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Abstract 
The use of k nF ,  functions, expressible in terms of Lucas polynomials of the second kind, allows us 
to write down the solution of linear dynamical systems—both in the discrete and continuous 
case—avoiding the Jordan canonical form of involved matrices. This improves the computational 
complexity of the algorithms used in literature. 
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1. Introduction 
Even in recent books (see e.g. [1] [2]), the solution of linear dynamical systems, both in the discrete or 
continuous time case, is expressed by using all powers of the considered matrix r r× . As a consequence, if we 
want to write down explicitly the solution, it is necessary to construct the Jordan canonical form of   and, in 
the case of a defective matrix (i.e. if non trivial Jordan blocks appear in its canonical form), this implies 
cumbersome computations. 

In order to avoid this serious problem, we propose here an alternative method, based on recursion, using the 
,k nF  functions, which are essentially linked to Lucas polynomials of the second kind [3] (i.e. the basic solution 

of a homogeneous linear recurrence relation with constant coefficients [4] [5]), and to the multi-variable 
Chebyshev polynomials [6]. 

After recalling the ,k nF  functions and their connections with matrix powers [7], we can show, in Section 2, 
that the use of matrix powers and matrix function representations (see e.g. [7] [8]) gives us the possibility to use 
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http://dx.doi.org/10.4236/am.2016.77057
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only powers of the considered matrix up to (at most) the order 1r − . This is a trivial consequence of the 
Cayley-Hamilton theorem, and should be used, in our opinion, to reduce the computational cost of solutions. 
Another shown possibility is the use of the Riesz-Fantappiè formula, by means of which the Taylor expansion of 
solution is completely avoided. 

In Section 3, we prove our main results, relevant to an alternative method for the solution of linear dynamical 
systems, both in the discrete and continuous time case and via the Riesz-Fantappiè formula, also known in 
literature as the Dunford-Schwartz formula [9], (but the priority of the first Authors is undubtable). 

Some concrete examples of computation are presented in Section 4, showing the more simple complexity of 
our procedure with respect to the traditional algorithms, as they appear in the above mentioned books. 

We want to remark explicitly that, in our article, by using the ,k nF  functions (essentially linked to Lucas 
polynomials of the second kind), our methodology builds a bridge, to our knowledge not previously well known, 
between the Theory of Matrices and that of Special Functions, which are usually considered as very different 
fields. Furthermore, the use of the Riesz-Fantappiè formula reduces to a finite computation the algorithms used 
in literature, making use of series expansions, and consequently dramatically improves the computation com- 
plexity of the considered problem. 

1.1. Recalling Fk,n Functions 
Consider the ( )1r + -terms homogeneous linear bilateral recurrence relation with (real or complex) constant 
(with respect to n) coefficients ( )1, 2, ,ku k r=   where 0ru ≠ :  

( ) ( )1
1 1 2 2 1 , .r

n n n r n rX u X u X u X n−
− − −= − + + − ∈ Z                     (1.1) 

Supposing the coefficients vary, its solution is given by every bilateral sequence ( ){ }1 2, , ,n r n
X u u u

∈


Z
 such  

that 1r +  consecutive terms satisfy Equation (1.1). 
A basis for the r-dimensional vectorial space r  of solutions is given by the functions  

( ), , 1 2, , ,k n k n rF F u u u=  , ( )1, 2, , , 1k r n= ≥ − , defined by the initial conditions below:  

1, 1 1,0 1, 2

2, 1 2,0 2, 2

, 1 ,0 , 2

0 0 1,
0 1 0,

1 0 0.

r

r

r r r r

F F F
F F F

F F F

− −

− −

− −

= = … =
= = … =

= = … =
  

 

Since 0ru ≠ , the ,k nF  functions can be defined even if 1n < − , by means of the positions:  

( ) ( )1 1
, 1 1, 3

1, , , , , , 1, , ; .r
k n r r k n r

r r r

u uF u u F k r n
u u u
−

− + − + −

 
= = ∈ 

 
   Z               (1.2) 

Therefore, assuming the initial conditions 1 1, , , ,j j j rX X X+ + −  the general solution of the recurrence (1.1), 
n∀ ∈Z , is given by  

( )1 , 1 1, 1 1, . .n j j r n j r n j r nX X F X F X F n+ + + − + −= + + + ∈ Z  

For further considerations, relevant to the classical method for solving the recurrence (1.1), see [5]. 
An important result, originally stated by É Lucas [3] (in the particular case 2r = ), is given by the equations  

( )
( )

1, 1 1, 1 2, 1

2, 2 1, 1 3, 1

2
1, 1 1, 1 , 1

1
, 1, 1

1

1

n n n

n n n

r
r n r n r n

r
r n r n

F u F F
F u F F

F u F F

F u F

− −

− −

−
− − − −

−
−

= +
 = − +


 = − +

 = −

  

showing that all { },k n n
F

∈Z
 functions are expressed through the only bilateral sequence { }1,n n

F
∈Z

. 

Therefore, we assume the following  
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Definition 1-The bilateral sequence { }1,n n
F

∈Z
, solution of (1.1) corresponding to the initial conditions:  

1, 1 1,0 1, 3 1, 20, 0, , 0, 1,r rF F F F− − −= = = =  

is called the fundamental solution of (1.1) (“fonction fondamentale” by É. Lucas [3]), [4].  
For the connection with Chebyshev polynomials of the second kind in several variables, see [6]. 

1.2. Matrix Powers Representation 
In preceding articles [5] [7], the following result is proved: 

Theorem 1 Given an r r×  matrix  , putting by definition 0 : 1u = , and denoting by  

( ) ( ) ( )
0

: det 1
r j r j

j
j

P uλ λ λ −

=

= − = −∑   

its characteristic polynomial (or possibly its minimal polynomial, if this is known), the matrix powers n , with 
integral exponent n, are given by the equation:  

( ) ( ) ( )1 2
1, 1 1 2, 1 1 , 1 1, , , , , , ,n r r

n r n r r n rF u u A F u u F u u− −
− − −= + + +                  (1.3) 

where the functions ( ), 1, ,k n rF u u  are defined in Section 1.1. 
Moreover, if   is not singular, i.e. 0ru ≠ , Equation (1.3) still works for negative integers n, assuming the 

definition (1.2) for the ,k nF  functions.  
It is worth to recall that the knowledge of eigenvalues is equivalent to that of invariants, since the second ones 

are the elementary symmetric functions of the first ones. 
Remark 1 Note that, as a consequence of the above result, the higher powers of matrix   are always 

expressible in terms of the lower ones (at most up to the dimension of  ).  

2. Matrix Functions Representation 
It is well known that an analytic function f of a matrix r r×=  , i.e. ( )f  , is the matrix polynomial obtained 
from the scalar polynomial interpolating the function f on the eigenvalues of   (see e.g. the Gantmacher book 
[8]), however, in many books (see e.g. [1]), the series expansion  

0
exp

!

n

n n

∞

=

= ∑                                      (2.1) 

is assumed for defining (and computing) ( )exp  . So, apparently, the series expansion for the exponential of a 
matrix is “hard to die”. 

Let { }1 2, , , rS λ λ λ=   the spectrum of  . Denoting by  

( ) 1
1 0 1 1

r
r rx x xα α α −
− −Π = + + +  

the polynomial interpolating ( )exp x  on S , i.e. such that: ( ) ( )1 expr i iλ λ−Π = ,  
( )1, 2, ,i r=  , then  

1
0 1 1exp .r

rα α α −
−= + + +                               (2.2) 

If the eigenvalues are all distinct, 1r−Π  coincides with the Lagrange interpolation polynomial and (2.2) is the 
Lagrange-Sylvester formula. In case of multiple eigenvalues, 1r−Π  is the Hermite interpolation polynomial, and 
(2.2) reduces to Arthur Buchheim's formula, generalizing the preceding one. 

This avoids the use of higher powers of   in the Taylor expansion (2.1). In any case, the possibility to write 
h , ( )2h ≥ , in an easy block form, requires not only the knowledge of the spectrum, but even the Jordan 

canonical form of  . It is necessary to compute the eigenvectors and moreover the principal vectors, if   is 
defective. A known machinery which implies a lot of computations. 

The Riesz-Fantappiè Formula 
A classical result is as follows: 
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Theorem 2 Under the hypotheses and definitions considered above, the resolvent matrix ( ) 1λ −−   can be 
represented as  

( ) ( ) ( )
1 11 1

0 0

1 1 .
r r h j r h j h

j
h j

u
P

λ λ
λ

− − −
− − − −

= =

 
− = − 

 
∑ ∑    

Then, by the Riesz-Fantappiè formula, we recover the classical result: 
Theorem 3 If ( )f λ  is a holomorphic function in the domain   and denoting by D ⊂   (with D ⊂  ) 

a closed set whose boundary is a piecewise simple Jordan contour γ  encompassing the spectrum S  of  , 
the matrix function ( )f   can be represented by: 

( ) ( ) ( )

( ) ( )
( )

1

11 1

0 0

1 d
2π

1 1 d .
2π

r h jr r h j h
j

h j

f f
i

f
u

i P

γ

γ

λ λ λ

λ λ
λ

λ

−

− − −− − −

= =

= −

 
= − 

 

∫

∑ ∑ ∫





  


                    (2.3) 

In particular: 

( ) ( )
11 1

0 0

1 ee 1 d .
2π

r h jr r h j h
j

h j
u

i P

λ

γ

λ λ
λ

− − −− − −

= =

 
= − 

 
∑ ∑ ∫   

Remark 2 If the eigenvalues of  , are known, Equation (2.3), by the residue theorem, gives back the 
Lagrange-Sylvester representation. However, for computing the integrals appearing in Equation (2.3) it is 
sufficient the knowledge of a circle D, ( : Dγ = ∂ ), containing the spectrum of   (by using the Gerschgorin 
theorem, and then knowing only the entries of  , without computing its eigenvalues). Therefore, this approach 
is computationally more convenient with respect to the Lagrange-Sylvester formula.  

3. Solution of Linear Dynamical Systems Via Fk,n Functions 
As a consequence of the above recalled results, we can prove our main results both in the discrete and 
continuous time case. 

3.1. The Discrete Time Case 
Theorem 4 Consider the dynamical problem for the homogeneous linear recurrence system  

1

0 0 ,
i i

i

Z Z
Z Z

+

=

= ⋅
 =


                                    (3.1) 

where 

1,1 1,

,1 ,

.
r

r r

r r r

a a

a a
×

 
 

= =  
 
 



  



   

Let  

( ) ( ) ( )( )T

1 2, , , ,n n n
n rZ z z z=   

( ) ( ) ( )( )T0 0 0
0 1 2, , , ,rZ z z z=   

( ) ( ) ( )( )T1 1 1
1 1 2 0, , , ,rZ z z z Z= = ⋅   

  
( ) ( ) ( )( )T1 1 1 2

1 1 2 0, , , ,r r r r
r rZ z z z Z− − − −
− = = ⋅   
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denote by ( ) ( )1 2: , , , :ru tr u u det= =   the invariants of  , and recall the generalized Lucas polynomials 
( ), 1, ,k n rF u u , ( )1, 2, , , 1k r n= ≥ − , defined in Section 1.1. 

Define the vector  

( ) ( ) ( ) ( )( )T
1 1 1, 1 1 2, 1 1 , 1 1, , : , , , , , , , , , ,n r n r n r r n ru u F u u F u u F u u− − − −=      

and the matrix  

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 0
1 1 1

1 2 0
2 2 2

1 2 0

1 2 0

, , ,

r r

r r

r r

r r
r r r

z z z

z z zZ Z Z

z z z

− −

− −

− −

− −

 
 
 

=  
 
 
 







   



 

then, the solution of problem (3.1) can be written  

( ) ( )1 2 0 1 1, , , , , .n r r n rZ Z Z Z u u− − −= ⋅                           (3.2) 

That is, for the components:  
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 2 0
1, 1 1 2, 1 1 , 1 1

, 1 1
1

, , , , , ,

, , .

n r r
k n r k n r k r n r k

r
r h

h n r k
h

z F u u z F u u z F u u z

F u u z

− −
− − −

−
−

=

= + + +

= ∑

   



 

Proof It is well known that the solution of problem (3.1) is given by  

( ) 0 .nZ t Z=  

From the results about matrix powers, it follows that  

( ) ( ) ( )( ( ) )1 2
1, 1 1 2, 1 1 , 1 1 0, , , , , , .r r

n r n r r n rZ t F u u F u u F u u Z− −
− − −= + + +       

Then, taking into account the above definitions of vectors ( )1 1, ,n ru u−   and 1 2 1, , , rZ Z Z −  our result 
follows. 

Remark 3 Note that, even if this is unrealistic, solution (3.2) still holds for negative values of n, assuming 
definition (1.2) for the ,k nF  functions when 1n < − .  

3.2. The Continuous Time Case 
Theorem 5 Consider the Cauchy problem for the homogeneous linear differential system  

( ) ( )
( ) 00 ,

Z t Z t
Z Z
′ = ⋅

 =


                                    (3.3) 

where r r×=   is the same matrix considered in the discrete time case. 
Let  

( ) ( ) ( ) ( )( )T
1 2, , , ,rZ t Z t Z t Z t= 

 

( ) ( ) ( )( )T0
0 0 1 20 , 0 , , 0 ,rZ Z Z Z Z= =   

( ) ( ) ( )( )T
0 1 2 00 , 0 , , 0 ,rZ Z Z Z Z′ ′ ′ ′= = ⋅   

  

( ) ( ) ( )( )T1 1 1 1 2
0 1 2 00 , 0 , , 0 ,r r r r r

rZ Z Z Z Z− − − − −= = ⋅   

denote by ( ) ( )1 2: , , , :ru tr u u det= =   the invariants of  , and recall again the generalized Lucas 
polynomials ( ), 1, ,k n rF u u , ( )1, 2, , , 1k r n= ≥ − . 
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Introduce the matrix ( )1
0 0 0, , ,rZ Z Z− ′
  and define the vector function  

( ) ( ) ( ) ( )( )T
1 1 1, 1 1 2, 1 1 , 1 1, , : , , , , , , , , , ,n r n r n r r n ru u F u u F u u F u u− − − −=      

then, the solution of problem (3.3) can be written  

( ) ( ) ( )1
0 0 0 1 1

0
, , , , , .

!

n
r

n r
n

tZ t Z Z Z u u
n

∞
−

−
=

′= ⋅∑                          (3.4) 

Proof-It is well known that the solution of problem (3.3) is given by  

( ) 0e .tZ t Z=                                         (3.5) 

From the results about matrix exponential, it follows that  

( )
0 0

e ,
! !

n n
t n

n n

t t
n n

∞ ∞

= =

= =∑ ∑ 
  

where  

( ) ( ) ( )1 2
1, 1 1 2, 1 1 , 1 1, , , , , , ,n r r

n r n r r n rF u u F u u F u u− −
− − −= + + +        

so that Equation (3.5) becomes  

( ) ( ) ( )( ( ) )1 2
1, 1 1 2, 1 1 , 1 1 0

0
, , , , , , ,

!

n
r r

n r n r r n r
n

tZ t F u u F u u F u u Z
n

∞
− −

− − −
=

= + + +∑        

and taking into account the above positions, it follows  

( ) ( ) ( )( ( ) )1 2
1, 1 1 0 2, 1 1 0 , 1 1 0

0
, , , , , , .

!

n
r r

n r n r r n r
n

tZ t F u u Z F u u Z F u u Z
n

∞
− −

− − −
=

= + + +∑      

Then, Equation (3.4) immediately follows by introducing the vector function 1n−  and the matrix 
( )1

0 0 0, , ,rZ Z Z− ′
  defined above. 

Remark 4 Note that the convergence of the vectorial series in any compact set K of the space ( )1, , ru u  is 
guaranteed, as the components of 1n−  are polynomials of weight not exceeding 1n − , and consequently are 
bounded in K.  

3.3. The Continuous Case, Via the Riesz-Fantappiè Formula 
By using the Riesz-Fantappiè it is possible to avoid series expansions. Indeed, we can prove the following result. 

Theorem 6 The solution of the Cauchy problem (3.3) can be found in the form  

( ) ( ) ( )
11 1

0 0
0 0

1 ee 1 ( ) d ,
2π ,

r h jr r h jt h h
j

h j
Z t Z u t t Z

i P t

λ

γ

λ λ
λ

− − −− − −

= =

 
= = − ⋅ 

 
∑ ∑ ∫  

where we denoted by ( ) j
j ju t t u= , ( )0,1, ,j r=   the invariants of t  and by  

( ) ( ) ( ) ( )1
1 1, r r

r rP t u t u t u tλ λ λ λ−
−= − + + +  its characteristic polynomial.  

Proof It is a straightforward application of the Riesz-Fantappiè formula, taking into account the definition of 
0
hZ , ( )0,1, , 1h r= − . 

4. Worked Examples 
We show that the above results are easier with respect to the methods usually presented in literature ([1] [2]). 
Our technique is as follows: if the matrix r r×  has a low dimension ( 4r ≤ ), its invariants can be computed 
directly by hand. If 5r ≥  it is more easy to compute the eigenvalues by using one of the classical numerical 
methods, and then the invariants are found as the elementary symmetric functions (with alternate sign) of the 
eigenvalues. This completely avoids the construction of the Jordan canonical form. No necessity to compute 
higher powers of matrix  . 
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4.1. Example 1 (Discrete Time Case) 
We consider the 3 3×  system  

1

1

1

4 3 3
5 10 10
1 11 1
20 20 20
3 3 13 ,

20 20 20

n n n n

n n n n

n n n n

x x y z

y x y z

z x y z

+

+

+

 = + +

 = + +

 = + +

                             (4.1) 

with matrix  : 
16 6 6

1: 1 11 1 .
20

3 3 13

 
 =  
 
 

  

The invariants of   are by definition:  
( )1 : 2,u tr= =  

( ) ( )2 2
2

1 5: ,
2 4

u tr tr = − =    

( )3
1: .
4

u det= =  

We will consider, the initial conditions:  

0

0

0

1
5
2
5
2.
5

x

y

z

 =

 =

 =

                                      (4.2) 

Then, as a consequence, we have:  

1 0 0 0

1 0 0 0

1 0 0 0

4 3 3 2 ,
5 10 10 5
1 11 1 1 ,
20 20 20 4
3 3 13 7 ,

20 20 20 20

x x y z

y x y z

z x y z

 = + + =

 = + + =

 = + + =

 

and  

2 1 1 1

2 1 1 1

2 1 1 1

4 3 3 1 ,
5 10 10 2
1 11 1 7 ,
20 20 20 40
3 3 13 13 .
20 20 20 40

x x y z

y x y z

z x y z

 = + + =

 = + + =

 = + + =

 

Starting from the initial conditions:  

1, 1 1,0 1,1

2, 1 2,0 2,1

3, 1 3,0 3,1

0 0 1,
0 1 0,
1 0 0,

F F F
F F F
F F F

−

−

−

= = =
= = =
= = =

                             (4.3) 
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and by means of the recurrence relation  

( ) ( ) ( ) ( ), 1 1 2 3 , 2 1 2 3 , 3 1 2 3 , 4 1 2 3
5 1, , 2 , , , , , , ,
4 4k n k n k n k nF u u u F u u u F u u u F u u u− − − −= − +  

with 1, 2,3k =  and 0n ≥ , we find the following solution of the discrete dynamical system problem (4.1)-(4.2)  

1, 1 2 2, 1 1 3, 1 0

1, 1 2 2, 1 1 3, 1 0

1, 1 2 2, 1 1 3, 1 0.

n n n n

n n n n

n n n n

x F x F x F x
y F y F y F y
z F z F z F z

− − −

− − −

− − −

= + +

= + +

= + +

                               (4.4) 

The (4.4) coincides with the following solution of the problem (4.1)-(4.2) obtained with the classical method 
of eigenvalues  

3 2 1 ,
5 5 2

n

nx  = −  
 

 

1 3 1 ,
10 10 2

n

ny  = +  
 

 

3 1 1 .
10 10 2

n

nz  = +  
 

 

4.2. Example 2 (Continuous Time Case) 
We consider the 3 3×  system  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

4 2
2 2
5 3 ,

x t x t y t z t
y t x t y t z t
z t x t z t

′ = − −
 ′ = + −
 ′ = −

                              (4.5) 

with matrix  : 

4 1 2
: 2 1 2 .

5 0 3

− − 
 = − 
 − 

  

The invariants of   are by definition:  

( )1 : 2,u tr= =  

( ) ( )2 2
2

1: 1,
2

u tr tr = − =    

( )3 : 2.u det= =  

We will consider, the Cauchy problem with initial conditions:  

( )
( )
( )

0

0

0

0 1
0 2
0 1.

x x
y y
z z

= =
 = =
 = = −

                                   (4.6) 

Then, as a consequence, we have:  

( )
( )
( )

0 0 0 0

0 0 0 0

0 0 0

: 0 4 2 4,
: 0 2 2 6,
: 0 5 3 8,

x x x y z
y y x y z
z z x z

′ ′= = − − =
 ′ ′= = + − =
 ′ ′= = − =

 

and  
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( )
( )
( )

0 0 0 0

0 0 0 0

0 0 0

: 0 4 2 6,
: 0 2 2 2,
: 0 5 3 4.

x x x y z
y y x y z
z z x z

′′ ′′ ′ ′ ′= = − − = −
 ′′ ′′ ′ ′ ′= = + − = −
 ′′ ′′ ′ ′= = − = −

 

Starting from the initial conditions (4.3) and by means of the recurrence relation  

( ) ( ) ( ) ( ), 1 1 2 3 , 2 1 2 3 , 3 1 2 3 , 4 1 2 3, , 2 , , , , 2 , , ,k n k n k n k nF u u u F u u u F u u u F u u u− − − −= − +  

with 1, 2,3k =  and 0n ≥ , we find the following first values for the generalized Lucas polynomials  
( ), 1 2 3, ,k nF u u u :  

1,2 1,3 1,4 1,5

2,2 2,3 2,4 2,5

3,2 3,3 3,5 3,5

2 3 6, 13,
1 0 1, 0,

2 4 6, 12,

F F F F
F F F F
F F F F

= = = =

= − = = =

= = = =







 

Here we compute an approximation of the solution of the Cauchy problem obtained by a suitable truncation of 
order N of the Taylor expansion  

( ) ( ) 1, 1 0 2, 1 0 3, 1 0
0 !

nN

N n n n
n

tx t x t F x F x F x
n− − −

=

′′ ′ ≈ = + + ∑  

( ) ( ) 1, 1 0 2, 1 0 3, 1 0
0 !

nN

N n n n
n

ty t y t F y F y F y
n− − −

=

′′ ′ ≈ = + + ∑  

( ) ( ) 1, 1 0 2, 1 0 3, 1 0
0 !

nN

N n n n
n

tz t z t F z F z F z
n− − −

=

′′ ′ ≈ = + + ∑  

The exact solution of the Cauchy problem (4.5)-(4.6) is  

( ) 2e 2cos 6sin ,tx t t t= − + +  

( ) 2cos 6sin ,y t t t= +  

( ) 2e 10sin ,tz t t= − +  

such that we can compute, by using a Mathematica program, the approximation error obtained, for some values 
of N, in a fixed points t of the real axes. For example for 15t =  and 100N =  we obtain  

( ) 131.0686474581522079795 10 ,Nx t = − ×  

( ) 2.3823512152250586472,Ny t =  

( ) 131.0686474581517959268 10 ,Nz t = − ×  

( ) ( ) 112.3199126939274252816 10 ,Nx t x t −− = ×  

( ) ( ) 413.6140640499302640175 10 ,Ny t y t −− = − ×  

( ) ( ) 112.3199126939274252816 10 .Nz t z t −− = ×  

4.3. Example 3 (Continuous Time Case) 
We consider the 4 4×  system  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 2 3 4

2 1 2 3 4

3 1 2 3 4

4 1 2 4

3 2
2 2

3 4 2
2 5 2 ,

x t x t x t x t x t
x t x t x t x t x t
x t x t x t x t x t
x t x t x t x t

′ = − + −
 ′ = + − +
 ′ = − + + +
 ′ = − + −

                         (4.7) 
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with matrix  : 

1 1 3 2
2 1 2 1

: .
3 4 1 2
2 5 0 2

− − 
 − =
 −
 
− − 

  

The invariants of   are:  

1 1,u =  

2 7,u =  

3 74,u = −  

4 180,u = −  

We will consider, the Cauchy problem with initial conditions:  

( )
( )
( )
( )

1 1,0

2 2,0

3 3,0

4 4,0

0 1
0 2
0 1
0 3.

x x
x x
x x
x x

 = = −
 = =
 = =
 = =

                                  (4.8) 

Then, as a consequence, we have:  

( )
( )
( )
( )

1,0 1 1,0 2,0 3,0 4,0

2,0 2 1,0 2,0 3,0 4,0

3,0 3 1,0 2,0 3,0 4,0

4,0 4 1,0 2,0 4,0

0 3 2 6
0 2 2 1
0 3 4 2 18
0 2 5 2 6,

x x x x x x
x x x x x x
x x x x x x
x x x x x

′ ′ = = − + − = −
 ′ ′= = + − + =
 ′ ′= = − + + + =
 ′ ′= = − + − =

 

( )
( )
( )
( )

1,0 1 1,0 2,0 3,0 4,0

2,0 2 1,0 2,0 3,0 4,0

3,0 3 1,0 2,0 3,0 4,0

4,0 4 1,0 2,0 4,0

0 3 2 35
0 2 2 41
0 3 4 2 52
0 2 5 2 5,

x x x x x x
x x x x x x
x x x x x x
x x x x x

′′ ′′ ′ ′ ′ ′ = = − + − =
 ′′ ′′ ′ ′ ′ ′= = + − + = −
 ′′ ′′ ′ ′ ′ ′= = − + + + =
 ′′ ′′ ′ ′ ′= = − + − =

 

and  

( )
( )
( )
( )

1,0 1 1,0 2,0 3,0 4,0

2,0 2 1,0 2,0 3,0 4,0

3,0 3 1,0 2,0 3,0 4,0

4,0 4 1,0 2,0 4,0

0 3 2 222
0 2 2 70
0 3 4 2 207
0 2 5 2 285.

x x x x x x
x x x x x x
x x x x x x
x x x x x

′′′ ′′′ ′′ ′′ ′′ ′′ = = − + − =
 ′′′ ′′′ ′′ ′′ ′′ ′′= = + − + = −
 ′′′ ′′′ ′′ ′′ ′′ ′′= = − + + + = −
 ′′′ ′′′ ′′ ′′ ′′= = − + − = −

 

Starting from the initial conditions:  

1, 1 1,0 1,1 1,2

2, 1 2,0 2,1 2,2

3, 1 3,0 3,1 3,2

4, 1 4,0 4,1 4,2

0 0 0, 1,
0 0 1, 0,
0 1 0, 0,
1 0 0, 0,

F F F F
F F F F
F F F F
F F F F

−

−

−

−

= = = =
= = = =
= = = =
= = = =

 

and by means of the recurrence relation  

( ) ( ) ( )
( ) ( )

, 1 1 2 3 4 , 2 1 2 3 4 , 3 1 2 3 4

, 4 1 2 3 4 , 5 1 2 3 4

, , , , , , 7 , , ,

74 , , , 180 , , , ,
k n k n k n

k n k n

F u u u u F u u u u F u u u u

F u u u u F u u u u
− − −

− −

= −

− +
 

with 1, 2,3, 4k =  and 0n ≥ , we find the following first values for the generalized Lucas polynomials 
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( ), 1 2 3 4, , ,k nF u u u u :  

1,3 1,4 1,5 1,6 1,7

2,3 2,4 2,5 2,6 2,7

3,3 3,4 3,5 3,6 3,7

4,3 4,4 4,5 4,6 4,7

1, 6, 87, 61, 1294,
7, 81, 148, 1233, 4931,
74, 106, 624, 5358, 20174,

180, 180, 1080, 15660, 10980, .

F F F F F
F F F F F
F F F F F
F F F F F

= = − = − = =

= − = − = = =

= − = = = = −

= = = − = − =









 

Here we compute an approximation of the solution of the Cauchy problem obtained by a suitable truncation of 
the Taylor expansion  

( )
8

1 1, 1 1,0 2, 1 1,0 3, 1 1,0
0

2 3 4 5

6 7 8

!
1 6 17.5 37 10.0417 41.525

23.3306 7.97798 14.1348 ,

n

n n n
n

tx t F x F x F x
n

t t t t t
t t t

− − −
=

′′ ′ ≈ + + 

= − − + + + −

− + +

∑

 

( )
8

2 1, 1 2,0 2, 1 2,0 3, 1 2,0
0

2 3 4 5

6 7 8

!
2 20.5 11.6667 20.9583 35.0583

2.10278 16.0288 7.21639 ,

n

n n n
n

tx t F x F x F x
n

t t t t t
t t t

− − −
=

′′ ′ ≈ + + 

= + − − + +

− − −

∑

 

( )
8

3 1, 1 3,0 2, 1 3,0 3, 1 3,0
0

2 3 4 5

6 7 8

!
1 18 26 34.5 71.7917 7.35

49.8014 26.2446 9.01781 ,

n

n n n
n

tx t F x F x F x
n

t t t t t
t t t

− − −
=

′′ ′ ≈ + + 

= + + − − −

+ + −

∑

 

( )
8

4 1, 1 4,0 2, 1 4,0 3, 1 4,0
0

2 3 4 5

6 7 8

!
3 6 2.5 47.5 9.33333 20.675

36.1653 5.16905 10.7202 .

n

n n n
n

tx t F x F x F x
n

t t t t t
t t t

− − −
=

′′ ′ ≈ + + 

= + + − − +

+ − −

∑

 

4.4. Example 4 (Using the Riesz-Fantappiè Formula) 
Consider the problem  

( ) ( )
( ) ( )T

00 1, 2 ,

Z t Z t

Z Z

′ = ⋅


= =


 

with matrix  

2 1 2
, then .

1 2 2
t t

A t
t t

   
= =   
   

  

Characteristic polynomial  

( ) 2 2, 4 3P t t tλ λ λ= − +  

Matrix eigenvalues  

1 2, 3 .t tλ λ= =  

Matrix invariants  
2

0 1 21, 4 , 3 .u u t u t= = =  

From the initial condition  
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( )T0
0 0 1, 2 ,Z Z= =  

we find  

( )T
0 0 4,5 .Z Z′ = =  

Riesz-Fantappiè formula  

( ) ( ) ( )
11 1

0 0
0 0

1 ee 1 d .
2π ,

h jh jtA h h
j

h j
Z t Z u t Z

i P t

λ

γ

λ λ
λ

− −−

= =

 
= = − ⋅ 

 
∑ ∑ ∫  

i.e.  

( ) ( ) ( )( ) ( )
11T 0

02 2
0

02 2

1 e, 1 d
2π 4 3

1 e d ,
2π 4 3

j
j

j
j

Z t x t y t u Z
i t t

tZ
i t t

λ

γ

λ

γ

λ λ
λ λ

λ
λ λ

−

=

 
= = − − + 

 
′+ ⋅ − + 

∑ ∫

∫





 

( ) ( ) ( )( ) ( ) ( )

( )

T T
2 2

T
2 2

e 41, d 1, 2
2π 4 3

1 e d 4,5 .
2π 4 3

t
Z t x t y t

i t t

i t t

λ

γ

λ

γ

λ
λ

λ λ

λ
λ λ

 −
= = ⋅ − + 

 
+ ⋅ − + 

∫

∫





 

Integrals computation (using the Residue Theorem).  

( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

2 2

3

3

e 41 d
2π 4 3

e 4 e 4
lim 3 lim

3 3

e 3e ,
2 2

t t

t t

t
i t t

t t
t t

t t t t

λ

γ

λ λ

λ λ

λ
λ

λ λ

λ λ
λ λ

λ λ λ λ→ →

 −
 − + 

− −
= − + −

− − − −

= − +

∫

 

( ) ( ) ( ) ( ) ( ) ( )

2 2

3

3

1 e d
2π 4 3

e elim 3 lim
3 3

e e .
2 2

t t

t t

i t t

t t
t t t t

t t

λ

γ

λ λ

λ λ

λ
λ λ

λ λ
λ λ λ λ→ →

 
 − + 

= − + −
− − − −

= −

∫

 

Solution of the problem  

( ) ( ) ( )( ) ( ) ( )
3 3

T T Te 3e e e, 1, 2 4,5 ,
2 2 2 2

t t t t

Z t x t y t t
t t

   
= = − + ⋅ + − ⋅ ⋅   

   
 

i.e.  

( )
3 3 3e 3e e e 3e e4 ,
2 2 2 2 2

t t t t t t

x t
    −

= − + + − =   
   

 

( )
3 3 3e 3e e e 3e e2 5 .
2 2 2 2 2

t t t t t t

y t
    +

= − + + − =   
   

 

Checking our result 
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( ) ( )
3 39e e 9e e, .
2 2

t t t t

x t y t− +′ ′= =  

( ) ( ) ( )
3 3 36e 2e 3e e 9e e2 ,

2 2 2

t t t t t t

x t x t y t − + −′ = + = + =  

( ) ( ) ( )
3 3 33e e 6e 2e 9e e2 .
2 2 2

t t t t t t

y t x t y t − + +′ = + = + =  

5. Conclusions 
We have recalled that the exponential ( )exp   of a matrix   can be written as a matrix polynomial, 
obtained from the scalar polynomial interpolating ( )exp x  on the spectrum of  , and then avoiding the 
Taylor expansion for the exponential matrix. 

By using the functions ,k nF , and in particular the fundamental solution of a homogeneous linear recurrence 
relation, i.e. the generalized Lucas polynomials of the second kind, we have shown how to obtain the solution of 
vectorial dynamical problems, both in the discrete (3.1) and continuous (3.3) case, in terms of functions of the 
invariants of  , instead of powers of  . These functions are independent of the Jordan canonical form of 
 , and can be computed recursively, avoiding the knowledge of eigenvectors and principal vectors of the con- 
sidered matrices. Moreover, if the matrix is real, the ,k nF  functions are real as well, and complex eigenvalues 
do not affect the form of the solution. 

Furthermore, the use of the Riesz-Fantappiè formula (Sections 3.3 and 4.4) reduces to a finite computation the 
algorithms used in literature. 

Therefore, the methods considered in this article are more convenient, with respect to those usually found in 
literature, for solving linear dynamical systems. 
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