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Abstract 
Microtubules are structures within the cell that form a transportation network along which motor 
proteins tow cargo to destinations. To establish and maintain a structure capable of serving the 
cell’s tasks, microtubules undergo deconstruction and reconstruction regularly. This change in 
structure is critical to tasks like wound repair and cell motility. Images of fluorescing microtubule 
networks are captured in grayscale at different wavelengths, displaying different tagged proteins. 
The analysis of these polymeric structures involves identifying the presence of the protein and the 
direction of the structure in which it resides. This study considers the problem of finding statistic-
al properties of sections of microtubules. We consider the research done on directional filters and 
utilize a basic solution to find the center of a ridge. The method processes the captured image by 
centering a circle around pre-determined pixel locations so that the highest possible average pixel 
intensity is found within the circle, thus marking the center of the microtubule. The location of 
these centers allows us to estimate angular direction and curvature of the microtubules, statisti-
cally estimate the direction of microtubules in a region of the cell, and compare properties of dif-
ferent types of microtubule networks in the same region. To verify accuracy, we study the results 
of the method on a test image. 
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1. Introduction 
Microtubules are part of the cellular cytoskeleton and one of their main functions is to serve as a transportation 
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network within the cell. They are made of two subunits: α- and β-tubulin. A microtubule is typically formed by 
thirteen protofilament chains made of these α-β heterodimers, arranged into a hollow tube approximately 25 µm 
in diameter [1]. Molecular motor proteins like kinesin can move along the surface of the microtubule, which 
allows them to tow cargo like organelles and vesicles to other parts of the cell, giving the cell the ability to 
distribute its contents according to need. Although the microtubule network is distributed throughout the cell, 
individual microtubules are dynamic and can depolymerize and repolymerize rapidly. This dynamic behavior 
allows the cell to change the distribution and organization of the entire network quickly when functions such as 
cell motility and wound repair demand. For example, when the cell is migrating, many microtubules will 
reorient or repolymerize toward the direction of cell travel, which allows for the delivery of cargos and material 
to the active leading edge. One of the most dramatic instances of microtubule networks reorganizing occurs 
during cell division, where the entire microtubule network is restructured to form the machinery of chromosome 
segregation. 

In the cell, it is typically not necessary for individual microtubules to have a precise subcellular localization. 
Rather, microtubule networks function normally if they are sufficiently dense and enough segments of micro- 
tubules have the appropriate orientation. By segments, we mean parts of a mictrotubule along the entire length 
of the microtubule. These segments could be defined in several ways. In this study, we consider segments of 
microtubules between where microtubules overlap or cross. 

A current problem in microtubule research is determining appropriate statistical measures that quantify the 
distribution and organization of microtubule networks. Appropriate statistical measures that describe the overall 
organization of the microtubule network and how the network changes under different conditions can lead to a 
better understanding of how the cell’s transportation network functions and how it responds to varying external 
conditions. Two measures that will help in understanding the microtubule network are angle direction and 
curvature. A distribution of angle direction of segments of microtubules will show the general direction of the 
microtubules. For instance, a travelling cell will have more microtubule segments oriented in the direction of 
travel. A distribution of curvature of the segments of microtubules will indicate changes in the orientation of 
segments of microtubules. 

There is a large body of work studying the detection of the direction of ridges, edges, and lines; see [2]-[13]. 
Steerable filters are filters of any orientation created from linear combinations of oriented filters called basis 
filters [2]. Steerable filters can be used to determine the approximate orientation of an edge and can also be used 
to trace objects in images. For example, Yu et al. improved the accuracy of steerable filters using Gaussian 
functions as basis filters [6]. This resulted in directions that were more precise, and noisy edges were more 
distinguishable. In another paper, Jacob and Unser designed optimality criteria for steerable filters to detect 
edges, and published their software for use in a popular image analysis tool [4]. Steerable filters can work on 
edges with varied pixel widths, can determine the orientation of junctions with many branches, and can work for 
three-dimensional data. The returned orientation of an edge or junction is often dependent on the placement of 
the filter. As described by the above authors, a steerable filter may suggest, for instance, that a straight edge in 
an image is “bent” at an angle if the filter is centered beside the edge instead of directly on the edge. Because of 
this, centering the steerable filter is crucial to a reliable approximation of curvature and an issue we discuss 
further. Other work presents junction detectors, which find ridges or lines in an image that branch. Junction 
detectors play an important role in the study of the blood vessels and identify objects in an image. For instance, 
Tsai et al. and Sofka and Stewart present work on detecting junctions in retinal blood vessels to aid in the 
detection of low-contrast blood vessels and develop an automated technique due to the large quantity of images 
needing analysis [10] [11]. While microtubules have no junctions, two-dimensional images of overlapping 
microtubules appear to have many junctions where individual microtubules cross. In images of microtubules in 
the cell, determining the orientation of an individual microtubule can be complicated by two overlapping 
microtubules in cases where there is little sign on which microtubule went in which direction after a junction. In 
this way, junctions in microtubule images are an impediment. However we stress that we are not concerned with 
whole, individual microtubules. We instead focus on segments of microtubules, specifically the segments 
created between where microtubules overlap which appear as junctions in the two-dimensional image. Using 
segments of microtubules, our primary concern is for the structural properties of the entire network of micro- 
tubule segments. Thus we try to obtain a statistical understanding of the microtubule network found through 
analyzing the segments between junctions. 

In this study, we propose a simple method to approximate the center of a microtubule by calculating average 
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pixel intensity within a circle translated across the microtubule. This method has the benefit of being simple to 
understand conceptually. In the first part of this paper a method is developed to determine the center of a digital 
representation of fluorescing microtubules. With this center, an approximation for angle direction is possible. In 
the second part of this paper, we calculate curvature by finding three neighboring centers on a microtubule. 
Using both of these measures obtained from the method presented, we can better understand the organization of 
the microtubule network. 

The goal of developing this method is to distinguish between microtubule network organizations under 
different cellular conditions, or to distinguish between different subpopulations of microtubules, such as those in 
which the tubulin subunits are post-translationally modified, by using a consistent and accurate technique for 
analyzing images of the microtubule network. The performance of the method will be studied using constructed 
“test” images with representations of microtubule-like structures in the form of circles, ellipses, and lines. The 
data collected from applying the method to these constructed microtubules can be compared to theoretical values 
to analyze accuracy. 

There are different approaches to microtubule network structure. One is to map individual microtubules and 
collect appropriate statistics on direction. A second is to determine a statistical description of microtubule angles 
along with a probability density of microtubule presence. Here, an approach is adopted that obviates the need to 
map whole microtubules, but adds information on direction changes to the statistical approach. This is done by 
considering segments of microtubules and the distributions of angle direction and curvature of these segments. 
The probability of a microtubule with a determined direction is calculated within an analyzed area of the cell. 
This approach may produce a more rigorous, statistical analysis of microtubule network structure to determine 
any differences between different networks of microtubules. 

2. Theoretical Foundations 
Many situations involve spatial structures whose exact locations are of less concern than their density. In 
addition, structure directions are often of interest. Microtubules appear on the cellular scale as one-dimensional 
structures spanning large portions of a cell. Microtubule position and direction are determined by molecular 
scale processes such as dynamic instability, which could allow the structures to change in response to different 
conditions. 

For the purposes of this study, we assume that a probabalistic description is appropriate. Thus, we seek a 
probability density function ( ), ,P x τ κ , such that ( ), , d d dP x xτ κ τ κ  describes the probability that a micro- 
tubule is found within dx  of spatial point x , having direction within solid angle dτ , and having curvature 
within dκ  of κ . The event space is the set of all cells subject to the same conditions. 

The theoretical procedure for estimating probabilities is to sample many cells from the set of equivalent cells, 
locate the point x  in each cell, and determine whether there is a microtubule within dx  of x  and, if so, 
determine if the direction of the microtubule is within dτ  of the direction τ  and within dκ  of curvature 
κ . Thus it is straightforward to consider the joint probability density function as a product of the absolute 
probability of microtubule presence ( )P x  and the conditional probability density function for direction and 
curvature, given that there is a microtubule at x . We have 

( ) ( ) ( ), , , | .P P P=x x xτ κ τ κ  

There is much image data that is essentially two dimensional. In this case, the probability identity is 

( ) ( ) ( ), , , , , | , .P x y P x y P x yθ κ θ κ=  

Additionally, it is difficult to obtain samples of “equivalent” cells when the cells are not symmetric. In this 
case, we shall consider sub-areas of images that are nearly equivalent. For example, in Figure 1, the lower lune 
appears to contain microtubules that are equivalent in density and direction. One such sub-area is shown in 
Figure 2. The image in such a rectangular area centered at a point ( ),x y  and of size ( ),x y∆ ∆  can be 
described in terms of the pixel intensity ( ),I i j  at pixel ( ),i j , located at ( ),x i x y j yδ δ= = , where the pixel 
size is ( ),x yδ δ . Then 

( ) ( ), , ,
R T

L B

i j

i i j j
P x y I i jν

= =

≈ ∑∑  
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Figure 1. Combined images of fluorescing α-tubulin. 

 

 
Figure 2. 100 × 100 pixel image from outlined area. 

 
where ( ),L Ri i  and ( ),B Tj j  delineate the rectangle of dimensions ( ),x y∆ ∆  centered at ( ),x y , and ν  is a 
normilization constant, 

( ) ( ) max

1 ,
1 1R L T Bi i j j I

ν =
− + − +

 

where maxI  is the maximum pixel value in the sample area. 
What remains to be found is the conditional probability of microtubule direction θ  and curvature κ . In this 

paper, the method proposed obtains this probability by mapping microtubules in the image rectangle  

,
2 2 2 2
x x y yx i x x y j y yδ δ∆ ∆ ∆ ∆ − < < + − < < + 

 
, while gathering statistics about direction and curvature. 

3. Finding Points on Microtubules 
Images of microtubules are two-dimensional grayscale images taken at several vertical positions through the cell 
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(optical sections). Although the cell is three-dimensional, these cells are relatively flat (<5 µm tall). However, 
we typically take 8 - 15 optical sections per cell to maximize resolution, and then combine these layers using a 
maximum projection algorithm with image manipulation software such as Image J. Microtubules are labeled 
with a fluorescently tagged antibody to the tubulin subunit. The distribution of these antibodies along micro- 
tubules is generally considered to be uniform. These fluorescent molecules create the brighter pixel intensities 
shown in Figure 1 and Figure 2. One must remember that the images used are not actually images of micro- 
tubules, but fluorescent molecules attached to the microtubules. These molecules mark the location of micro- 
tubules like streetlights mark the location of roads in a satellite image. Each fluorescing body emits light from a 
central location in a gaussian distribution. Brighter areas of an image, therefore, are not typically the result of 
more fluorescent molecules on a microtubule in that area, but more likely represent several microtubules that are 
bundled in that area. One must also remember that what may look like a representation of a microtubule is 
actually several times larger than a microtubule because of the nature of fluorescence imaging. 

3.1. Finding Points near the Center of Microtubules 
Before finding a point near the center of the microtubule we first provide a loose definition of the center of a 
microtubule. Microtubules are cylindrical and a two-dimensional representation of them would allow for the 
center of the microtubule to be equi-distant from each side of the two-dimensional representation. However, the 
images we have of microtubules are, as mentioned elsewhere, actually images of fluorescents attached to tubulin 
subunits of the microtubule in an assumed uniform distribution. Because of this, the sides of the profile of a 
microtubule are difficult to define and thus so is the center in this way. Instead we define the center of a 
microtubule as it affects the curvature of that microtubule segment. A point is on the center of a microtubule if 
the curvature of the microtubule segment at that point is equal to the real curvature of the microtubule segment. 
For example, if the microtubule segment were straight and thus had a curvature of 0, a point on the microtubule 
segment is on the center if the angle between each direction (forward and backward) of the microtubule segment 
is π and thus the curvature would be 0. 

To find points on the microtubule that are close to the center, we find local maxima in the rows and columns 
of pixel data. These local maxima are at pixel locations with pixel intensity above that of neighboring pixels (in 
the row only or column only) by a specified amount d. Points found this way are then filtered so that no two 
points are within one pixel of each other; this avoids double counting at that pixel location. Using this process 
with a reasonable choice for d finds initial points on nearly all microtubules quickly. The process avoids picking 
initial points by hand which can create bias, or picking points randomly which often will not be well-centered on 
the microtuble. Figure 3 and Figure 4 show the initial points selected for a region of microtubules and a test  
 

 
Figure 3. Initial points found for a region of micro- 
tubules using the described algorithm with 0.04d = .                                                   
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Figure 4. Initial points found for a test image using the 
described algorithm with 0.25d = .                                                   

 
image of ellipse shapes simulating microtubules (described in detail below). 

From these points, we find points “centered” on the microtubule. We accomplish this by first finding the 
angle direction of the microtubule at that location and then translating a circle along the perpendicular angle 
direction. At many steps along this line, we calculate the average pixel intensity for pixels within the circle. We 
consider the “center”of the microtuble to be at the center of the circle with the highest possible average pixel 
intensity. We describe the technique used to find angle direction and the “centering” technique in more detail 
below. 

3.2. The Centering Technique 
To implement the centering technique, we first consider that pixel values can be mapped to integer locations on 
a Cartesian plane, where location is determined by the matrix location of the pixel in the image. For example, 
pixel ( ),i j  is located on the Cartesian plane at ( ) ( ), ,x y i j= . On this plane, we can use geometric constraints 
like a circle with a radius of r pixels. In this way, we translate a circle across the width of a microtubule and 
calculate average pixel intensity at each step. The steps for this process are as follows: 

1) Pick, as an initial point, a point with local maximum pixel intensity as discussed earlier.  
2) From this initial point, calculate the angle direction of the microtubule.  
3) Create a circle-shaped closed constraint centered on this point and translated perpendicular to the found 

angle direction through n steps in both directions. At each translation step, calculate the average pixel intensity 
within the circle-shaped closed constraint.  

4) The center of the circle corresponding to the step with highest average pixel intensity is considered the 
center of the microtubule.  

5) Repeat for a new initial point.  
This process begins with an approximation to the microtuble center by first considering the local row and 

column maxima and then “centering” a circle on the microtubule, using angle direction and the circle as a guide. 
This process could be repeated multiple times by recalculating the angle direction at the new “center” and then 
re-centering the circle. For our proposes, we did not repeat the process. Figure 5 shows the results of this 
technique on several points. 

From these centered points along the microtubule we are able to estimate curvature on test images. Im- 
plementing this technqiue requires two components not yet discussed: a way to calculate angle direction at a 
location, and a way to find neighboring triples of points on the microtubule for calculating curvature. To 
calculate angle direction, the steerable filters discussed above are a well-researched option. We explored another 
way to calculate angle direction and find neighboring triples of points using a technique similar to the centering  
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Figure 5. The centering technique finds more accurate locations of the curve center. 
Red dots show the pixel with locally maximum intensity and red lines show the angle 
direction found at those locations. Blue Xs show locations of the curve center found 
using the centering technique and blue lines connect triples of points to estimate 
curvature.                                                                                                     

 
technique described above. 

3.3. Direction Angle 
To measure the direction angle of a digital representation of a curve, we must measure angle based on the 
location of pixels that represent that curve. However measuring direction angle as the slope between two pixels 
representing points on a curve will result in discrete angles. We can achieve a higher accuracy by measuring the 
line, or curve, generated from multiple pixels. For images of microtubules, where the pixelated curve has a 
higher intensity in the center of the curve and lower intensity further from the center, we can consider a two- 
dimensional area of pixels to determine the direction angle of the curve at a point. We implemented a similar 
technique to the centering technique described above, using a rotated ellipse-shaped constraint instead of a 
translated circle. The angle determination method is as follows: 

1) Pick an initial point on a microtubule.  
2) Create a closed constraint shape centered on this point, and rotate the shape through angle π using t rotation 

steps. At each rotation step, calculate the average pixel intensity within the closed constraint shape.  
3) The angle of rotation of the constraint shape corresponding to the highest average pixel intensity is con- 

sidered the angle direction of the microtubule at the initial point.  
4) Repeat for a new initial point.  
The rotated shape with the highest average pixel intensity will best fit over a given section of the fluorescing 

microtubule, distinguished by bright pixels in the image. See Figure 6. 
The problem at each initial point can be written as an integer program:  

max ij ijp b
θ
∑  

( )s.t. , 0,ijC b θ ≤  

b∈  
where the ijp  is the pixel intensity at the image point ( ),i j , 1ijb =  if the coordinate ( ),i j  satisfies the 
constraint and 0ijb =  otherwise. The constraint ( ),ijC b θ  is a closed shape around a given starting point 
( )0 0,x y  and at an angle of θ . The closed ellipse-shaped constraint is determined by a single nonlinear 
contraint: 
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Figure 6. Best direction given by centered ellipse.                                                                                                     
 

( ) ( ) ( ) ( )2 2
0 0 0 0cos sin sin cos

: 1 0,
y y x x y y x x

C
m n

θ θ θ θ   − + − − − −
+ − ≤   

   
 

where the parameters m and n are chosen by trial and error so that the closed shape fits well over the 
microtubule without being too small or too large that data is inaccurate. The term ijb  is determined auto- 
matically in this case when the pixel at location ( ),x y  satisfies the constraint. This method cannot readily 
employ regular optimization program solvers, so the total pixel intensity of every rotation step must be found 
and then the angle with the largest corresponding average pixel intensity is chosen. In the result of a tie between 
nearby rotation angles, the average between the two maxima is taken. 

If the closed constraint C is offset from the initial point, instead of centered on it, then the resulting maximum 
average pixel intensity would indicate the approximate direction of travel of the microtubule (see Figure 7). In 
the thesis by DiLorenzo, using this technique as a means of “tracing” a microtubule is explored in more detail 
[14]. Here, we use the technique as a way of finding triples of neighboring points for calculating curvature. 

4. Analysis of the Method Using Test Images 
We apply the method as described to several test images simulating microtubules following curves with known 
functions and curvatures: ellipses, circles, and lines. These test images are shown in Figure 8. The circle-shaped 
microtubules allow us to tune the method and verify accuracy. The ellipse-shaped microtubules allow us to test 
for invariance of the method under rotation and distinguish curvature distributions from those of circles. The 
line-shaped microtubules allow us to test the effect of the image resize value on the method. 

4.1. Resizing the Image for Better Accuracy 
The constraints detailed above only consider intensities at integer points satisfying the constraint. Those points 
correspond to the location of a pixel in the image. However, the light entering the aperture of the microscope to 
be recorded as the pixel intensity can be associated with a two-dimensional area in the image, centered around  



T. DiLorenzo et al. 
 

 
1464 

 
Figure 7. Best direction given by offset ellipse.                                                                                                     
 

 
Figure 8. Test images of microtubules shaped like circles, ellipses, and lines.                                                   
 
the integer point. Because of this, the pixel value of an integer point can be used to represent the pixel value in a 
unit square area around the integer point. In this situation, the intensity of the entire square area is considered to 
be the pixel value at the integer point and the intensity of a fraction of the square area is assumed to be the same 
fraction of the intensity. For example, the intensity of half the square area is considered to be half the pixel value 
at the integer point. With a method that only considers integer points instead of area, the pixels near or on the 
border of the contraint will be entirely included or entirely excluded, when only a fraction of their pixel intensity 
is inside of the constraint. This issue creates a convex hull of the integer points that differs from the real shape of 
the constraint, and so could lead to inaccuracies in the direction chosen by the method. See Figures 9-16. 

To represent the constraint with more accuracy, fractions of pixel values must be approximated near the 
border of the constraint. To accomplish this, the image can be resized so that each pixel intensity is represented 
by an n n×  block of points distributed over the inside of the square. The contraint will then include some, but  
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Figure 9. Resize of 1.                                                   

 

 
Figure 10. Resize of 2.                                                   

 

 
Figure 11. Resize of 3.                                                   
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Figure 12. Resize of 4.                                                   

 

 
Figure 13. Resize of 5.                                                   

 

 
Figure 14. Resize of 6.                                                   
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Figure 15. Resize of 7.                                                   

 

 
Figure 16. Resize of 8.                                                   

 
not all, of the resulting resized pixels in the new image. This represents a fraction of the original pixel intensity 
and allows a better approximation of the constraint. Resizing the image results in a longer computation time, so 
a trade-off between computation and accuracy is necessary. 

4.2. Analysis of the Closed Constraint Shape Size 
Several parameters in the method affect the accuracy, consistency, or useability of the method. These parameters 
include the resize value, the size and shape of the closed constraint shape, the size of the increments by which 
the constraint is rotated, and the amount by the which the constraint is offset from the center of rotation. The 
size of the closed constraint shape (determined by parameters n and m in the constraint equation) were varied to 
study their effects on the method. To test for changes in the size of the ellipse constraint shape, the offset value, 
δ, was set to one-half the length of the major axis, while the lengths of the minor and major axes were varied 
from (4, 4) to (10, 20). A resize value of 64 was used with 36,000 rotation steps between 0 and 2π. We expect 
that a constraint shape too small will not accurately distinguish between similar optimal angle directions, while a 
constraint shape too large will “jump” from one microtubule to another. Larger constraint shapes require more 
computing time so a smaller shape is preferential. The largest of the five circle paths (with radius 50 pixels) is 
used to find curvature at the thirty-six starting points. The results are shown in Figure 17 for each constraint 
shape size. The figure on the top shows the error between the mean curvature of the starting points and the real  
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Figure 17. Mean error and scaled variance of the thirty-six starting points for different 
sizes of the ellipse-shaped constraint. The smaller axis is the minor axis and the larger 
axis is the major axis of the ellipse-shaped constraint.                                                   

 
curvature of 0.02. The figure on the bottom shows the variance between the starting points scaled so the dif- 
ferences can be seen better. In each graph, the axes represent the major and minor axes lengths of the ellipse 
constraint shape, where the major axis is always greater than or equal to the minor axis. Note that error 
decreases significantly when the ellipse is widened. 

4.3. Analysis of the Resize Value 
To test the improvements to accuracy of the method due to increases in the resize value, a test was designed to 
exploit starting points at fractions of a pixel. A line-shaped microtubule was used so that the method would have 
no variation between starting points other than pixel locations. The line used was the first line from the left in 
Figure 8. The first starting point was set at an integer coordinate, then twenty-five other starting points were 
chosen by keeping the x-position constant and varying the y-position in increments of 0.02 of a pixel. By doing 
this and using the two directions found for each starting point, we collect many results for each resize value. We 
expect that the directions found from the starting points will have more accurate means and lower standard 
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deviations when the resize is high. The results of these tests are shown in Figure 18. Note that for odd resize 
values the mean error is zero, likely because the symmetry of the image helps the constraint center on the correct 
angle. An even resize value did not allow this. For other curves, this situation is unlikely to occur, and the error 
betwen successive resize values will likely be similar. When the resize value is increased, the mean error for 
resize values decreases. This shows an overall improvement when increasing the resize value. 

4.4. Invariance Under Rotation and Translation 
An important check for the method is invariance under rotation and translation of the image. To test for 
invariance under translation, the test image of circles was reproduced by shifting the generating equation by one- 
half of a pixel value, which will create a slightly different circle. To test for invariance under rotation, the test 
image of ellipses was reproduced by adding rotation to the generating equation and creating images rotated from  

0 to π in increments of π
18

. We can conclude that the method is sufficiently invariant under translation and  

 

 

 
Figure 18. Mean error and variance of the twenty-six starting points 
along a line-shaped microtubule. The mean error generally trends 
downward with increasing resize value.                                                   
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rotation of the image if the resulting data of these new images is similar to the corresponding data of the original 
two test images. Points are found and curvature is measured as described in the process above. A Kolmogorov- 
Smirnov test was used to check differences between two distributions. Examples of the resulting distributions 
can be seen in Figure 19. 

With five circles, five translated circles, and five ellipses rotated eighteen ways, there are 4950 non-trivial 
comparisons of two distributions. Of these, 287 (5.80%) of the comparisons resulted in a false negative or false 
positive, given 0.05α = . We notice that most of these errors occur from a lack of distinction between the two 
smallest ellipses. No errors occur due to changes in the rotation of the image, so we conclude that the method is 
sufficiently invariant under rotation. 

Four of the five translated circles are indistinguishable from their counterparts, so we consider the method to 
be sufficiently invariant under translation. 

Given that the curvature of a circle is constant and the curvature of an ellipse varies, we may consider only the 
means and variances of the curvature distributions as a way of separating different shapes. Figure 20 shows that 
for circles, translated circles, and ellipses of different rotations, the mean and variance of curvature are similar 
for similar shapes. 

4.5. Independence of Curvature and Angle Direction Probabilities 
Thus far we demonstrated that the proposed method for detecting angle direction and curvature at locations of 
digital curves works with reasonable accuracy and variability of the data. We also showed that the method 
produces similar results despite differing orientations of the same curve. For these results, angle direction and  

 

 
Figure 19. Distributions of curvature for circles of radius 10, 30, and 50 pixels, and an ellipse.                                                   
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Figure 20. Mean vs. variance of curvature for all shapes. dots represent the ten circles tested. other symbols represent the 
differently sized ellipses.                                                                                                     
 
curvature are always considered separately. However, angle direction and curvature at a location may not be 
independent. For instance, in the ellipses shown in Figure 8, points on the curve with low curvature should  

also have angle direction closer to 0 than to π
2

, and opposite for points with high curvature. For the circles in  

the same figure, we expect curvature to be independent of angle direction. Note that angle direction in these 
distributions was adjusted by subtracting the mean of the original data. By adjusting in this way, the dis- 
tributions for rotated ellipses are similar, and so we see that the method gives independence of curvature and 
angle direction as we expect. 

Indepence of curvature and angle direction is important, as then the probability density function, 
( ), | ,P x yθ κ , can be computed as the product of the independent probability density functions: ( )| ,P x yθ  

and ( )| ,P x yκ . The bivariate histograms in Figure 21 show these expectations are true for our method and 
suggest that the method accurately maintains indepence of curvature and angle direction. 

5. Analysis of Data from a Section of Microtubules 
With an understanding of the performance of the method, we can apply the method to the section of 
microtubules shown in Figure 2. Initial points are found as described, resulting in the points shown in Figure 3. 
These points are centered and matched with neighboring points to create triples. In rare instances, the triples will 
form an angle too sharp to consider possible for real microtubules. Because of this, triples that form an  

angle over π
3

 are removed from the results. The resulting distributions of curvature and angle direction are  

shown in Figure 22. 
The distribution of curvature is what we use as the conditional probability density for curvature, given 

microtubule presence. Applying the probability of microtubule presence as described to this distribution creates 
the probability of microtubule curvature at a location. The probability density of microtubule presence is shown 
in Figure 23 and the resulting probability density of microtubule curvature is show in Figure 24. These 
distributions are independent are thus their product gives the probability of a microtubule having a given 
curvature and angle direction at a location. Distributions from sections of microtubules as shown here may be 
compared using the Kolmogorov-Smirnov test, by simply comparing means and variances, or other tests. 
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Figure 21. Distributions of curvature and angle direction for a circle of radius 50 pixels, and an ellipse.                                                   

 

 
Figure 22. Histograms of curvature and angle distributions found for the section of microtubules.                                                   

6. Conclusion 
This method maps the high pixel intensity values of an image and reliably records microtubule curvature except 
at crossings. The resulting data may be used to show a distinction between microtubule subsystems, just as it  
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Figure 23. Histogram of microtubule presence.                                                                           

 

 

 
Figure 24. Histograms of scaled curvature and angle distributions given microtubule presence.                                      
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shows in this study a distinction between several simple paths. This method can be used to determine the 
orientation of segments of the microtubule network and then to analyze changes in the microtubule network 
during events such as cell motility or wound repair. This method can also map, find angle direction, and find 
curvature of other networks such as blood vessels in the eye, tree limbs, hiking trails, roads, and river deltas. 
Parameters will need to be adjusted to suit the image and expected properties of the network to ensure accurate 
results. 

Throughout the above research, one issue is mentioned repeatedly that would produce inaccurate results for 
our purposes if not resolved. This is the issue of finding the center of ridges, or microtubules in our case. In [4] 
[6] [7] [9], implementing the solution at the incorrect center of the ridge or junction produces skewed results. 
We employed a simple centering technique that reduces much of the variation in curvature for our test images. 

The parameters of this method were chosen during testing to ensure more accurate results, but more analysis 
of the parameters is needed to find a best combination. Most notably, the resize value, fineness of the rotation 
step, the parameters determining the width and length of the constraint ellipse and the offset value play a crucial 
role in gathering useful data. The width and length of the constraint ellipse were varied to study the data 
gathered on the circles of the test image, but the amount by which the ellipse was offset from the current point 
was not varied. Empirically, the major axis of the ellipse played a major role in generating poor results when too 
large, while the minor axis of the ellipse helped generate better results when larger. 

With this method as a starting point, we hope to establish a process for calculating the curvature of a digital 
curve at a specified loction along the curve. Several issues must be resolved to create a more useful and reliable 
method. One of these is computation time associated with a high resize and a fine mesh for the rotation steps. 
Another issue is determining the change in arc length that the closed constraint shape uses to find the corres- 
ponding change in angle. Lastly, we must study the differences between the true curve and the digital represen- 
tation of the curve, in relation to choosing initial points for the method. This method can be used for three- 
dimensional situations, such as structures of cells, after changes to the structure of the closed constraint shape 
and the search area are made. 
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