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Abstract 
In the present paper, a three-component, stationary, multistate flow network system is studied. 
Detailed costs and incomes are specified. The aim is to minimize the expected total net loss with 
respect to the expected times the components spend in each state. This represents a novelty in 
that we connect the expected component times spent in each state to the minimal total net loss of 
the system, without first finding the component importance. This is of interest in the design phase 
where one may tune the components to minimize the expected total net loss. Due to the complex 
nature of the problem, we first study a simplified version. There the expected times spent in each 
state are assumed equal for each component. Then a modified version of the full model is pre-
sented. The optimization in this model is completed in two steps. First the optimization is carried 
out for a set of pre-chosen fixed expected life cycle lengths. Then the overall minimum is identified 
by varying these expectations. Both the simplified and the modified optimization problems are 
nonlinear. The setup used in this article is such that it can easily be modified to represent other 
flow network systems and cost functions. The challenge lies in the optimization of real life sys-
tems. 
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1. Introduction 
A series of challenges concerning reliability engineering is presented in [1]. Some of these challenges are 
connected to the representation and modeling of complex systems, such as multistate systems, and their 
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operational tasks, for instance maintenance optimization. 
Over the past decades various measures of component importance have been studied. The use of such 

measures permits the reliability analyst to prioritize the system components in order to allocate resources 
efficiently. In [2] a new theory for measures of importance of system components is presented. Generalizations 
of the Birnbaum, Barlow-Proschan and Natvig measures (see [3]-[5] respectively) from the binary to the 
multistate case, both for unrepairable and repairable systems are covered. A numerical study of the above 
mentioned multistate measures of component importance is also covered in [2]. Loss of utility due to the system 
leaving the different sets of better states are introduced in that study. However, no detailed costs or incomes are 
specified. Recently, work has been done to also include costs in the determination of component importance for 
binary systems. In [6] and [7] the Birnbaum measure is extended to also include both failure induced and 
maintenance costs, while [8] and [9] introduce other cost-effective importance measures. 

In maintenance optimization studies one is often interested in choosing a maintenance plan which minimizes 
life cycle costs, maximizes net present value or maximizes system reliability for a given system. See for instance 
[10]-[14] for some recent work on these subjects. 

In this article we will look at one particular type of maintenance action, the complete repair. As the 
components reach the complete failure state, they are repaired to what we will denote the perfect functioning 
state. The aim is to include both costs and incomes in the study of a repairable multistate flow network system. 
To achieve this, we will define incomes and cost functions for the purpose of minimizing the expected total net 
loss over a time period with respect to the expected component times in the different states. This represents a 
novelty in that we connect the expected component times spent in each state to the minimal total net loss of the 
system, without first finding the component importances. 

It would of course have been nice to optimize with respect to probability distributions instead of expectations, 
but this is not trivial even for a simple three-component system. However, the optimization problem considered 
in this article is particularly interesting in a design or re-design phase, where one may tune the components in 
such a way that the expected total net loss is minimized. 

With the optimization problem considered in this article we are facing complex dependencies. We therefore 
study both a simplified version and a modified version of the optimization problem. In the simplified version we 
see that the optimal expected time spent in each state increases with increasing operational time for all three cost 
function types considered. However, the extent of the increase differs with the different basic cost function types. 
Due to basic investment costs this is not a trivial result. In the modified version of the optimization problem we 
only find approximate solutions. We observe that the different types of cost functions influence the end results 
significantly. For instance one of the functioning states is redundant for two of the three cost function types 
when the cost function parameter is increasing. For both problems we see that the minimum expected total net 
loss is increasing with increasing component cost per repair. 

The rest of the article is organized as follows: Section 2 introduces the basic model, the three different types 
of cost functions and the three-component system of interest. The simplified version of the optimization problem 
with results is presented in Section 4. Section 5 presents the modified optimization problem with results, and 
concluding remarks are found in Section 6. 

2. Basic Model 
Let S be the set of possible system states, and , 1, ,iS i n=  , the set of possible component states. Throughout 
this article we will assume that { }0, ,iS S M= =  . Since we are regarding the system as a flow network, the 
system state is the amount of flow that can be transported through the network. In the same way, the component 
state is the amount of flow that can be transported through each component. Let ( ) ( ) ( )( )1 , , nt X t X t=X   be 

the vector of component states at time t. That is ( )iX t k=  if component , 1, 2, , ,i i n=   is in state ik S∈  at 
time t. 

A binary minimal cut set is a minimal set of components which upon failure will break the connection 
between the endpoints of the network. Let lK , 1, ,l m=  , be the binary minimal cut sets of the network. Then, 
by applying the max-flow-min-cut theorem (see [15]), we get that the system state is given by  

( )( ) ( )
1
min .

l
il m i K

t X tφ
≤ ≤ ∈

= ∑X                                (1) 
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Thus, the system state equals the smallest total flow through the minimal cut sets of the system. Assume now 
that no components are in series with the rest of the system. Then there must be at least two components in 
every minimal cut set. If all components are in the perfect functioning state, M, the system state will be at least 
2M, and therefore we must have that iS S≠ . Thus, the assumption of equality between the set of system states 
and the set of component states, , 1, ,iS S i n= =  , implies that at least one component is in series with the rest 
of the system. For this reason, we will in Sections 4 and 5 focus on the three component system given in Figure 
1. 

Assume that the components deteriorate by going through all states in iS , from the perfect functioning state 
M to the complete failure state 0, before being repaired back to M. 

Let k
iµ  be the expected time component 1, ,i n=   spends in state 0, ,k M=  , and let the vector of 

positive expected component times in each state be denoted ( )0 1 0
1 1 1 2, , , , , ,M M

nµ µ µ µ µ=  µ . 
Assume for 1, ,i n=   that the basic investment costs of component i spending the expected amount of time 

k
iµ  in state 0, ,k M=   are given by the cost functions ( )k

ig µ  for 1, ,k M=   and ( )0
ih µ  for 0k = . 

These basic costs appear once in the time interval [ ]0,T  for each combination of 1, ,i n=   and 
0, ,k M=  . 

For any given functioning state 1, ,k M=  , it seems natural that these basic expenses grow when the 
expected times become large. If however, no time is spent in a functioning state, there will not be any basic costs 
of keeping the component in this state. Similarly, the shorter the expected time spent in the complete failure 
state, the more expensive it should be. In other words, the faster a complete repair is executed, the more  
expensive it should be. Therefore, we assume that the cost function ( )k

ig µ  is increasing and the cost function 

( )0
ih µ  is assumed to be decreasing; moreover, both functions are assumed to be twice differentiable with 

( ) ( )0 0g h= ∞ = . Throughout this article we assume the cost functions, ( )k
ig µ  and ( )0

ih µ , to be of one of 
the following types:  

Type 1: ( )k k k
i i ig cµ µ=  and ( )0 0 0 .i i ih cµ µ=   

Type 2: ( ) ( )ln 1k k k
i i ig cµ µ= +  and ( ) ( )0 0 0ln 1 .i i ih cµ µ= +   

Type 3: ( ) e 1
k k
i ick

ig µµ = −  and ( ) 0 00 e 1i ic
ih µµ = − ,  

where 0, 1, , , 0, ,k
ic i n k M> = =   are constants. These cost functions are constructed by the authors 

according to the above mentioned criteria to represent a variation in the potential basic cost development. 
In this article we only consider perfect repairs. Let 0iC >  denote the cost per repair from the complete 

failure state to the perfect functioning state of component , 1, 2,3i i = . The total number of repairs of component 
, 1, 2,3i i =  in the interval [ ]0,T  is denoted ( )iN T  for 1, ,i n=  . 

Let kR  be the fixed income per unit of time when the system is in state k S∈ , and assume that  

0 10 .MR R R≤ < ≤ ≤  

This means that the income decreases, starting from the perfect functioning state, from one state to the next 
until the system reaches the complete failure state, where the income is non-positive. Thus, there is a loss per 
time unit that the system spends in the complete failure state. Such negative income might correspond to interest 
rate expenses connected to system building investments. The presence of such costs will increase the incentive 
for repairing the failed components. 

 

 
Figure 1. A system with three components.                                 
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The contribution from the i-th component to the total cost connected to the operation of the system in the time 
interval [ ]0,T , is the total repair cost over the interval, ( )i iC N T , in addition to the basic investment costs 

related to component i spending the expected amount of time k
iµ  in state 0, ,k M=  , ( ) ( )0

1
M k

i ik g hµ µ
=

+∑ . 
To get the total costs connected to the operation of the system we sum over all components. 

Let { }I A  denote the indicator function of the event A. Then the income at time t connected to the operation 
of the system is given by  

( )( ){ }
0
I .

M

k
k

t k Rφ
=

=∑ X  

To find the total income we integrate the income at time t over the time period [ ]0,T . Hence, the total net 

loss connected to the operation of the system in the time interval [ ]0,T  is  

( ) ( ) ( ) ( ) ( )( ){ }0
0

1 1 0
I d .

n M MTk
i i i i k

i k k
M C N T g h t k R tµ µ φ

= = =

 = + + − =  
∑ ∑ ∑∫ Xµ  

Note that a negative net loss equals a positive net gain. By taking the expectation we find that the 
corresponding objective function is  

( ) ( ) ( ) ( ) ( ) ( )( )( )0
0

1 1 0
E E P d .

n M MTk
i i i i k

i k k
O M C N T g h t k R tµ µ φ

= = =

 = = + + − =  
∑ ∑ ∑∫ Xµ µ          (2) 

In the remaining parts of this article, we will focus on stationary multistate systems. Component availabilities 
are now given by  

( )( )
0

lim ,
k

k i
i i Mt l

i
l

a P X t k µ

µ
→∞

=

= = =
∑

                              (3) 

for 1, ,i n=   and k S∈ . The stationary system availabilities are given by  

( )( )( )limP .k

t
a t kφ φ

→∞
= =X                                  (4) 

Let ( )1 1
1 1 2, , , , ,M M

na a a a=a    denote the vector of component availabilities. When the components operate 

independently the stationary system availabilities, kaφ , equals ( )kaφ a  for 0, ,k M=  . 

The expected number of repairs of component i is now given by ( ) 0E M l
i ilN T T µ

=
= ∑ , 1, ,i n=   . The 

objective function, given in (2), therefore becomes  

( ) ( ) ( )0

1 0 1 0
,

n M M M
l k k

i i i i k
i l k k

O C T g h a R Tφµ µ µ
= = = =

 = + + −  
∑ ∑ ∑ ∑µ                     (5) 

which is determined explicitly by k
iµ , 1, ,i n=  , 0, ,k M=  . 

Thus, the optimization problem that we will consider is to minimize (5) with respect to , 1, ,k
i i nµ =   and 

0, ,k M=   with different cost functions ( )k
ig µ  and ( )0

ih µ . 

3. The Three-Component System 
For simplicity, the system we will focus on, is the multistate flow network system consisting of three com- 
ponents where component 1 is in series with the parallel structure of components 2 and 3 (see Figure 1). We will 
assume that all components and the system are in one of three states, that is we assume { }0,1, 2iS S= = . 

The structure function of the module consisting of components 2 and 3 in parallel is ( ) ( )2 3 2 3, min 2,x x x xψ = + , 
whereas the structure function of the system is  
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( ) ( )( ) ( )1 2 3 1 2 3min , , min , ,x x x x x xφ ψ= = +x                       (6) 

since 1 2x ≤ . For the system to be in the perfect functioning state, state 2, both modules, that is both component 
1 and the parallel structure of components 2 and 3, must be in the perfect functioning state. For the system to be 
in state 1 both modules must be functioning, and at least one of the modules must be functioning at level 1k = . 
For the system to be in the complete failure state, at least one of the modules must be in the complete failure 
state. The system availabilities are hence given by  

( ) ( )
( ) ( )
( )( )

2 2 2 0 0 2 1 1 2 1 1 2 2 2 2 0 0 1 0 0 1
1 2 3 2 3 2 3 2 3 2 3 2 3 1 2 3 2 3 2 3

1 1 0 0 2 1 0 0 1
1 2 3 1 2 3 2 3

0 0 0 0 0 0 0 0 0 0
1 2 3 1 2 3 1 2 3

1

1

1 1 1 .

a a a a a a a a a a a a a a a a a a a a a

a a a a a a a a a

a a a a a a a a a a

φ

φ

φ

= + + + + + = − − −

= − + +

= − − − = + −

          (7) 

4. The Simplified Problem 
Because of the complex nature of the problem presented in Section 2 we first study a simplified version of the 
problem. Assume the expected times spent in each state to be equal for each component. That is, we assume 

k
i iµ µ= , for 0,1, 2k =  and 1, 2,3i = . It is now natural to also assume k

i ic c=  for 0,1, 2k =  and 1, 2,3i = . 

As a consequence, the component availabilities are equal to 1
3

k
ia =  for all i and k. Thus, the system 

availabilities are equal to  
2 2 9aφ =  

1 10 27aφ =  

0 11 27.aφ =  

As a consequence, the total income, given by the last term in the objective function (5), is constant. Let 
( )1 2 3, ,µ µ µ=µ  be the vector of expected component times. The simplified objective function is given by  

( ) ( ) ( )
3 2

1 0
3 2 ,k

i i i i k
i k

O C T g h a R Tφµ µ µ
= =

 = + + − ∑ ∑µ                       (8) 

and the corresponding optimization problem is  

( )minimize

subject to 0, 1, 2,3.i

O

iµ ≥ =
µ

µ
                              (9) 

This is a box constrained nonlinear optimization problem. Note that the sum 2
0

k
kk a R Tφ=∑ , in (8), is 

independent of µ  and will therefore not affect the minimum. 

4.1. Analysis of Convexity 

Let ( )OH µ  denote the Hessian matrix related to the objective function (8). This is a 3 3×  matrix.  

( )

( )

( )

( )

2 2 2

2
1 2 1 31

12 2 2

22
2 1 2 32

3
2 2 2

2
3 1 3 2 3

0 0
0 0 ,
0 0

O

O O O

D
O O OH D

D
O O O

µ µ µ µµ

µ µ µ µµ

µ µ µ µ µ

 ∂ ∂ ∂
 

∂ ∂ ∂ ∂∂ 
  

∂ ∂ ∂   = =   ∂ ∂ ∂ ∂∂     
 ∂ ∂ ∂
 
∂ ∂ ∂ ∂ ∂  

µ  
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where 

( )
( )

( )
( )

( )

2 2

3 2 2
2 2 .

3
i ii

i
i i i

g hC TD
µ µ

µ µ µ

∂ ∂
= + +

∂ ∂
                           (10) 

The objective function is convex if and only if the Hessian matrix is positive semidefinite (see for instance 
[16]). In our case, the Hessian matrix is a diagonal matrix with , 1, 2,3iD i =  on the diagonal. Hence, if all the 
diagonal elements are non-negative, i.e. 0, 1, 2,3iD i≥ = , then the objective function is convex and a local 
minimum will also be the global minimum. 

4.2. The Objective Functions 
4.2.1. Type 1 Cost Functions  
Let the cost functions be given by ( )i i ig cµ µ=  and ( )i i ih cµ µ=  respectively. The objective function (8) is 
now given by  

( )
3 2

1 0
3 2 ,ki

i i i i k
i ki

cO C T c a R Tφµ µ
µ= =

 
= + + − 

 
∑ ∑µ                       (11) 

and the diagonal elements of the Hessian matrix are, for 1, 2,3i = ,  

( ) ( )3 3
2 2 0.

3
i i

i
i i

C T cD
µ µ

= + >  

Thus, in this case, the objective function is convex. 
Differentiating ( )O µ  gives  

( )( )
2 22 .

3
i i

i
i i i

O C T cc
µ µ µ

∂
= − + −

∂

µ
 

For 1, 2,3i =  the optimal iµ  is given by  
1 .
2 6

i
i

i

C T
c

µ = + ⋅                                    (12) 

We see from (12) that the optimal , 1, 2,3i iµ =  is depending on , iT C  and ic . T is the operational time 
period, iC  is the cost per repair of component i and ic  is a constant connected to the basic investment costs of 
component i spending the expected amount of time, iµ , in state k. Furthermore, the optimal iµ  is independent 
of jµ , j i≠ . It is increasing in T, as seen by the solid line in Figure 2, increasing in iC , as seen in Table 1 
for 1i =  and as the basic investment cost parameter, ic , increases, the optimal iµ  decreases. This is also 
seen in Table 1 for 1i = . These latter results are reasonable. 

4.2.2. Type 2 Cost Functions 
Let for 1, 2,3i =  the cost functions be logarithmic and given by ( ) ( )ln 1i i ig cµ µ= +  and ( ) ( )ln 1i i ih cµ µ= + . 
The objective function (8) becomes  

 
Table 1. Cost functions of type 1. 2 3 2 3 1.0C C c c= = = = , 100T = , 0 1.0R = − , 1 1.0R = , 2 2.0R = , starting values 

5.0iµ = . Theoretical 1µ  is given by the expression (12).                                                        

1C  0.5 0.5 1.0 0.5 1.0 2.0 4.0 

1c  2.0 1.0 1.0 0.25 0.5 1.0 2.0 

1 1C c  0.25 0.5 1.0 2.0 2.0 2.0 2.0 

Theoretical 1µ  2.16 2.97 4.14 5.82 5.82 5.82 5.82 

Computational 1µ  2.16 2.97 4.14 5.82 5.82 5.82 5.82 

Min. expected total net loss 9.69 4.29 8.98 -1.78 4.04 15.67 38.94 
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Figure 2. Optimal µ  as function of the operational time T for cost functions of type 1,2,3 . 1.0i iC c= =  for all i.           

 

( ) ( ) ( )
3 2

1 0
2 ln 1 ln 1 ,

3
ki

i i i i k
i ki

C TO c c a R Tφµ µ
µ= =

 
= + + + + − 

 
∑ ∑µ                   (13) 

The diagonal elements, (10), in the Hessian matrix are in this case given by  

( )
( )

( ) ( ) ( )

2

3 2 2 2 232

22 2
3 1 3 1

i i ii i
i

i i i i i i i ii i i

c cC T c AD
c c cc

µ
µ µ µ µ µµ µ

+
= − + =

+ + ++
 

for 1, 2,3i = . The numerator, A, is given by  

( ) ( ) ( ) ( ) ( )2 2 2 22 32 1 6 3 2 1 .i i i i i i i i i i i i i i iA C T c c c c c c cµ µ µ µ µ µ µ= + + − + + + +  

This is a 5-th order polynomial in iµ . As iµ  grows large A is dominated by the 5
iµ  term which has 

negative sign. Hence, the numerator, and iD , are negative for large iµ . On the other hand, when iµ  
approaches 0, iD  is positive. The objective function (13) is thus neither convex nor concave. We see that  
( )O µ  approaches infinity when , 1, 2,3i iµ = , approaches either 0 or ∞ . Therefore the objective function (13) 

has minimum values. 
Differentiating (13) with respect to iµ , 1, 2,3i =  gives the following:  

( )
2 2

2
13

i i i

i i ii i i i

O C T c c
c cµ µµ µ µ

∂
= − + −

∂ + +
µ

 

The solutions to ( ) 0
i

O
µ

∂
=

∂
µ

 are the zeroes of the third degree polynomial in iµ   
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( ) ( )( )3 2 26 3 3 1 ,i i i i i i i i i i i ic c c C T c C T c C Tcµ µ µ+ − − + + −                     (14) 

which can be solved numerically. Every third degree polynomial has at least one real root, and since iµ  is the 

expected time component i spends in each state, we are only interested in positive solutions of ( ) 0
i

O
µ

∂
=

∂
µ

. 

4.2.3. Type 3 Cost Functions  
The cost functions are in this section given by ( ) e 1, 1, 2,3i ic

ig iµµ = − =  for the two functioning states, and 

( ) e 1, 1, 2,3i ic
ih iµµ = − =  for the complete failure state. The objective function (8) now becomes  

( )
3 2

1 0
2e e 9

3
i i i ic c ki

k
i ki

C TO a R Tµ µ
φµ= =

 
= + + − − 

 
∑ ∑µ                         (15) 

The diagonal elements of the Hessian matrix are, for all 1, 2,3i = , given by  

( )
( )

( )
2

3 3
2 2 e 2 e 0.

3
i i i ic ci i i

i i
ii i

C T c cD c µ µ

µµ µ

 
= + + + > 

 
 

Hence, (15) is convex and therefore it has a global minimum value. 

4.3. Results 
In this section the incomes per time unit are chosen to be 0 1.0R = − , 1 1.0R =  and 2 2.0R = . For 1, 2,3i =  
the starting values for the numerical computations are chosen to be 5.0iµ = . 

The assumption, , 1, 2,3, 0,1, 2k
i i i kµ µ= = = , implies that the total income term in the objective function, (8), 

is constant, as has already been stated. Thus, the optimal iµ 's only depend on the parameter values, and not on 
the structural placements of the components. Therefore, only results for component 1 are given in the following. 

4.3.1. Effect of T 
Figure 2 shows the development of the optimal expected times spent in each state (the optimal , 1, 2,3i iµ = ) as 
function of the operational time T. Note that in this case, because of the chosen parameter values 

1.0, 1, 2,3i iC c i= = = , from (12) valid for cost functions of type 1, the optimal 1 2 3µ µ µ µ= = = , and the 
optimal expected life cycle length is 3µ  for all components. 

In Figure 2 we see that µ , and hence the optimal life cycle length, increases when the operational time 
increases. Due to the basic investment costs this is not a trivial result. However, the extent of the increase differs 
with the different cost function types. 

For cost functions of type 1 we see some increase in the optimal expected µ . This is in compliance with (12). 
We also see that µ  is by far the largest for cost functions of type 2 for all T. For cost functions of type 3, on 
the other hand, we only observe a slight increase in the optimal µ  as T increases. 

From Figure 3 we see that the minimum expected net loss as function of the operational time T behaves 
differently with different types of cost functions. For cost functions of type 1 and 2, the minimum expected net 
loss is decreasing with increasing operational time T. For type 3 the minimum expected net loss is increasing at 
first before it starts to decrease. The minimum expected net loss is positive for 1T >  when we use cost 
functions of type 3.  

4.3.2. Effect of C1  
For cost functions of type 1, we see from Table 1 that the theoretical results given by (12) are equal to the 
computational results. For constant 1 1C c  the theoretical and computational results are also constant, which is 
in accordance with (12). Even though 1 1C c  is held constant (see Table 1 for 1 1 2.0C c = ), we see an increase  
in the minimum expected net loss. The minimum expected net loss is dependent on the values of 1C  and 1c  
respectively. We see that when these values increase, the net loss increases, as is obvious from (11). 

For cost functions of type 2 we found in Section 2.2.2 that the optimal iµ ’s are the zeroes of the cubic  
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Figure 3. Minimum expected net loss as function of the operational time T for cost functions of type 1,2,3 . 1.0i iC c= =  
for all i.                                                                                                    

 
polynomial given in (14). For the parameter values in Table 2 this polynomial has one positive root, which 
equals the results obtained from the optimization routine. We see an increase in the optimal iµ  as 1C  
increases. 

Figure 4 shows the development of the minimum expected net loss as the repair costs, 1C , of component 1 
increases. We see that the minimum expected net loss is negative for cost functions of type 2. That is, we have a 
positive maximum expected net gain for this cost function. For the other two types of cost functions we have a 
positive minimum expected net loss. For all 1C , the loss is greater for cost functions of type 3 than it is for cost 
functions of type 1. The corresponding optimal 1µ , 2µ  and 3µ  are shown in Figure 5. 

From Figure 5 we see that for cost functions of type 2 it is optimal to spend longer time in each state than it is 
for the other two cost functions. The optimal expected time spent in each state for component  1 is increasing 
with increasing repair costs 1C . This seems natural. The results for components 2 and 3 are equal because the 
parameter values concerning these two components are equal. From the right plot in Figure 5 we see that the 
increase in the repair costs of component 1 has no influence on the optimal expected time spent in each state for 
components 2 and 3, thus we see that the optimal , 2,3i iµ =  are constant. 

4.3.3. Effect of c1 
Figure 6 shows the minimum expected net loss as a function of the cost function parameter 1c . The minimum 
expected net loss is increasing with an increasing 1c . We see that an increase in 1c  has much larger effect on 
the minimum expected net loss when we use cost functions of type 3 than when we use the other two types of 
cost functions. This is natural since the type 3 cost functions are exponential. 

The corresponding optimal , 1, 2,3i iµ =  are shown in Figure 7. We see that 2µ  is constant. 1µ , on the 
other hand, seems to be decreasing with increasing 1c  when we have cost functions of type 1 and 3. This 
behavior seems reasonable. For cost functions of type 2 we see that 1µ  eventually starts to increase when 1c  
increases, which seems unnatural. 
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Figure 4. Minimum expected net loss as function of 1C  for cost functions of type 1,2,3 . 2 3 1.0iC C c= = =  for all i and 

100T = .                                                                                                 
 

 
Figure 5. Optimal iµ  as function of 1C  for cost functions of type 1,2,3 . 2 3 1.0iC C c= = =  for all i and 100T = .          
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Figure 6. Minimum expected net loss as function of 1c  for cost functions of type 1,2,3 . 2 3 1.0ic c C= = =  for all i and 

100T = .                                                                                                
 

 
Figure 7. Optimal iµ  as function of 1c  for cost functions of type 1,2,3 . 2 3 1.0ic c C= = =  for all i and 100T = .         
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Table 2. Cost functions of type 2. 2 3 1 2 3 1.0C C c c c= = = = = , 100T = , 0 1.0R = − , 1 1.0R = , 2 2.0R = , starting values 
5.0iµ = . Theoretical 1µ  is the root of the polynomial (14).                                                      

1C  1.0 5.0 10.0 15.0 

Theoretical 1µ  18.09 84.82 168.16 251.49 

Computational 1µ  18.09 84.82 168.16 251.49 

Min. expected total net loss −17.36 −14.27 −12.90 −12.10 

5. Modifications of the Full Model Optimization Problem  
The original problem, represented by the objective function (5), turned out to be quite complex even though we 
only considered a simple three-component system with three possible system and component states. Thus, the 
optimization of this problem was not straightforward. In order to overcome difficulties with starting value 
sensitive optimization results, we reformulated the original optimization problem in order to find an approximate 
solution. 

Let 0 1 2
i i i iα µ µ µ= + + , 1, 2,3i = , be the fixed expected length of the life cycle of component i. Then, the 

objective function is given by 

( ) ( ) ( ) ( )
3 2

1 2 0

1 0
,k

i i i i i k
i k

O C T g g h a R Tφα µ µ µ
= =

 = + + + − ∑ ∑µ                    (16) 

where ( )0 1 2 9
1 1 3, , ,µ µ µ= ∈ µ  is a vector of the expected times spent in each state for each component. We 

are interested in minimizing the expected total net loss (16) subject to the fixed expected length of the life cycles 
iα , 1, 2,3i = . The optimization of the modified problem goes as follows:  
Step 1: Choose values for , 1, 2,3i iα = . For every combination of these , 1, 2,3i iα = , the nonlinear 

optimization problem with both equality and inequality constraints, (17), is solved. 

( )
2

0

minimize

subject to , 1, 2,3.

0, 1, 2,3, 0,1, 2

k
i i

k
k
i

O

i

i k

α µ

µ
=

= =

≥ = =

∑

μ
µ

                           (17) 

Step 2: Identify the overall minimum from the optimization results from step 1. The corresponding µ  will 
approximately minimize the expected total net loss over the time period [ ]0,T .  

Optimization problems as the ones in step 1 may be solved using the augmented Lagrange multiplier method, 
for instance using the SOLNP algorithm as described in [17]. This algorithm is implemented in the Rsolnp 
package, see [18], in R. 

Note that minimizing the expected total net loss is equivalent to maximizing the expected total net gain, and 
that a negative expected total net loss is a positive expected net gain. Since we are using minimization 
algorithms instead of maximization algorithms, the focus has been on minimizing the total net loss rather than 
maximizing the total net gain. 

5.1. Results  
In this section lower bounds on k

iµ , 1, 2,3i =  and 0,1, 2k =  are chosen to be 10-15 for cost functions of type 
1 and 2, and 0.01 for cost functions of type 3. The upper bound is chosen to be equal to the operational time T.  
As in the previous section, the incomes per time unit when the system is in state 0,1, 2k = , are 0 1.0R = − , 

1 1.0R =  and 2 2.0R =  respectively. The possible life cycle lengths are chosen to be  

( )4,6,8,10,12,14,16 , 1, 2,3i iα = = , and the starting values are 10.0k
iµ =  for 1, 2,3i =  and 0,1, 2k = . 

Component 2 and component 3 are in parallel. Their roles in the system are therefore interchangeable. Since 
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we assume that the components’ cost functions are of the same type and that we are varying one parameter at a 
time, we are in the following only varying the parameters connected to component 1 and component 2. When 
the parameters of component 1 are varied the results for components 2 and 3 are identical. Hence, results for 
component 3 are then omitted. 

5.1.1. Effect of T 
Figure 8 shows the minimum expected net loss as a function of T. We see that with cost functions of type 1 and 
2, the minimum expected net loss is negative and decreasing for the chosen values of T. This means that for 
these cost functions we have an increasing maximum expected net gain. The loss is smaller for cost functions of 
type 2 than it is for the other two types of cost functions. For cost functions of type 3 the minimum expected net 
loss is positive for small T. 

The corresponding optimal k
iµ ’s, 1, 2i =  and 0,1, 2k = , are given in Figure 9. It seems like the optimal 

k
iµ ’s stabilizes as T becomes large. 

5.1.2. Effect of an Increasing Cost Per Repair Ci, i = 1, 2 
For this, and the following sections, the operational time is set to 300T = . Figure 10 and Figure 11 shows the 
minimum expected net loss as a function of the repair cost of component 1 and 2 respectively. We see that the 
minimum expected net loss is increasing with increasing repair costs , 1, 2iC i = , for all three cost functions. 
This seems natural. 

The corresponding optimal , 1, 2, 0,1, 2k
i i kµ = =  as functions of 1C  are shown in Figure 12 and for 2C  in 

Figure 13 for 1, 2,3, 0,1, 2i k= = . As the repair costs of component 1, 1C , increases, the optimal expected life 

cycle length ( )2
1 10

k
kα µ
=

= ∑  for component 1 increases for cost function types 1 and 3. For cost functions of 

type 2 the optimal 1 , 0,1, 2k kµ =  are constant. For cost functions of type 1 and type 2, it is optimal to keep  
 

 
Figure 8. Minimum expected net loss as function of T for cost functions of type 1,2,3 . 1 2 3 1.0k

iC C C c= = = =  for 
1,2,3, 0,1,2i k= = .                                                                                      
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Figure 9. Optimal k

iµ , 1,2, 0,1,2i k= = , as function of T for cost functions of type 1,2,3 . 1 2 3 1.0k
iC C C c= = = =  for 

1,2,3, 0,1,2i k= = .                                                                                        
 

 
Figure 10. Minimum expected net loss as function of 1C  for cost functions of type 1,2,3 . 2 3 1.0k

iC C c= = =  for 
1,2,3, 0,1,2i k= = .                                                                                        
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Figure 11. Minimum expected net loss as function of 2C  for cost functions of type 1,2,3 . 1 3 1.0k

iC C c= = =  for 
1,2,3, 0,1,2i k= = .                                                                                         

 

 
Figure 12. Optimal , 1,2, 0,1,2k

i i kµ = = , as function of 1C  for cost functions of type 1,2,3 . 2 3 1.0k
iC C c= = =  for 

1,2,3, 0,1,2i k= = .                                                                                          
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Figure 13. Optimal , 1,2,3, 0,1,2k

i i kµ = =  as function of 2C  for cost functions of type 1,2,3 . 1 3 1.0k
iC C c= = =  for 

1,2,3, 0,1,2i k= = .                                                                                         
 

component 1 in the perfect functioning state for as long as possible. Hence, we see a large 2
1µ  for these two 

cost function types. For cost functions of type 3, on the other hand, the increase in expected life cycle length is 
placed in state 1k = , and we see an increase in 1

1µ  for this cost function. The extra costs connected to an 
increase in the expected times spent in either of the two functioning states are much larger for cost functions of 
type 3 than for the other two types of cost functions. 

As the repair costs of component 2, 2C , increases, we see from Figure 13 that the results for component 1 
are constant. Hence, for component 1 the optimal expected time spent in each state is independent of the repair 
cost of component 2. We also see that an increasing repair cost results in an increasing optimal expected life 
cycle length for component 2 for all cost functions. For cost functions of type 1 and 2 the increase is on the 
expected time spent in state 2, 2

2µ , while the increase is on the expected repair time, 0
2µ , for cost functions of 

type 3. 
Since component 1 is critical to the functioning of the system we see from Figure 12 an increase in 1

1µ  for 
cost functions of type 3 as 1C  increases. Component 2 is in parallel with component 3. It is therefore possible 
to extend the expected repair time of this component when 2C  increases, while at the same time the expected 
repair times of component 3, 0

3µ , are kept low. This is seen in Figure 13 for cost functions of type 3. 

5.1.3. Effect of an Increasing kc k1 , 0,1, 2=  
As the cost function parameter 1 , 0, 2kc k =  for component 1 increases, the minimum expected net loss also 
increases for cost functions of type 1 and 3. The minimum expected net loss remains unchanged when cost 
functions of type 2 are used. See Figure 14 and Figure 15. An increase in 1 , 0, 2kc k =  has largest impact on the 
minimum expected net loss when the cost functions are of type 3, that is when we have exponential cost  
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Figure 14. Minimum expected net loss as function of 0

1c  for cost functions of type 1,2,3 . 1.0iC =  for 1,2,3i =  and 

1.0k
ic =  for 2,3, 0,1,2i k= =  and 1, 1,2i k= = .                                                              

 

 
Figure 15. Minimum expected net loss as function of 2

1c  for cost functions of type 1,2,3 . 1.0iC =  for 1,2,3i =  and 

1.0k
ic =  for 2,3, 0,1,2i k= =  and 1, 0,1i k= = .                                                              
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functions. In state 1k =  there was no increase in the minimum expected net loss with increasing 1
1c , as seen in 

Figure 16. Figures 17-19 show the development in the optimal k
iµ , 1, 2, 0,1, 2i k= =  as 1 , 0,1, 2kc k =  

increases. 
The effect of an increasing 0

1c  is evident in the increasing optimal 0
1µ  for cost functions of type 3. This is 

seen in Figure 17, where there is also a slight increase in 0
1µ  for cost functions of type 1. The behaviour of 

1
1µ  and 2

1µ  differs for the three cost function types as the cost function parameter 0
1c  increases. In state 

1k = , 1
1µ  is close to 0 for both cost functions of type 1 and 2, while positive for 0

1 2c >  for cost functions of 

type 3. For 2k =  the optimal 2
1µ  is high and (close to) constant for cost functions of type (1) 2. For cost 

functions of type 3 the optimal 2
1µ  is lower. 

An increasing 1
1c  has no effect on the optimal , 1, 2, 0,1, 2k

i i kµ = = . This is seen in Figure 18. 
As 2

1c  increases, we see from Figure 19 that the optimal expected time spent in state 2 for component 1, 
2
1µ , is decreasing for both cost functions of type 1 and 3. As the costs of keeping 2

1µ  at a fixed level is  
increasing, it becomes less desiring to maintain this level, and we see a decrease. The decrease is faster in 2

1µ  

for cost functions of type 3. For this cost function we see an increase in 1
1µ  with increasing 2

1c  that is in 

contrast to the results for cost functions of type 1 and 2 which are independent of the increase in 2
1c  and equal 

to 0. 
 

 
Figure 16. Minimum expected net loss as function of 1

1c  for cost functions of type 1,2,3 . 1.0iC =  for 1,2,3i =  and 

1.0k
ic =  for 2,3, 0,1,2i k= =  and 1, 0,2i k= = .                                                              
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Figure 17. Optimal , 1,2, 0,1,2k

i i kµ = =  as function of 0
1c  for cost functions of type 1,2,3 . 1.0iC =  for 1,2,3i =  and 

1.0k
ic =  for 2,3, 0,1,2i k= =  and 1, 1,2i k= = .                                                               

 

 
Figure 18. Optimal , 1,2, 0,1,2k

i i kµ = =  as function of 1
1c  for cost functions of type 1,2,3 . 1.0iC =  for all i and 

1.0k
ic =  for 2,3, 0,1,2i k= =  and 1, 0,2i k= = .                                                               
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Figure 19. Optimal , 1,2, 0,1,2k

i i kµ = =  as function of 2
1c  for cost functions of type 1,2,3 . 1.0iC =  for 1,2,3i =  and 

1.0k
ic =  for 2,3, 0,1,2i k= =  and 1, 0,1i k= = .                                                              

5.1.4. Effect of an Increasing kc k2 , 0,1, 2=  
An increasing 2 , 0,1, 2kc k =  has little effect on the minimal expected net loss. This is seen in Figures 20-22 
where the minimal expected net loss with cost functions of type 2 seems to be constant and the result for cost 
functions of type 1 and 3 is increasing slightly for small 2 , 0,1, 2kc k =  before it seems to be constant. 

Figures 23-25 show the optimal expected times spent in each state for each component as the cost function 
parameter, 2 , 0,1, 2kc k = , increases. The optimal expected times spent in each state for component 1, 

1 , 0,1, 2k kµ =  remain unchanged for all types of cost functions. 
For every cost function type we see from Figure 23, for component 2, an increase in 0

2µ  and a decrease in 
2
2µ  as 0

2c  increases. For component 3 we have the opposite behaviour. As the costs of keeping the expected  
repair times of component 2 low increases, it is optimal to spend more expected time repairing this component. 
At the same time, it will be more important to keep the expected repair times of component 3 low. 

We see from Figure 24 that the optimal 0
2µ  is slightly decreasing with increasing 1

2c  for both cost 

functions of type 1 and 3. 2
3µ  is also slightly decreasing for these two cost functions, but the optimal 2

2µ  is 

increasing for these cost functions. For cost functions of type 1 we see from Figure 24 that the optimal 2
2µ  is  

high (approximately 15) for 1
2 2c > , while 2

2µ  is below 5 for all values of 1
2c  for cost functions of type 3. For 

component 3 we see that the results for cost functions of type 1 and 2 are lower than the corresponding results 
for cost functions of type 3 in state 0,1k =  and above in state 2k = . 

The optimal k
iµ , 1, 2,3i =  and 0,1, 2k =  for increasing 2

2c  are shown in Figure 25. We see that the 
results for cost functions of type 2 are constant. Furthermore, for cost functions of type 1 and 3, component 2  
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Figure 20. Minimum expected net loss as function of 0

2c  for cost functions of type 1,2,3 . 1.0iC =  for 1,2,3i =  and 

1.0k
ic =  for 1,3, 0,1,2i k= =  and 2, 1,2i k= = .                                                               

 

 
Figure 21. Minimum expected net loss as function of 1

2c  for cost functions of type 1,2,3 . 1.0iC =  for 1,2,3i =  and 

1.0k
ic =  for 1,3, 0,1,2i k= =  and 2, 0,2i k= = .                                                              
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Figure 22. Minimum expected net loss as function of 2

2c  for cost functions of type 1,2,3 . 1.0iC =  for all 1,2,3i =  and 

1.0k
ic =  for 1,3, 0,1,2i k= =  and 2, 0,1i k= = .                                                               

 

 
Figure 23. Optimal , 1,2,3, 0,1,2k

i i kµ = =  as function of 0
2c  for cost functions of type 1,2,3 . 1.0iC =  for 1,2,3i =  

and 1.0k
ic =  for 1,3, 0,1,2i k= =  and 2, 1,2i k= = .                                                            
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Figure 24. Optimal , 1,2,3, 0,1,2k

i i kµ = =  as function of 1
2c  for cost functions of type 1,2,3 . 1.0iC =  for 1,2,3i =  

and 1.0k
ic =  for 1,3, 0,1, 2i k= =  and 2, 0, 2i k= = .                                                          

 

 

Figure 25. Optimal , 1, 2,3, 0,1, 2k
i i kµ = =  as function of 2

2c  for cost functions of type 1, 2,3 . 1.0iC =  for all 

1,2,3i =  and 1.0k
ic =  for 1,3, 0,1,2i k= =  and 2, 0,1i k= = .                                                   



K. Skutlaberg, B. Natvig 
 

 
816 

has increasing 0
2µ  and decreasing 2

2µ  with increasing 2
2c , whereas, component 3 has decreasing 0

3µ  and 

increasing 2
3µ . This is the same behaviour as observed for increasing 0

2c  for these cost functions. 

6. Concluding Remarks 
In the present paper we have been minimizing the expected total net loss over a time period [ ]0,T  as a 
function of the expected component times in each state for a three-component flow network system. First the 
basic model was presented. The assumption of equality between the set of system states and the set of 
component states implied that an appropriate flow network system would have at least one component in series 
with the rest of the system. Hence, the three-component system given in Figure 1 was chosen as a case. With 
three possible system and component states and three components, the original box-constrained optimization 
problem had 9 variables. Due to the complexity of this problem, we first studied the simplified problem, where  

k
i iµ µ=  and k

i ic c=  for 1, 2,3i =  and 0,1, 2k = , and then a modification of the original problem where the  
optimization was done in two steps (see Section 5). This method found an approximate solution. The indication 
of lack of constructive conclusions is mainly due to that we are facing complex dependencies. 

The variables , iT C  and ic  for 1, 2i =  in the simplified problem, and the variables , iT C  and k
ic  for 

1, 2i =  and 0,1, 2k =  in the modified full problem, were varied one at a time with three different types of cost 
functions. 

For the simplified problem we were able to find expressions for the optimal , 1, 2,3i iµ =  for cost functions of 
type 1. For cost functions of type 1 and 3, the objective function, (8), turned out to be a convex function. With 
cost functions of type 2 the objective function is neither convex nor concave. The type 2 cost functions are 
logarithmic, and hence concave while the other two types are convex. For this cost function, we saw in Figure 7 
that the optimal 1µ  has a minimum as 1c  increased, which seems unnatural. 

In both the simplified problem and the modified full model, the minimum expected net loss was increasing 
with increasing , 1, 2iC i =  for every cost function type (as seen in Figure 4, Figure 10 and Figure 11 
respectively). 

As the operational time T increased we saw a decrease in the minimum expected net loss in the modified full 
model for all three cost functions (as seen in Figure 8). This is in contrast to the results with the simplified 
model when the exponential cost functions were used. Then, the minimum expected net loss increased at first, 
before it started to decrease (as seen in Figure 3). 

For every cost function parameter, 1 , 0,1, 2kc k = , we varied, we saw in Figures 17-19 that the optimal 
1, 1, 2i iµ =  was constant for cost functions of type 2. The same observation of constant 1, 1, 2,3i iµ =  for cost 

functions of type 2 was done in Figures 23-25 where 2 , 0,1, 2kc k =  were varied. The values were also close to  
zero. Hence, it was, for cost functions of type 2, optimal to spend as little time as possible in state 1 independent  
of the values of the parameters. With cost functions of type 1 we observed the same, except from when 1

2c  was 

increasing where 1
2µ  decreased from around 15 to close to 0 as 1

2c  increased from 0 to 2. For 1
2 2c >  1

2µ   
stayed constant and close to 0. Thus, it seems like the functioning component state 1 is in a way redundant for 
cost functions of type 1 and 2. This was not the case with cost functions of type 3. 

The general objective function (5) can quite easily be modified to represent the expected net loss of other 
network flow systems, and to include other types of cost functions. However, with larger systems, with more 
components and possibly more component states, the optimization problem quickly becomes large. Hence, the 
real challenge lies in the optimization of real life systems. 
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