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Abstract 
For dynamic stiffness enhancement, this paper presents a new method for synthesizing repetitive 
controllers capable of rejecting periodic vibration disturbance. Dynamic stiffness of the control 
system is analyzed. Direct and quadrature dynamic stiffness are defined for the repetitive con-
trollers’ design. A trade-off method between the determinations of the controller’s parameters is 
necessary such that both the rejecting performance and stability can be achieved simultaneously. 
An illustrated example of a twin linear drive system is given to verify the performance of the pro-
posed control design. The control performance of the present method is evaluated in the experi-
mental disturbance rejecting control system, where the real-time control algorithms are imple-
mented using a floating-point digital signal processor. Both computer simulation and experimen-
tal results are presented to illustrate the effectiveness of the proposed repetitive controller de-
sign. 
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1. Introduction 
Repetitive control [1] is one of the specific control schemes in which its objective is to reduce the steady state 
errors with the periodic inputs. Figure 1 shows a repetitive control system where r is reference input, d is dis-
turbance, y is system output, u is control output, e is error, and dT  is period of the reference periodic signal. 
Clearly, the repetitive control system can be achieved for a higher bandwidth with ( )qK s  and ( )bK s , in 
which the magnitude of the sensitivity function in Figure 1 can be reduced at the harmonics of the input signal 
within the certain frequency range, i.e., 0dkω ω≤ , 1, 2,3,k∀ =  , where 2πd dTω =  is the fundamental fre- 
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Figure 1. Repetitive control system.                           

 
quency of the input signal r or d, and 0ω  is a designed bandwidth. This should be able to improve the tracking/ 
rejecting performance for periodic input signals but, as expected, easy cause a degradation at intermediate fre-
quencies. The convenience and simplicity of tuning parameters in the repetitive control scheme make it appear-
ing in many industrial drives. Nevertheless, the classical repetitive control scheme may not easily yield satisfac-
tory stability and performance simultaneously when the system has high order dynamic disturbances. The prop-
erty of the disturbances rejection is often called dynamic stiffness which is substituted for disturbance response. 
For a disturbances rejection control system, dynamic stiffness is a measure of how many input force is required 
to cause a unit output deviation. High dynamic stiffness is essential in the anti-vibration control systems for re-
quired disturbance rejection ability. In general, the ability of lower frequency disturbance rejection can be re-
ferred to static stiffness. Therefore, to achieve better control performance of the repetitive control, the dynamic 
stiffness should be considered. Let ( )sΓ  denote the transfer function from the disturbance force to the veloci-
ty/position output of a control system. The dynamic stiffness can be characterized by ( )1 jω−Γ  with a fre-
quency ω . For performance measurement of the dynamic stiffness denoted as, ( )1 jω−

∞
Γ , where 

∞
•  is 

H-infinite norm. This is the inverse of the maximum magnitude of ( )jωΓ , i.e., the worst case in the frequency 
response. Thus maximizing the dynamic stiffness measurement implies to minimize ( )jω

∞
Γ  in controller 

design. 
Many design approaches to improve the dynamic stiffness have been proposed, and the related literatures 

have been found in the following. In [2], the high static low dynamic stiffness concept is a design strategy for an 
anti-vibration mount that seeks to increase isolation by lowering the natural frequency of the mount, whilst 
maintaining the same static load bearing capacity. In [3], the flutter characteristics of an actuator-fin system are 
investigated with structural nonlinearity and dynamic stiffness of the electric motor. The component mode subs-
titution method is used to establish the nonlinear governing equations in time domain and frequency domain 
based on the fundamental dynamic equations of the electric motor and decelerator. The concept of torque-stiff- 
ness-controlled dynamic walking is proposed by [4]. The disturbance rejection of torque-stiffness-controlled bi-
pedal walking with Central Pattern Generators is analyzed. [5] presents a dynamic analysis of a stiffened cylin-
drical shell using the dynamic stiffness method This approach is based on the determination of the dynamic 
stiffness matrix of an unmeshed structure. A finite element model is used in order to validate the numerical re-
sults obtained from the method. The high static low dynamic stiffness concept is proposed by [6], and is used to 
increase isolation by lowering the natural frequency of the mount, whilst maintaining the same static load bear-
ing capacity. [7] presents a shape-changeable display with dynamic stiffness control. The prototype uses vacuum 
pressure control on an enclosed volume of particles. Users can mold 3D shapes and apply textures to them while 
experiencing tactile feedback through dynamically changing stiffness. In practice, high dynamic stiffness often 
results in large control effort, hence a trade-off should be considered carefully. 

For dynamic stiffness enhancement, this paper presents a new method for synthesizing repetitive controllers 
applied to anti-vibration system for rejecting periodic disturbance. A trade-off to determine the controller’s pa-
rameters is often necessary such that both the control performance and stability can be achieved simultaneously. 
Moreover, an illustrated example of a single-degree-of-freedom anti-vibration system driven by a two linear 
motor is given to verify the performance of the proposed control design. Dynamic stiffness of the control system 
is analyzed. Direct and quadrature dynamic stiffness are defined for the controllers’ design. The control perfor-
mance of the present method is evaluated in the experimental disturbance rejecting control system, where the 
real-time control algorithms are implemented using a floating-point digital signal processor. Both computer si-
mulation and experimental results are presented to illustrate the effectiveness of the proposed repetitive control-
ler design. 
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2. Dynamics Stiffness of Control System 
Figure 2 shows a single degree-of-freedom (SODF) mass-damping-spring system, where m is equivalent mass, 
k is spring coefficient, and c is damping coefficient. x denotes the displacement of the object m. f is disturbance 
force applied to the inertia loading m. The dynamic equation of Figure 2 is given as ( )mx cx kx f t+ + =  . Em-
ploying the Laplace transform yields 2F X ms cs k= + + , where X and F are Laplace transform forms of x and 
f respectively. ( ) 2DS j k m jcω ω ω= − +  is defined as the dynamic stiffness of the system in Figure 2, where 
the three terms of ( )DS jω  are spring stiffness k, mass-related stiffness 2mω− , and damping-related stiffness 
jcω  for frequency ω . Note that the real part of the dynamic stiffness is defined as the direct dynamic stiffness 

and the imaginary part is the quadrature dynamic stiffness. Therefore, we have ( ) 2DDS k mω ω= −  being the 
direct dynamic stiffness and ( )QDS cω ω=  being the quadrature dynamic stiffness. The magnitude of the dy- 

namic stiffness can be obtained, i.e., ( )2 2 2 2 42DS k c km mω ω= + − + . A simulated example of 5m = , c = 2,  

and 8k =  in Figure 2 is given. Figure 3 shows the magnitudes of the direct dynamic stiffness ( )DDS ω  
(dashed-dotted line), the quadrature dynamic stiffness ( )QDS ω  (dashed-line), and the dynamic stiffness 

( )DS ω  (solid-line), where ( )DDS ω  and ( )QDS ω  are decreased and increased with increasing ω  re-
spectively, and a minimum value of ( )DS ω  can be found. 

For a stable control system, DDS and QDS are not zero at the same frequency, and the difference in frequency 
between the zeros of DDS and QDS is referred to as the margin of stability. If both of the direct dynamic stiff-
ness and the quadrature dynamic stiffness are zero at the same frequency, then 2 0k m jcω ω− + =  is required, 
and there is nothing to restrain the vibration amplitude of the system. To further analysis DDS and QDS of a 
control system, a velocity control system is adopted. Assume that velocity control loop of the motor is given 
with PDF (pseudo-derivative feedback) controller as shown in Figure 4, where pK  and iK  are PDF control 
parameters. The motor velocity and angular position output are denoted as ω  and θ , J is the inertial of the 
motor, B is the equivalent damping coefficient, dτ  is the disturbance torque, mτ  is the motor torque, tK  is 
composed of the torque loop control gain and the motor torque constant, τ ∗  is torque input of the servomotor, 
and ω∗  is velocity command. The dynamic stiffness from the disturbance input dτ  to angular position output 
 

m

k
c

x

( )f t

 
Figure 2. SDOF mass-damping-spring system.                            

 

 
Figure 3. Magnitudes of ( )DDS ω  (dashed-dotted line), ( )QDS ω  

(dashed-line), and ( )DS ω  (solid-line).                               
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Figure 4. Velocity control loop of the motor with PDF controller.                   

 
θ  is ( ) ( )2

t i t pDS j K K J j K K Bω ω ω= − + + . Then, ( ) 2
t iDDS K K Jω ω= −  and ( ) ( )t pQDS K K Bω ω= +  

can be found. An example of 20.00054 kg mJ = ⋅ , 0.000561 N m rad sB = ⋅ , 0.33 N m AtK = ⋅ , 0.48pK = , 
and 213.2iK =  is given by Figure 4. Figure 5 shows the magnitudes of ( )DDS ω , ( )QDS ω , and ( )DS ω  
respectively, where ( )DDS ω  and ( )QDS ω  are decreased and increased with increasing ω  respectively, 
and minimum value of ( )DS ω  can be found. 

3. Dynamics Stiffness of Repetitive Control System 
Figure 6 shows a repetitive control system with the period dT  of the periodic disturbance where the velocity 
loop control is the same as Figure 5. Therefore, the controlled plant of Figure 6 is  

( ) ( )3 2
i t

p
p t i t

K K
G s

Js B K K s K K s
=

+ + +
. The characteristic equation of the closed-loop system in Figure 6 is  

found by ( )1 e 0dsT
qHK s −− =  where ( ) ( )

( )
0

0

1
1

bK G s
H s

G s
= −

+
. In the repetitive control system of Figure 6, as-

sume that the unity feedback system ( )
( )

0

01
G s

G s+
 is internally stable. 

By the small gain theory, the closed-loop system in Figure 7 is stable if ( ) ( ) 1qK j H jω ω <  for all ω ,  

which is the stability condition of the repetitive control system. Clearly, if ( )qK s  and ( )bK s  are chosen to  
fit the requirement of ( ) 1qK H jω

∞
<  for all ω , then the closed-loop system in Figure 7 is stable. Here, in  

practice, let qK  being low-pass filter with bandwidth 0ω , i.e., 1qK
∞
≤ , therefore, ( )H s  should be de- 

signed for ( )01 1bK T jω− < , where 0 0 01T G G= + . Here, let 1bK ≈ , 0ω ω∀ ≤ , then we have 
( ) ( ) ( ) ( )1

0 0 0arg arg cos 2 argbT K T j Tω−  − < < −                           (1) 

Therefore, for the repetitive control design rule, let ( )qK s  and ( )bK s  being given as respectively, 

( )
2
0

2 2
0 02qK s

s s
ω
ω ω

=
+ +

 and ( ) e bT s
bK s =                           (2) 

where 0ω  is the designed bandwidth. 
The dynamic stiffness from the disturbance input dτ  to angular position output θ  is 

( ) ( ) ( ) ( )1 12 t i t i
t i t p

K K K Q K K K P
DS j J K K j B K K

ω ω
ω ω ω

ω ω
   

= − − + − +   
   

            (3) 

where ( ) ( ) ( )RC j P jQω ω ω= + . For an illustrated example of 20.00054 kg mJ = ⋅ ,  
0.000561 N m rad sB = ⋅ , 0.33 N m AtK = ⋅ , Kp = 0.48, and 213.2iK = , the parameters of 0 120 rad sω = , 
0.00325b = , and 1 50K =  can be determined. The control response and tracking error of the repetitive control 

system with ( )sin 4πtθ ∗ =  and 0dτ =  can be obtained by Figure 8. Tracking error responses of the repetitive 
control system with 1dτ =  (solid-line) and 0dτ =  (dashed-line) are obtained by Figure 9, where the error 
with 1dτ =  is close to that of 0dτ = . Figure 10 shows the magnitudes of the direct dynamic stiffness 

( )DDS ω , the quadrature dynamic stiffness ( )QDS ω , and the dynamic stiffness ( )DS ω  (solid-line), where 
( )DDS ω  and ( )QDS ω  will be decreased and increased at the harmonic mode of nkω  respectively, and 

minimum value of ( )DS ω  can be found at the harmonic mode of nkω . Figure 11 is the illustrated example  
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Figure 5. Magnitudes of ( )DDS ω  (dashed-dotted line), ( )QDS ω  (dashed-line), and ( )DS ω  (solid-line).                   
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Figure 6. Repetitive control system with the period dT .                                                              
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Figure 7. A signal regeneration of time delayed system.                                                             
 

 
Figure 8. Control response of the repetitive control system: Command (solid-line), output (dashed-line), and tracking error 
(dashed-dotted line).                                                                                          
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Figure 9. Error responses of the repetitive control system with 1dτ =  (solid-line) 
and 0dτ =  (dashed-line).                                                    

 

 
Figure 10. Magnitudes of ( )DDS ω  (dashed-dotted line), ( )QDS ω  (dashed-line), 

and ( )DS ω  (solid-line).                                                        

 

 
Figure 11. Experimental setup.                                                        
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trol performance of the proposed repetitive control scheme. The objective of the control design is to reduce vi-
brations of the controlled target. In fact, a control system modeling of the experimental setup can be detailed as 
shown in Figure 12, where the parameters are listed the following. 

bk : spring coefficient of the disturbance generator 
bm : mass of the disturbance generator 

bc : damping coefficient of the disturbance generator 
bx : displacement of the disturbance generator 
bf : force generated by the disturbance generator 
lmm : mass of the target linear motor 

lmc : damping coefficient of the target linear motor 
af : force generated by the target linear motor 
lmx : displacement of the target linear motor 
0k : spring coefficient of the mechanical coupling 
0c : damping coefficient of the mechanical coupling 
lm : mass of the mechanical coupling 

lk : spring coefficient of the mechanical coupling 
lc : damping coefficient of the mechanical coupling 
lx : displacement of the mechanical coupling 

Then, we have the control block diagram of the experimental system as shown in Figure 13. To design an an-
ti-vibration controller, the controlled system in Figure 13 can be simplified to a second-order dynamic systemas 
depicted in Figure 14. k and c denote the equivalent stiffness and damping effects of the passive anti-vibration 
elements, respectively. lm  and bm  are the equivalent loading of the mechanical elements and the equivalent 
mass of the disturbance generating device, respectively. Based on Figure 14, the dynamic equation of the pro-
posed anti-vibration system is given as (2), and its Laplace transform can be given (3). Note that aF , bF , aX , 
and bX  are the Laplace transform form of af , bf , ax , and bx  respectively. 

( ) ( )
( ) ( )

b b b l b l b

l l l b l b a

m x c x x k x x f

m x c x x k x x f

 + − + − =


+ − + − =

  

  

                              (4) 

For the requirement of 0lX =  with bF , the control force of the linear motor should be given as  

2a b
b

cs kF F
m s cs k

+
= −

+ +
. In practice, the information of bF  is difficult to obtain. Therefore, in this paper, an  

appropriate control scheme is adapted to reduce the effect of the disturbance bF . Under 0bF = , the dynamics 

of the system is given as 
( )

( ) ( )

2

4 3 2

bl

a b l b l b l

m s cs kX
F m m s m m cs m m ks

+ +
=

+ + + +
. Assuming b lm m  in this case, we 

 

bcbk

bxbm
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lk lc
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bf

 
Figure 12. System modeling of experiment setup of Figure 11.     
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Figure 13. Control block diagram of controlled system.                               
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Figure 14. Block diagram of proposed anti-vibration system.                             
 

have 2

1l

a l

X
F m s cs k

=
+ +

. 

In this paper, an anti-vibration control system can be described with a feedback controller ( )H s  as shown in 
Figure 15. As shown in Figure 16, ( )H s  performs a repetitive controller. Note that df  is a periodic distur-
bance forced by a linear servomotor. In the paper, a control strategy of the disturbance rejection control (see 
Figure 16) is proposed for the illustrated example. The position loop and velocity loop controllers (proportional 
+ pseudo derivative feedback feed-forward, P + PDF) are pre-designed to stabilize the control system for the  

required performance. In this case, ( )0
hG s

as b
=

+
 can be obtained. Let the bandwidths of the velocity and po- 

sition loops be set to 40 Hz and 15 Hz respectively, which is just for general requirement of the motion control 
performance of the linear motor. For the velocity control loop, the control parameters of 1pK , iK , and 2pK  
can be designed. Considering the control system of Figure 16 without repetitive control, we have the transfer  
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Figure 15. Block diagram of the active anti-vibration control system with feedback controller ( )H s .                           
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Figure 16. Block diagram of the anti-vibration control system with repetitive controller and PDF loop controller.               
 

function of the velocity control loop, i.e., 
2

1
2 22

nv

l nv nv

x
x s s

ω
ξω ω∗ = + +





 where 1p i
nv

hK K
a

ω =  and  

12 p
nv

b hK
a

ξω
+

= . In this case, 0.001a = , 0.00055b = , and 0.87h =  are obtained. The bandwidth of the  

velocity control loop 40 Hznvω =  and the damping ratio 0.707ξ =  are pre-determined. Therefore, the con-
trol parameters of 1 0.4561pK =  and 117.96iK =  are calculated. For the position control loop of Figure 16 
without the repetitive control, the bandwidths of the position loop is given by 15 Hznpω = , therefore, the posi-
tion-loop control gain 2 70pK =  can be obtained. The frequency responses of position and velocity control 
loop in Figure 16 are shown in Figure 17. 

From Figure 16, the controlled plant ( ) 3 2

12424 2930700
355.4562 41869p

sG s
s s s

+
=

+ +
 can be obtained. Based on the de-

sign rule of (1), the parameters of the repetitive controller can be calculated as ( ) 2

1579294.59
143.26 125.67qK s

s s
=

+ +
,  

and ( ) 0.02e s
bK s = . To verify the control scheme, a multiple period’s disturbance signal of 1 1 sdT = , 2 2 sdT = ,  

Td3 = 3 s with magnitude of 1 is given as shown Figure 18(a). The result can be found that the error is gradually 
decaying as shown in Figure 18(b). For a time-varying periodic signal of 1 1 sdT = , 2 2 sdT = , 3 4 sdT = , and
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4 5 sdT = , the harmonics of 1 1 sdT =  and 2 2 sdT =  are within 0 ~ 5 st = , that of 3 4 sdT =  is at 3 ~ 6 st = , 
and that of 4 5 sdT =  is for 6 st ≥  (see Figure 19(a)). The result can be found that the tracking error is grad-
ually decaying as shown in Figure 19(b). The larger errors can be found at 3 s, 5 s, and 6 s, which is generated 
by the non-continuous of the variable instantaneous frequencies period’s signal. 

4. Conclusion 
This paper presented a new method for synthesizing repetitive controllers capable of rejecting periodic vibration 
disturbance. Dynamic stiffness of the control system is analyzed. Direct and quadrature dynamic stiffness are 

 

 
Figure 17. Frequency responses of position and velocity control loop.                             

 

 
Figure 18. Experimental result: (a) the disturbance input and (b) error response.                       
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Figure 19. Experimental result: (a) the disturbance input and (b) error response.                        
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defined for the repetitive controllers’ design. An illustrated example of a twin linear drive system is given to ve-
rify the performance of the proposed control design. The control performance of the present method is evaluated 
in the experimental disturbance rejecting control system, where the experimental results are given to illustrate 
that the proposed repetitive control can effectively eliminate steady-state rejecting errors within a few cycles. 
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