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Abstract 
This paper first introduces Legendre wavelet bases and derives their rich properties. Then these 
properties are applied to estimation of approximation error upper bounded in spaces [ ]( )C 0,1α  

and [ ]( )NC 0,1+α  by norms 
2⋅  and 

1⋅ , respectively. These estimate results are valuable to 
solve integral-differential equations by Legendre wavelet method. 
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1. Introduction 
In recent years, an application of Legendre wavelet to solve integral-differential equations and partial differen-
tial equations is deeply considered [1]-[9]. Generally, representations of function and operator by Legendre 
wavelet are exact up to arbitrary but finite precision, then the approximation error should be estimated. Although 
estimating the approximation error is a tough technique, if the wavelet satisfies certain conditions [5]-[11], then 
the upper bounded of the wavelet transform coefficients can be estimated. In this article, we use the rich proper-
ties of Legendre wavelet bases such as compactly supported, polynomials, orthogonality to estimate the appro- 
ximation error upper bounded. 

In this paper, Section 2 introduces Legendre wavelet bases and its properties. Section 3 estimates the ap-
proximation error upper bounded by norms 

2⋅  and 
1⋅  for spaces [ ]( )0,1Cα  and [ ]( )0,1NC α+ , respec-

tively. This paper ends with brief conclusion. 

2. Legendre Wavelet and Its Properties 
In this section, we first briefly introduce Legendre wavelet bases and our notations. Secondly, the rich properties 

http://www.scirp.org/journal/am
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and some important results of Legendre wavelet that will be used later are elaborated. 

2.1. Legendre Wavelet 
For level of decomposition 0,1,n =   and translation 0,1, 2, , 2 1nl = − , we define subinterval 

( ))2 , 2 1n n
nlI l l− −= + . For 1, 2,p =  , define ,p nV  as a subspace of piecewise polynomial functions satisfy-

ing 

{ }, : is a polynomial of degree strictly less than and vanishes elsewhere .
nlp n IV f f p f=  

We now start to review Legendre polynomials and Legendre wavelet bases [1]. Let ( )kL x  denote Legendre 
polynomial of degree k, which is defined as follows: 

( ) ( )

( ) ( ) ( )

1 1

2 1

, ,
2 3 1 .

2 2k k k

L x x L x x
k kL x xL x L x

k k+ +

= =

+ +
= −

+ +

                          (1) 

Then, at the level of resolution 0n = , let ( )k xφ  denote Legendre wavelet bases defined as 

( ) [ ]
[ ]

2 1 2 1 , 0,1 ,
( )

0, 0,1 .
k

k

k L x x
x

x
φ

 + − ∈= 
∉

                           (2) 

The whole set { } 1

0

p
k k
φ −

=
 forms an orthonormal basis for ,0pV .Generally, the subspace ,p nV  is spanned by 

2n p  functions which are obtained from 0 1, , kφ φ −  by dilation and translation, i.e., 

( ) ( ){ }2
, , ,: span 2 2 ,0 1,0 2 1n n n

p n p nl k nl kV V x x l k p lφ φ= = = − ≤ ≤ − ≤ ≤ −  

which forms an orthonormal basis for [ ]( )2 0,1L  and 

,0 ,1 ,p p p nV V V⊂ ⊂ ⊂ ⊂  . 

Now, let 3, 1p n= = , then obtain six Legendre wavelet base functions which are given by 

( )0,10 2xφ = ,          ( ) ( )1,10 6 4 1x xφ = −  

( ) ( )2
2,10

3 110 4 1
2 2

x xφ  = − −  
,     10

2
x≤ <  

( )0,11 2xφ = ,          ( ) ( )1,11 6 4 3x xφ = −  

( ) ( )2
2,11

3 110 4 3
2 2

x xφ  = − −  
,     1 1

2
x≤ <  

and Figure 1 illustrates these base function as 
 

 
Figure 1. The six Legendre wavelet bases with k = 0, 1, 2; n = 1.                      
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2.2. Some Properties of Legendre Wavelet 
It is clear that Legendre wavelet bases are compactly supported, polynomial, bounded and orthogonal on each 
subinterval nlI . These properties are very useful to estimate the approximation error upper bounded. 

Lemma 1. Legendre wavelet bases satisfy the results 

( ) ( ) ( )( ), ,2 1 4 2, 1 2 4 2.kn n
k nl k nll k l kφ φ= − + + = +                  (3) 

Lemma 2. For any [ )0,1x∈ , Legendre wavelet ( ),k nl xφ  are bounded by the form 

( ), 4 2k nl x kφ ≤ +                                      (4) 

where k is the order of Legendre wavelet. 
Proof. According to the definition of Legendre wavelet bases, Legendre wavelet defined on subinterval nlI  

are obtained through Legendre polynomials by dilation. With the result of Legendre polynomials ( ) 1kL x ≤ , 
the bound of Legendre wavelet is easily proved.  

Lemma 3. A relation of between Legendre wavelet and their derivative on each subinterval nlI  is derived as 

( ) ( ) ( )1, 2, ,
1 12 3

2 5 2 1k nl k nl k nlk x x x
k k

φ φ φ+ +′ ′+ = −
+ +

.                      (5) 

Proof. Using the result of between Legendre polynomials and their derivative, i.e., 

( ) ( ) ( ) ( )1 22 3 k k kk L x L x L x+ +′ ′+ = − , 

we can obtain the above result. 
Using this result, we can obtain 

( )( )

( ) ( )
( )( )

( ) ( )
( )( )

( ) ( )
( )

( ) ( )
( )

1 2 1 2
1, 2,2 2

1 2
,2

1d d
2 3 2 5

1 d
2 3 2 1

1 4 10 1 4 10
2 3 2 5

1 4 2 1 4 2
2 3 2 1

0.

n n

n n

n

n

l l
k nl k nll l

l
k nll

k

k

x x x x
k k

x x
k k

k k
k k

k k
k k

φ φ

φ

+ +

+ +

+

′=
+ +

′−
+ +

 = + − − + + +

 − + − − + + +

=

∫ ∫

∫

                (6) 

However, when 0k = , the integration is calculated as 

( )( )1 2
0,2

d 2 2
n

n

l n
nll

x xφ
+

=∫ .                                 (7) 

Now, the orthogonal property of Legendre wavelet bases is given by 
Lemma 4. Legendre wavelet bases defined on the interval [ )0,1  are orthogonal. 
Proof. According to the compactly supported of Legendre wavelet bases, we know that any two such base 

functions ( ),k nl xφ  and ( ),k nl xφ ′ ′  with the same scale index n and different ,k k ′ , ,l l′  are orthogonal. If any 
two bases functions are only different in ,k k ′ , then for any nmx I∈ , we have 

( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

1 2
, ,2

1 2 1 2 1 22 1 2 1
2

11 2 1 2

1

d

2 1 2 2 2 1 2 1 2 2 2 1 d

2 1 2 1 2 d 0

n

n

n

n

l
k nl k nll

l n n n n
k kl

k k

x x x

k L x l k L x l x

k k L v L v v

φ φ
+

′

+ + +
′

′−

′= + − − + − −

′= + + =

∫

∫

∫

 

which completes the proof. 
Thus, any function ( )f x  belonging to [ ]( )2 0,1L  can be expanded as 
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( ) ( ), ,
0 0

lim k nl k nln k l
f x s xφ

∞ ∞

→∞ = =

= ∑∑ ,                                 (8) 

where ( ) ( )( ), ,,k nl k nls f x xφ=  is Legendre wavelet coefficients and ( ).,.  denotes inner product. Accordingly, 
norm equality is given by 

( )2
,2

0 0
lim k nln k l

f s
∞ ∞

→∞ = =

= ∑∑ .                                    (9) 

If approximation of the function is analyzed in the space Vp n, then the approximation formula is described by 

( ) ( ) ( )
1 2 1

T
, ,

0 0

np

k nl k nl
k l

f x s x S xφ
− −

= =

≈ = Φ∑∑ ,                             (10) 

where S and ( )xΦ  are 2 1n p×  matrices and defined as, respectively  

( ) ( ) ( )

T

0, 0 1, 0 1, 0 0, 1 1, 1 1, 1 0, 2 1 1, 2 1 1, 2 1
, , , , , , , , , , , ,n n nn n p n n n p n n n p n

S s s s s s s s s s− − − − − −

 =   
    , 

( ) ( ) ( ) ( )

T

0, 0 1, 0 1, 0 0, 1 1, 1 1, 1 0, 2 1 1, 2 1 1, 2 1
, , , , , , , , , , , ,n n nn n p n n n p n n n p n

x φ φ φ φ φ φ φ φ φ− − − − − −

 Φ =   
     

which makes the function approximated by arbitrary precision, when numerical computation is adopted by Le-
gendre wavelet method. 

3. Upper Bounded Estimates of Approximation Error by Legendre Wavelet 
In this section, the preliminaries of the function spaces with respect to exponential α-Hölder continuity and 

[ ]( )0,1NC α+  are first introduced, respectively. Secondly, the upper bounded estimates of approximation error in 
the spaces by Legendre wavelet bases are derived by norms 

2⋅  and 
1⋅ , respectively. 

3.1. Exponential α-Hölder Continuity and [ ]( )NC 0,1+α  
The preliminaries of exponential α-Hölder continuity [ ]( )0,1Cα  and [ ]( )0,1NC α+  spaces are defined by 

Definition 1. Exponential α-Hölder continuity for any α ( )0 1α< ≤  denotes the function f satisfying 

( ) ( ) , ,f x f y A x y x y Rα− ≤ − ∀ ∈                               (11) 

for some positive constant A. 
Definition 2. ( )NC Rα+  space denotes that all the functions f which are bounded and continuously differen-

tiable up to N-order for any α ( )0 1α< ≤ , i.e., 

( )
( ) ( ) ( ) ( )0 0

,
sup

k k

N

x y R
x y

f x f y
C R f

x y
α

α
+

∈
≠

 − = < ∞ 
−  

                         (12) 

where 0 0,1, ,k N=  . 

3.2. Approximation Error Estimate by Norm 2⋅  
The upper bounded of Legendre wavelet transform coefficients is estimated as: 

Theorem 1. Let [ ]( )0,1f Cα∈ , then the upper bounded estimate of Legendre wavelet transform coefficients 
satisfies 

( ){ }, 2 , min 1 ,v
k nl kfls T v n nα−≤ = +                              (13) 

where kflT  is a constant with respect to k, f and l. 
Proof. Taking advantage of the results of (6) and (7), we have 
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( ) ( )( ) ( )( ) ( )( )

( ) ( )( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

1 22 1 1 1
, 2

1 2 1 22 1 1 1
2 2

1 2 1 22 1 1 1
2 2

2 2 1 2 1 2 2 1 2 2 2 1 d

2 2 1 2 1 2 d 2 1 2 2 2 1 d

2 2 1 2 1 2 2 1 2 2 2 1 d

n

n

n n

n n

n n

n n

ln n n n
k nl kl

l ln n n n
kl l

l ln n n n
kl l

s k f x f l f l L x l x

k f x f l x f l L x l x

k x l dx f l L x l x
α

+ + + +

+ ++ + +

+ ++ + +

 = + − + + + − − 

 ≤ + − + + + − −  
 ≤ + − + + + − − 

∫

∫ ∫

∫ ∫

( ) ( )( ) ( )( )

( )

( ) ( )
( ){ }

1 21 1
,2

1

1

2 2 1 2 1 2 d

2 2 1, 0,

2 2 2 2 1 2 , 0,

2 , min 1 ,

n

n

ln n
k nll

n

n n n

v
kfl

k f l x x

k k

f l k

T v n n

α

α

α

φ

α

+− + +

− +

− + −

−



≤ + + +

 + ≠= 
+ + =

≤ = +

∫

 

which completes this proof. 
Remark: The upper bounded of Legendre wavelet transform coefficients vanish with exponent in terms of 

multiplies of the scale index or exponential α-Hölder continuity. 
Theorem 2. Let [ ]( )0,1Nf C α+∈ , suppose that wavelet has n vanishing moments, then the upper bounded 

estimate of wavelets ( )xψ  transform coefficients k such that then the upper bounded estimate of Legendre-
wavelet transform coefficients satisfies 

( ) ( ) ( ) ( ){ }, , 2 , min 1 , 1v
k nls T k f v n N n Nα−≤ = + + + ,                 (14) 

where kflT  is a constant with respect to k, f and l. 
Proof. The proof of this theorem utilizes the 1k −  vanishing moments of Legendre wavelet ,k nlφ  and Tay-

lor expansion of the function f and then is similar to that of the theorem 1. 
Now, taking advantage of the results of (9), (13) and theorem 1, we can derive the upper bounded estimation 

by the norm 
2⋅ . 

Theorem 3. Let [ ]( )0,1f Cα∈ , then the upper bounded estimate of approximation error by using Legendre 
wavelet bases satisfies 

( ) ( ){ }0 02min 1 ,T

2
2 N Nf S x T α ε− +− Φ < ⋅ + ,                           (15) 

where T is a constant with respect to kflT  and ε  is an arbitrarily small positive constant.  

Proof. From the equality ( )2
,2

0 0
lim k nln k l

f s
∞ ∞

→∞ = =

= ∑∑ , there exists positive integers 0N , 1N , K, 1K  and arbi- 

trarily small positive constant ε  satisfying  

( ) ( ) ( )

( ) ( ){ }

11 1

11 1
0 0

0

22 2T
, ,2 0 0

2 2 2min 1 ,2

0
2 2

N

N

N K

k nl k nl
n N k K l n N k K l

N K
N Nv

kfl
n N k K l

f S x s s

T T α

ε

ε ε

∞ ∞ ∞

= = = = = =

− +−

= = =

− Φ = < +

≤ ⋅ + < ⋅ +

∑ ∑∑ ∑ ∑∑

∑ ∑∑
 

which completes the proof.  
Similarly, we can obtain the estimate of approximation error in space [ ]( )0,1NC α+ . 
Theorem 4. Let [ ]( )0,1Nf C α+∈ , the upper bounded estimate of approximation error using Legendre wave-

let is described as  

( ) ( )( ) ( ){ }0 02min 1 , 1T

2
2 N N N Nf S x T α ε− + + +− Φ < ⋅ + ,                         (16) 

where T is a constant with respect to kflT  and ε  is an arbitrarily small positive constant. 
These estimates of the approximation error upper bounded provide computational precision for numerical 

computation. 
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3.3. Approximation Error Estimate by Norm 1⋅  
In this subsection, we derive the estimations of approximation error by norm 

1
. 

Theorem 5. Let [ ]( )0,1f Cα∈ , then the estimation of the approximation error upper bounded by the norm 
1⋅  satisfies  

( ) ( ) ( ) ( ){ }0T
0 01

2 , min 1 ,v Nf x S x T v N Nε α− +− Φ ≤ ⋅ + = + ,                  (17) 

where T is a constant with respect to kflT  and ε  is an arbitrarily small positive constant. 
Proof. Taking advantage of the definition of norm 

1⋅  and using (13), it is clear that the approximation error 
upper bounded is estimated by 

( ) ( ) ( ) ( ) ( )

( )( )

( ) ( )

0

0
0

11

0

11
0

0

1 12 11 1T
, , ,0 01 0 0 0 0

1 2 1 1 2
, ,2

0 0

1 2 1

,
0 0

d d

d

4 2 2 .

N

N n

n

N

p p

k N l k nl k nl
k l k n N l

N p l
k nl k nll

n N k l

N p
v N

k nl
n N k l

f x S x f x x x s x x

s x x

s k T

φ φ

φ ε

ε ε

− −− ∞ ∞

= = = = =

− − +

= = =

− −
− +

= = =

− Φ = − =

≤ +

≤ + + ≤ ⋅ +

∑ ∑ ∑ ∑ ∑∫ ∫

∑ ∑ ∑ ∫

∑ ∑ ∑

           (18) 

For [ ]( )0,1Nf C α+∈ ,the estimate technique by the norm 
1⋅  is similar to the theorem 4 and theorem 5.  

4. Conclusion 
As all, this paper considers the compactly supported, polynomial, orthogonal and bounded properties of Legen-
dre wavelet bases. Using these properties, the upper bounded estimates of the approximation error are presented 
for the function belonging to exponential α-Hölder continuity and space [ ]( )0,1NC α+  by norms 

2⋅  or 
1⋅ , 

respectively. 
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+
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