 2 2 3
0 2 0 1 2 0 2 1 1 2 2

2 2 2
22 0 2 1 2

2 6
: , , , , , 0,

12

3 96 16 12 8 16, ,
12

a a a a a aa a a a a a c
aa a a a

a a a a a a a a a a a
aa a a a a

κ
λ µ

κ
α β

− −
= = = = − = =

− +

− + + − +
= − =

− +

I

               (15) 

where 0 1 2, ,a a a  and κ  are arbitrary constants. 

( )

( ) ( )
( )

( )
( )

0 0
0 0 1 2

0

0 0 0 0

12
: , 0, , , 0,

2
3 2 4 2

0, , ,
3

a a c
a a a c c a

c
a c c c

a a c a a c

λ
κ

κ κ
µ α β

+
= = = = − =

−
+ − −

= = = −
+ +

II
                       (16) 

where 0 ,a c  and κ  are arbitrary constants. 

( )

( )
( )

2 2 2
2 0 2 0 2

0 0 1 2 2
0 2 2

2 2 2
2 0 2 2 0 0 2 2

2 0 2 2 2

2 2 8
: , 0, , , 0,

12 8

12 12 32 2 24 3 2 16, , ,
12 8

a a a a a
a a a a a c

a a a

a a a a a a a a
a a a a a

µ µ κ
λ

µ

µ µ µ κ
µ µ α β

µ

− + −
= = = = − =

− +

− − + + +
= = − =

− +

III
           (17) 

where 0 2, ,a a µ  and κ  are arbitrary constants. 

( )
( ) ( ) ( ) ( )

( ) ( )

0 1 2

2

2 8 1 24: , 0, , ,
4 1 4 1 4 1 4 1

2 4 1 4 116 60, , , ,
2 3

a a c c a

c c

κ µ κ
µ µ µ µ

µ µµ κλ µ µ α β
κ κ

−
= − = = = −

− + − +

− +− +
= = = = −

IV
                (18) 

where ,c µ  and κ  are arbitrary constants. 
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0 1 2 2
2 2

24 16: 0, 0, 2 , , 0, 0, , ,a a c a a
a a
µκ λ µ α β= = = = = = = − =V                 (19) 

where 2a  and κ  are arbitrary constants. 

( )

( )
( )

2
0 2

0 0 1 2 2
0 2

2
0 0 2 2

0 2 2 2

2 6
: , 0, , , 0,

12

12 24 3 2 160, , ,
12

a a
a a a a a c

a a

a a a a
a a a a

κ
λ

κ
µ α β

−
= = = = − =

+

+ +
= = − =

+

VI
                   (20) 

where 0 2,a a  and κ  are arbitrary constants. 
Next, we use the solution sets from I to VI and the solutions of (8) to obtain the solutions of (10). 
For I, substituting the solution set (15) and the corresponding solutions of (8) into (11), we obtain the hyper-

bolic function traveling wave solutions of (10) as follows: 

( ) ( ) ( )( )
( ) ( )( )
( ) ( )

( ) ( )( )

2
1 0 1

1 2

2

2 2
2 2

1 2

cosh sinh
cosh sinh

cosh sinh
,

cosh sinh

K
a a

K K

a K
K K

λ λξ λξ
φ ξ

λξ λξ

λξ λξ
λ

λξ λξ

− − − −
= +

+ − − −

 − − −
+   + − − − 

                 (21) 

where 1K  and 2K  are arbitrary constants. When 0 1 2 1 24, 2, 3, 2, 6, 5,a a a K Kκ= = = = = =  the figure of I is 
like to Figure 1. 

For II, substituting the solution set (16) and the corresponding solutions of (8) into (11), we obtain the ration-
al function traveling wave solutions of (10) as follows: 

( )
2

2
2 0 2

1 2

,Ka a
K K

φ ξ
ξ

 
= +  + 

                               (22) 

 

 

Figure 1. The figure of (10) for I applied G
G
′

-polynomial expansion method. 
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where 1K  and 2K  are arbitrary constants. When 0 1 1 23, 0, 2, 2, 6, 5a a c K Kκ= = = = = = , the figure of II is 
like to Figure 2. 

For III, substituting the solution set (17) and the corresponding solutions of (8) into (11), we obtain the trav-
eling wave solutions of (10) as follows: 

When 0µ < , we have the hyperbolic function traveling wave solutions 

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2

1 2 1 2
31 0 2

1 2 1 2

sinh cosh
,

sinh cosh

K K K K
a a

K K K K

µξ µξ
φ ξ µ

µξ µξ

 + − − − −
 = −
 − − + + − 

             (23) 

where 1K  and 2K  are arbitrary constants. When 2 1 22, 2, 2, 6, 5a K Kµ κ= − = = = = , the figure of III is like 
to Figure 3. 

When 0µ > , we have the trigonometric function traveling wave solutions 

( )
( ) ( )
( ) ( )

2

1 2
32 0 2

1 2

cos sin
,

sin cos

K K
a a

K K

µξ µξ
φ ξ µ

µξ µξ

 −
 = +
 + 

                      (24) 

where 1K  and 2K  are arbitrary constants. When 2 1 25, 4, 2, 6, 5a K Kµ κ= = = = = , the figure of III is like 
to Figure 3. 

For IV, when 0µ < , we have the hyperbolic function traveling wave solutions of (10) like the solution 
(23). 

When 0µ > , we have the trigonometric function traveling wave solutions of (10) like the solution (24). 
For V and VI, we have the rational function traveling wave solutions of (10) like (22). 
In addition, the figures of IV are similar to the figures of III, and the figures of V and VI are similar to the 

figure of II. 

3.2. Application of Sinh-Tanh Polynomial Expansion Method 
In this section, we apply the sinh-tanh polynomial expansion method to solve the Equation (10). 

Balancing the terms 2φ φ′  with φφ′′′ , we obtain 2N = . Therefore, we can write the solution of Equation 
(10) in the form 
 

 

Figure 2. The figure of (10) for II applied G
G
′

-polynomial expansion method. 
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Figure 3. The figure of (10) for III applied G
G
′

-polynomial expansion method. The first 

figure satisfies 0µ <  and the second one satisfies 0µ > . 
 

( ) ( )
2

1
0

1
sech sech tanh ,i

i i
i

a a bφ ξ ξ ξ−

=

= + +∑                           (25) 

where 0 1 2 1 2, , , ,a a a b b  are constants to be determined, and 2 2,a b  at least one is not zero. From (25), we have 

( ) ( ) ( )( )
2

1 1

1
sech tanh 1 sech 2 sech ;i i i

i i
i

ia i b iφ ξ ξ ξ ξ− +

=

′ = + − − −∑                   (26) 

( ) ( )( ( )

( ) ( ) )

2 22 2 2 1

1

1

sech 1 sech 1 sech tanh

2 1 sech tanh ;

i i i
i i

i

i
i

i a i i b

i i b

φ ξ ξ ξ ξ ξ

ξ

+ −

=

+

′′ = − − + −

− − +

∑
                (27) 
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( ) ( ) ( )(
( ) ( ) ( )
( ) ( ) )

2
3 2 2

1
3 1 2 1

3

sech tanh 2 sech tanh

1 sech 2 2 1 sech

2 1 sech .

i i
i

i

i i
i i

i
i

i a i i i

i b i i b

i i i b

φ ξ ξ ξ ξ ξ

ξ ξ

ξ

+

=

− +

+

′′′ = − − +

+ − − − +

+ − +

∑

                     (28) 

Substituting (25), (26), (27), and (28) into Equation (10), let the coefficients of sech tanhi jξ ξ
( )0,1,2,3,4,5,6,7; 0,1i j= =  be zero, we obtain the algebraic equation system with the unknowns 

0 1 2 1 2, , , , , ,a a a b b α β  and c. Like above section, we solve the algebraic equation system by Maple, we get four 
types of solutions as follows: 

( )

( )
( )

2
0 0 2 2

0 0 1 2 2 1 2
0 2

2 2
0 0 2 2 2

0 2 2

2 2 4
: , 0, , 0, 0, ,

4 3

4 8 13 9 2 16, ,
2 4 3 3

a a a a
a a a a a b b c

a a

a a a a a
a a a a

κ

κ
α β

+ +
= = = = = = −

+

+ + −
= =

+

i
               (29) 

where 0 2,a a  and κ  are arbitrary constants; 

( )
0 1 2 1 2

2 8: , 0, , 0, 0, ,
5 15

3 2 5 10, ,
2

a a a b b c c

c

κ κ

κ
α β

κ κ

= − = = = = =

+
= = −

ii
                      (30) 

where c and κ  are arbitrary constants; 

0 1 1 2 1 2 2: , , 0, 0, , , 3, 0,a a a a b b b c cκ α β= − = = = = = = =iii                   (31) 

where 1 2,a b  and κ  are arbitrary constants; 

( )
0 1 2 2 1 2

2

2 2

2: 0, 0, , 0, 0, ,
3

4 9 2 16, ,
3 3

a a a a b b c

a
a a

κ

κ
α β

= = = = = = −

−
= = −

iv
                       (32) 

where 2a  and κ  are arbitrary constants. 
Therefore, we obtain the solutions of (10) by the solution sets from case 1 to case 4. 
For i, substituting the solution set (29) into (11), we obtain the hyperbolic function traveling wave solutions of 

(10) as follows: 

( ) ( )2 2
1 0 2 0 2sech sech ,a a a a x ctφ ξ ξ= + = + −                          (33) 

where 0a  and 2a  are arbitrary constants. When 0 22, 3a a= = , the figure of i is like to Figure 4. 
For ii, substituting the solution set (30) into (11), we obtain the hyperbolic function traveling wave solutions 

of (10) as follows: 

( ) ( )2 2
2

2 8 2 8sech sech ,
5 15 5 15

x ctφ ξ κ κ ξ κ κ= − + = − + −                     (34) 

where κ  and c are arbitrary constants. When 2, 4cκ = = , the figure of ii is like to Figure 5. 
For iii, substituting the solution set (31) into (11), we obtain the hyperbolic function traveling wave solutions 

of (10) as follows: 

( )
( ) ( ) ( )

3 1 2

1 2

sech sech tanh

sech sech tanh ,

a b

a x ct b x ct x ct

φ ξ κ ξ ξ ξ

κ

= − + +

= − + − + − −
                   (35) 

where 1 2, ,a bκ  and c are arbitrary constants. When 1 22, 1, 3, 0.5a b cκ = = = = , the figure of iii is like to 
Figure 6. 

For iv, substituting the solution set (32) into (11), we obtain the hyperbolic function traveling wave solutions  
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Figure 4. The figure of (10) for i applied sinh-tanh polynomial expansion method. 

 

 
Figure 5. The figure of (10) for ii applied sinh-tanh polynomial expansion method. 

 
of (10) as follows: 

( ) 2 2
4 2 2

2sech sech ,
3

a a x tφ ξ ξ κ = = + 
 

                            (36) 

where 2a  and κ  are arbitrary constants. When 22, 1aκ = = , the figure of iv is like to Figure 7. 

4. Conclusions and Remarks 
We proposed efficient polynomial expansion methods and obtained the exact traveling wave solutions of gene-
ralized Camassa-Holm equation. By polynomial expansion method we obtain hyperbolic function traveling 
wave solutions, trigonometric function traveling wave solutions, and rational function traveling wave solutions. 
On comparing with the polynomial expansion methods and other methods to find out the traveling wave for 
PDEs, the polynomial expansion methods are more effective, powerful and convenient. Moreover, the poly-
nomial expansion methods can be used to solve any high-order degree PDEs. 
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Figure 6. The figure of (10) for iii applied sinh-tanh polynomial expansion method. 

 

 
Figure 7. The figure of (10) for iv applied sinh-tanh polynomial expansion method. 
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