
Applied Mathematics, 2016, 7, 556-568 
Published Online March 2016 in SciRes. http://www.scirp.org/journal/am 
http://dx.doi.org/10.4236/am.2016.76051   

How to cite this paper: Lugoye, J., Wairimu, J., Alphonce, C.B. and Ronoh, M. (2016) Modeling Rift Valley Fever with 
Treatment and Trapping Control Strategies. Applied Mathematics, 7, 556-568. http://dx.doi.org/10.4236/am.2016.76051  

 
 

Modeling Rift Valley Fever with Treatment 
and Trapping Control Strategies 
Jonnes Lugoye1, Josephine Wairimu2, C. B. Alphonce1, Marilyn Ronoh2 
1Univeristy of Dar es Salaam, Dar es Salaam, Tanzania 
2School of Mathematics, University of Nairobi, Nairobi, Kenya 

 
 
Received 8 December 2015; accepted 27 March 2016; published 30 March 2016 

 
Copyright © 2016 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
We consider a rift valley fever model with treatment in human and livestock populations and 
trapping in the vector (mosquito) population. The basic reproduction number 0  is established 
and used to determine whether the disease dies out or is established in the three populations. 
When 0 1 ≤ , the disease-free equilibrium is shown to be globally asymptotically stable and the 
disease does not spread and when 0 1 > , a unique endemic equilibrium exists which is globally 
stable and the disease will spread. The mathematical model is analyzed analytically and numeri-
cally to obtain insight of the impact of intervention in reducing the burden of rift valley fever dis-
ease’s spread or epidemic and also to determine factors influencing the outcome of the epidemic. 
Sensitivity analysis for key parameters is also done. 
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1. Introduction 
Rift Valley Fever (RVF) is an infectious disease caused by the RVF virus of the genus Phlebovirus and family 
Bunyaviridae. It is transmitted between animal species, including cattle, sheep, goats, and camels, primarily 
through the bite of the female mosquito, usually Aedes or Culex [1]. Gaff [2] formulated an epidemiological 
model of RVFV determining how to reduce egg classes of mosquitoes. Clements [3] modeled the distribution of 
two species of mosquitoes (Aedes aegypti and Culex pipiens complex) and showed that distribution of vectors 
had biological and epidemiological significance in relation to disease outbreak hotspots, and provided guidance 
for the selection of sampling areas for RVF vectors during inter-epidemic periods. Fischer in [4] studied the 
transmission potential of Rift Valley Fever virus in Netherlands by developing a mathematical model to deter-
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mine the initial growth and Floquet ratios which were indicators of the probability of an outbreak and persis-
tence in a periodic changing environment caused by seasonality. Their result showed that several areas of Neth-
erlands had a high transmission potential and risk persistence of the infection [2]. The key result is that RVF vi-
rus can persist in a closed system for 10 years if the contact rate between hosts and vectors is high [5]. Meshe [6] 
formulated and analysed a mathematical model described by a system of non-linear ordinary differential equa-
tions to gain insight on the dynamics of RVF in mosquito, livestock and human hosts. The disease’s threshold 
was computed and used to investigate the local stability of the equilibria and infer the behaviour of the disease. 
Tianchan et al. [7] developed a mathematical model incorporating the effect of space into the mathematical 
model of RVF to study the effect of the virus spread as affected by the movements of livestock, human and 
mosquitoes. The simulated results showed that different geographic spaces have a great effect on the spread of 
the pathogen and the disease in general. [8] presented the mathematical model for Rift Valley fever (RVF) 
transmission in cattle and mosquitoes by extending the existing models for vector-borne diseases to include an 
asymptomatic host class and vertical transmission in vectors. RVF remains a threat to livestock keepers and na-
tions where the disease is occurring due to its major economic implications through the costs of the measures 
taken at individual, collective and international levels to prevent or control infections and disease outbreaks [9]. 
In this study we extend the work of [6] by incorporating the aspect of control in the modelling transmission dy-
namics of RVF in humans and animals, by answering the question: How does trapping of mosquitoes and/or 
treatment of humans and animals or both affect the spread of the disease? 

The rest of the paper is arranged as follows. In Section 2, we formulate the mathematical model and establish 
the basic properties of the model. In Section 3, we compute the basic reproduction number herein referred to as 
the effective reproduction number, and determine the local and global stability of the Disease Free equilibrium. 
In Section 4, we establish the existence and stability of the Endemic Equilibrium. In Section 5, we have sensitiv-
ity analysis with its interpretation. Section 6 has numerical simulation and Section 7 is the conclusion.  

2. Model Formulation 
In this model we divide the three populations into the susceptible, iS  and infected, iI  classes, for , ,i h l m=  for, 
human (h), livestock (l) and mosquitoes (m), respectively. The three susceptible populations become infected via an 
infectious mosquito bite at per capita rates ijλ . The newborns in each category are recruited at the per capita birth rate 
of iπ  and hosts either die naturally or owing to the disease at per capita rates iµ  and iδ , respectively. Treatment in 
livestock is introduced at a constant rate lγ ; treatment in humans at a constant rate hγ  and trapping in mosquito at a 
constant rate mγ  resulting in the classes of treated livestock lT , treated humans hT  and trapped mosquito pT . We 
assume that treated human and livestock recover at a constant rate ,h lη η  respectively and return to the susceptible 
class again. The susceptible vector is trapped at a constant rate hσ . Since a population dynamics model is considered, 
all the state variables and parameters are assumed to be non-negative, with as SI framework. The model assumes that 
individuals mix homogeneously in the human and livestock population where all individuals have equal chance of 
getting the infection if they come into contact with infectious mosquitoes and that transmission of the infection occurs 
with a standard incidence. It is the assumption of the model that there is natural mortality and disease induced death 
for livestock and human beings, whereas mosquitoes die only naturally, thus there is no disease induced death for 
mosquitoes. Again the model assumes that the individuals infected with rift valley from all three populations do not 
recover naturally. The schematic diagram is given below 
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with initial conditions, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 .h h h l l l m m pS I T S I T S I T  The force of infections  

are given by 1 2 3 4, , , .m m l h
hm lm ml mh

h l m m

I I I I
N N N N
β β β β

λ λ λ λ= = = =  The parameters, β1, β2, β3, and β4 are the trans-  

mission rates. Adding equations system 1, we have 

h i i i iN N Iπ µ δ′ = − − .                                   (2) 

2.1. Model Analysis 
In this section, we carry out stability analysis of the model (1). The model properties are employed to establish 
criteria for positivity of solutions and well-possessedness of the system. 

2.1.1. Invariant Region 
In this section a region in which solutions of the model system (4.1) are uniformly bounded in a proper subset 

10
1 +Ω ∈ . Let ( ) 10, , , , , , , ,h h h l l l m m pS I T S I T S I T +∈  be any solution with positive initial conditions. Then from 

Equation (4.1) it is noted that in the absence of the disease (i.e. 0δ = ), the total host population size is given 
by, 

h i iN Nπ µ′ = −  

so 

( )0 0 e ,ii
i i

i

N N tµπ
µ

−≤ ≤ +  

where ( )0iN  is the value evaluated at the initial conditions of the respective variables. Thus, as  
,0 i it N π→∞ ≤ ≤ →∞ . In respect of this, all the feasible solutions of system (1) enter the region 

( ) 10 *, , , , , , , , , : i
h h h h l l l m m p i i

i

S I R T S I T S I T R N N
π
µ+Ω = ∈ ≤ = . 

Hence, 1Ω  is positively invariant and it is sufficient to consider solutions in 1Ω . Furthermore, existence, 
uniqueness and continuation of results for system 1 hold in this region. It is clear that all solutions of model sys-
tem (1) starting in *

1Ω  remain in 1 0tΩ ∀ ≥ . Since the model monitors populations, all parameters and state 
variables for system 1 are assumed to be positive. The result is summarized in the following lemma. 

Lemma 
The region 10

+Ω∈  is positively invariant for the model system (1) with initial conditions in + . 

2.1.2. Positivity of Solutions 
Lemma 

Let the initial data be ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 10 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0h h h l l l m m pS I T S I T S I T ∈Ω ; Then the solution set 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , , ,h h h l l l m m pS t I t T t S t I t T t S t I t T t  of the system 1 is positive 0t∀ ≥ . 
Proof From the first equation of the model system 1 

( ) ,h h hm h h h h h hm h hS S S T Sπ λ µ η λ µ′ = − − + ≥ − +                       (3) 

that is 

( ) ,h hm h hS Sλ µ′ = − +  

integrating by the equation above gives, 
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S t
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≥ 

  
. 

Then 

( ) ( ) ( )0 d0 exp 0
t

hm h hS t
h hS t S λ µ− +∫≥ > . 

Similarly, it can be shown that the remaining eight equations of system (4.1) are also positive 0t∀ > . 

3. Steady State Solutions 
In this section the model system (4.1) is qualitatively analysed by determining the equilibria, carrying out their 
corresponding stability analysis and interpreting the results. Let ( )* * * * * * * * *, , , , , , , ,h h h l l l m m pE S I T S I T S I T= , be the 
equilibrium point of the system (1). Then, setting the right hand side of system (1) to zero, we obtain 
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                          (4) 

From the second, fourth and sixth equations of (4), we write *
hI  and *

lI  in terms of *
mI . From the sixth eq-

uation of (4) we have, 

( ) ( )
( )( )

( )
* * * *

2 3 1 4
* 0l l l m m h h h m m

m m m
h h h l l l m

I S I S
I

N
β β µ δ γ β β µ δ γ

µ σ
µ δ γ µ δ γ

+ + + + +
− + =

+ + + +
 

defining 

( ) ( )
( )( )

2 3 1 4
0

l l l h h h

h h h l l l

β β µ δ γ β β µ δ γ
µ δ γ µ δ γ
+ + + + +

=
+ + + +

 . 

Equation (2) reduces to (3). 

3.1. Disease Free Equilibrium 

This solution * * * 0h l mI I I= = =  of 4 leads to the disease-free equilibrium point 0E  is given by 

2 ,0,0, ,0,0, ,0,0,0 .h l m

h l m

E
π π π
µ µ µ

 
=  
 

                              (5) 

3.2. The Effective Reproductive Number, eff 
In this section, the threshold parameter that governs the spread of a disease referred to as the effective reproduc-
tion number is determined. Mathematically, it is the spectral radius of the next generation matrix [10]. The equa-
tions of the system (1) are re-written starting with infective classes, to obtain 
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From the system (6), i  and i  are defined as 
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The partial derivatives of i  and i  with respect to ,h lI I  and mI  and evaluating at the disease free 
point gives 

( )
( )

( )

1

2

2 3 1 4

0 0 0 0
0 0 ,  0 0 .

0 0
0 0

h h h

l l l

m mm

l l l l l l

F V

I

β µ δ γ
β µ δ γ

µ γβ β β β
µ δ γ µ δ γ

 
 

 + + 
  = = + +    +    +  + + + +   

 

1FV −  is computed and obtained as 
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The eigenvalues of 1FV −  are 1 2 0λ λ= =  and 

( ) ( )
( )( )( )
2 3 1 4

3 .l l l h h h

m m h h h l l l

β β µ δ γ β β µ δ γ
λ

µ γ µ δ γ µ δ γ
+ + + + +

=
+ + + + +

 

The effective reproduction number eff  measures the average number of new infections generated by a typ-
ical infectious individual in a community when treatment and trapping strategies are in place. As we increase 
trapping and treatment rates, iβ  have the effect of increasing eff  because of linearity of eff  in terms of 

iβ  taking into account that, treatment and trapping are effective. 

Local Stability of the Disease Free-Equilibrium 

The disease-free equilibrium point is 2 ,0,0, ,0,0, ,0,0,0h l m

h l m

E π π π
µ µ µ

 
=  
 

 Thus, the Jacobian matrix 2EJ  of the  

system (1) is computed by differentiating each equation in the system with respect to the state variables 
, , , , , , , ,h h h l l l m m pS I T S I T S I T . Hence, at the steady states the Jacobian matrix for system (1) is given by 

( )

0

1

1

2

2

2

4 3

4 3

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
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− − 
 − 
 −
 

− 
 − −
 =

− 
 − 

− − − 
 − + 
 − 

             (7) 

where l l la µ δ γ= + + , h hd µ η= + , l l lq µ δ η= + +  and m mr µ γ= +  The characteristic polynomial is given 
as 

( )2
4 4 3 3 0h h m h h m h h mλ λ µ δ µ µ β µ µ δ β δ µ β β+ + + + + + + − =  

Using Birkhoff and Rota's theorem on the differential inequality (3) we obtain 

0
0EJ λ− = . 

From the matrix (7) we note that the first, third, fourth, fifth and sixth have diagonal entries. Therefore their 
corresponding eigenvalues are; 

1 3 4 5 8 1, , , , , ,h h l md sλ µ λ µ λ λ µ λ λ µ= = − = − = − = − = −                         (8) 

0

1

2

4 3

0 0
0
0 0

0

l
E

l

b
a

J
q

r

β
η β

γ
β β

− 
 − =
 −
 

− 

.                                              (9) 

With the help of mathematical software, the following characteristic equation is obtained 

( ) ( ) ( ) ( )2
2 3 4 1 2 3 1 4 2 3 4 1 ,l l l l l lb q r q a a q bq r aqλ β β β β λ β β γ η β β β β γ η β β γ η + − + + + + + − + + +       (10) 

( ) ( ) ( ) ( )2
2 3 4 1 2 3 1 4 2 3 4 1?l l l l l lb q r q a a q bq r aqλ β β β β λ β β γ η β β β β γ η β β γ β + − + + + + + + + +        (11) 

( ) ( ) ( ) ( )2
2 3 4 1 2 3 1 4 2 3 4 1? 0l l l l l la b q r q a a q bq r aqλ β β β β λ β β γ η β β β β γ η β β γ β + + − + + + + + + + + =   

and 
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( ) ( )
( )( )( ) ( ) ( )( )2 3 1 4

3 1l l l h h h
m m m m eff

m m h h h l l l

β β µ δ γ β β µ δ γ
λ µ γ µ γ

µ γ µ δ γ µ δ γ
+ + + + +

= − + = + −
+ + + + +

 . 

If 1eff < , then 1 2 1 3 4 5 6 7 8 9, , , , , , , , ,λ λ λ λ λ λ λ λ λ λ  and 10λ  are all negative. These results are summarised 
with the following theorem 

Theorem 
The disease-free equilibrium point is locally asymptotically stable if 1eff <  and unstable if 1eff > . 

4. The Endemic Equilibrium, E3 
In the presence s of infection, that is, * * *0, 0 0h l hI I I≠ ≠ ≠ , the model system (1) has a non-trivial equilibrium 
point, 3E  called the endemic equilibrium point which is given by ( )* * * * * * * * * *

3 , , , , , , , , 0h h h l l l m m m pE S I T S I T S I T T= ≠ , 
where * * * * * * * * * *, , , , , , , , 0h h h l l l m m m pS I T S I T S I T T >  from the system (4.3). In this case, the following solution is consi-
dered 

* *
0 m mS N=                                        (12) 

where eff  is derived above. Then from the equations of system (4.3) we obtain 

( )
2

*
*

1

h
h

h m h

S
I

π
π β µ

=
+

                                        (13) 

( )
2

*
*

2

l
l

l m l

S
I

π
π β µ

=
+

                                        (14) 

( )( )

*
* 1

*
1

m h
h

h m h h h

II
I
β π

π β µ δ γ
=

+ + +
                               (15) 

( )( )
*

* 2l m
l

l l l l l

IT γ β
µ δ γ µ η

=
+ + +

                                  (16) 

( )( )

*
* 1

*
1

m l
l

l m l l l

II
I
β π

π β µ δ γ
=

+ + +
                                (17) 

( )( )
* 2h h

h
h h h h h

IT γ β
µ δ γ µ η

=
+ + +

.                                 (18) 

We let l l ld µ δ γ= + +  and h h hl µ δ γ= + +  then 

( )( )
( ) ( )

* *
2 1*

* *
1 2 4 2 1 3

m l m h m
m

m h l l m l

ld I I
S

I l I d

π π β π β

β π β β π π β β β π

+ +
=

+ +
                         (19) 

Adding the last two equations of the system and making some simplifications we obtain 
2

1 0m mBI B I A+ + =                                    (20) 

where 

( )( ) ( )1 2 m l l l h h h m mB β β π µ δ γ µ δ γ µ γ= + + + + + +  

( )( )( ) ( ) ( )
( ) ( )

1 2 1 1 2

2
1 2 1 2 4

m h l h h h l l l m m h l l l l

h l l l l l l h h h

B π β π β π µ δ γ µ δ γ µ γ β β π π µ δ γ

β β π π µ δ γ β β β π π µ δ γ

= + + + + + + + + +

− + + − + +
 

( )( )( )1m l h h h h l l l effA π π π µ δ γ µ δ γ= + + + + − . 

The equation, ( )* 0mf I =  corresponds to a situation when the disease persists (endemic). In case of back-
ward bifurcation, multiple endemic equilibrium must exist. This implies that while considering the equation 
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(4.18) there are three cases we have to consider depending on the signs of 1B  and A since B is always positive. 
That is; 

1) If 1 0B <  and 0A =  or 2
1 4 0B BA− = , then Equation (4.18) has a unique endemic equilibrium point 

(one positive root) and there is no possibility of backward bifurcation. 
2) If 0A > , 1 0B >  and 2

1 4 0B BA− > , then Equation (4.18) has two endemic equilibria (two positive 
roots), and thus there is the possibility of backward bifurcation to occur. 

3) Otherwise, there is none. 
However it is important to note that A is always positive if 1eff <  and negative if 1eff > . Hence the 

above explanation leads to the following theorem. 
Theorem 5 The rift valley fever basic model has, 
1) Precisely one unique endemic equilibrium if 0 1effA < ⇔ >  
2) Precisely one unique endemic equilibrium if 1 0B <  and 0A =  or 2

1 4 0B BA− =  
3) Precisely two endemic equilibrium if 0A > , 1 0B <  and 2

1 4 0B BA− >  
4) None, otherwise. 
From (iii) it is observed that backward bifurcation is possible if the discriminant is set 2

1 4 0B BA− =  and 
solve for the critical value of eff . Thus, we get 

( )( )
2

1
4

c
eff

h l m h h h l l l

B
Aπ π π µ δ γ µ δ γ

= −
+ + + +

  

where backward bifurcation occurs for values of eff  lying in the range 0 0 1c < <  . The theorem below 
gives the condition of existence of the endemic equilibrium point, 3E . 

Theorem 5 The endemic equilibrium point, 3E  exists if 0 1> . 

5. Sensitivity Analysis 
Sensitivity analysis determines parameters that have a high impact on eff  and should be targeted by interven-
tion strategies. We will use the approach done in [11] and Blower and Dowlatabadi, 1994 to calculate the sensi-
tivity indices of the effective reproduction number, eff . 

The indices are crucial and will help us determine the importance of each individual parameter in transmis-
sion dynamics and prevalence of the Rift Valley Fever Virus. 

Definition 1 The normalized forward sensitivity index of a variable, u, that depends differentiably on index  

on a parameter, p is defined as; .u
p

u p
p u
∂

ϒ = ×
∂

 

The analytical expression for the sensitivity of eff  is eff

eff

u p
p
∂

ϒ = ×
∂




 for each of the parameter p in-  

volved in eff . We used the following parameter values to determine the sensitivity indices; 1 6.91,β =
2 3 40.31, 0.31, 0.31, 0.20, 0.20, 0.20, 0.50, 0.50, 0.50,h l m h l hβ β β µ µ µ δ δ γ= = = = = = = = = 0.6, 0.20l mγ σ= =  

Interpretation of Sensitivity Analysis 
From Table 1, it shows that when the parameters 1 2 3 4, , , , , ,h lβ β β β µ µ  and mµ , are increased keeping other 
parameters constant they increase the value of eff  implying that they increase the the burden of the disease 
among the human, animals and vector populations as they have positive indices. While the parameters mσ , 

,h lγ γ  and mγ  decrease the value of eff  when they are increased while keeping the other parameters con-
stant, implying that they decrease the burden of the disease among the human, livestock and vector populations. 
The specific interpretation of each parameter shows that, the most sensitive parameter is the transmission rates 
for susceptible cattle individuals with infection 2β  followed by 1β  transmission rates for susceptible human 
individuals with infection and so on as the Table 1 indicates. 

6. Numerical Simulation 
We carry out numerical simulations for mathematical model of rift valley fever for the set of parameters from 
literature as shown in Table 1. The parameter values that changed the value of 0e  are: 1 22.9; 2.9;β β= =
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3 0.531; 0.5; 100000, 100000, 100000,h h l hβ δ π π π= = = = =  and 0.3lδ = . 
We have the following simulation results (Figures 1-6). Figure 1 shows variation of the different populations 

for specified parameter values. As treatment rates hT  and lT  increase, both infected human population hI  
and cattle population lI  rises quickly to reach maximum and then drops to a steady state. Corresponding to the 
rise of both human population hI  and livestock population lI  infective there is a drop in the susceptible 
human hS  and livestock lS  population until reaches the minimum values and then rises to a steady state. The 
reduction of mosquitoes lS  and mI  through trapping pT  of both infected and susceptible lead to reduction in 
infected human and animal population because the two are infected by infected mosquitoes and they do not in-
fect each other. The simulation results depicted in Figure 2 illustrating the the endemic state with the value of 

1.2804eff = . The results show the introduction of trapping the mosquitoes, treating human and livestock pop-
ulations reduce the reproduction number from 8.60276 to 0.4782, this implies the clearance of the disease. 
 
Table 1. Parameter values and the calculated sensitivity indices. 

Parameter symbol Value Sensitivity Index 

πm 100,000 −0.0000023 

πl 100,000 −0.000139643 

μm 0.8 0.108334 

γm 0.9 0.131592 

γh 0.5 −0.186422 

β2 2.9 0.133382 

γl 0.5 −0.215213 

πh 100,000 0.322104 

μl 0.2 −1.191842 

μh 0.2 −1.191842 

δl 0.5 −1.191842 

δh 0.5 −1.191842 

βl 0.531 2.48506 

 

 
Figure 1. Schematic diagram for Rift Valley Fever Model with interventions. 
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Figure 2. Population Dynamics of the rift valley fever without intervention model. 

 

 
Figure 3. Effects of treatment of livestock on mosquitoes population. 
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Figure 4. Effects of treatment of human on mosquitoes population. 

 

 
Figure 5. Effects of trapping of mosquitoes on human population. 
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Figure 6. Effects of trapping of mosquitoes on human population. 

6.1. Variation of Different Parameters on the Dynamics of Rift Valley Fever Model with 
Treatment and Trapping 

In this section parameters, ,h lγ γ , and pσ  representing the treatment rate for the infected human population, 
treatment rate for the infected livestock population and the trapping rate for the mosquitoes population respec-
tively were varied to determine their effect on the different model populations. When the treatment rates of li-
vestock and human increase the infected human, livestock and mosquitoes decrease as the Figure depicts. When 
the trapping rate mσ  and mγ  of the infected and susceptible mosquitoes respectively increase, the infected 
human and livestock decrease. This implies that endemicity of the disease among human and livestock decreas-
es. 

6.2. Discussion 
The Rift Valley Model formulated in this study is well posed and exists in a feasible region where disease free 
and endemic equilibrium points are obtained and their stability investigated. The model has two interventions; 
treatment for human and livestock and trapping for mosquitoes. We have shown that disease free equilibrium 
exist and is locally asymptotically stable whenever its associated effective reproduction number eff  is less 
than unity, and it has a unique endemic equilibrium u when eff  exceeds unity. These results have important 
public health implications, since they determine the severity and outcome of the epidemic (i.e. clearance or per-
sistence of infection) and provide a framework for the design of control strategies. Analysis of the model show 
that in the absence of treatment of livestock and human and trapping of mosquitoes (ie. 0m h Lσ γ γ= = = ) and 
if 1eff > ,the epidemic will develop,but if 1eff <  it will die out. At h lγ γ= = ∞  (all infected human and 
cattle have access to treatment for human and all mosquitoes are trapped), then 0eff = , and the epidemic will 
be fully controlled. The main epidemiological findings of this study include: 
 In the absence of treatment of human or livestock and trapping for mosquitoes: 1eff >  implying that 

treatment failure leads the epidemic persistence. Hence the combination of treatment for livestock, humans 
and trapping for mosquitoes can eradicate the rift valley fever infection if eff  can be reduced to below un-
ity. 
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 With human or livestock and trapping for mosquitoes 1eff < , so; (a) 1eff < : human or livestock treat-
ment and trapping for mosquitoes is effective, hence elimination of infection. 

7. Conclusion 
In this paper, the rift valley fever model with interventions was formulated and analysed. Using the theory of 
differential equations, the invariant set in which the solutions of the model are biologically meaningful was de-
rived. Boundedness of solutions was also proved. Analysis of the model showed that there exist two possible 
solutions, namely the disease-free point and the endemic equilibrium point. Further analysis showed that the 
disease-free point is locally stable implying that small perturbations and fluctuations on the disease state will 
always result in the clearance disease if 1eff < . In the final analysis treatment and trapping interventions pro-
gram will effectively control the spread of rift valley fever. 
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