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Abstract 
In this paper, we establish asymptotically optimal simultaneous confidence bands for the copula 
function based on the local linear kernel estimator proposed by Chen and Huang [1]. For this, we 
prove under smoothness conditions on the derivatives of the copula a uniform in bandwidth law 
of the iterated logarithm for the maximal deviation of this estimator from its expectation. We also 
show that the bias term converges uniformly to zero with a precise rate. The performance of these 
bands is illustrated by a simulation study. An application based on pseudo-panel data is also pro-
vided for modeling the dependence structure of Senegalese households’ expense data in 2001 and 
2006. 
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1. Introduction 
Let us consider a random vector ( ),X Y  with joint cumulative distribution function H and marginal distribution 
functions F and G. The Sklar’s theorem (see [2]) says that there exists a bivariate distribution function C on 
[ ]20,1  with uniform margins such that  

( ) ( ) ( )( ), , .H x y C F x G y=  

The function C is called a copula associated with the random vector ( ),X Y . If the marginal distribution 
functions F and G of H are continuous, then the copula C is unique and is defined as  
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( ) ( ) ( )( ), , ,C u v H F u G v← ←=  

where ( ) ( ){ }inf :F u x F x u← = ≥  and ( ) ( ){ }inf :G v y G y v← = ≥ , [ ], 0,1u v∈ , are the generalized inverses 
of F and G respectively. 

From these facts, estimating bivariate distribution function can be achieved in two steps: 1) estimating the 
margins F and G; 2) estimating the copula C. 

In this paper, we are dealing with nonparametric copula estimation. We consider a copula function C with 
uniform margins U and V defined on [ ]0,1 . Then, we can write  

( ) ( ) [ ], , , , 0,1 .C u v U u V v u v= ≤ ≤ ∈  

The aim of this paper is to construct asymptotic optimal confidence bands, for the copula C, from the local li-
near kernel estimator proposed by Chen and Huang [1]. Our approach, based on modern functional theory of 
empirical processes, allows the use of data-driven bandwidths for this estimator, and is largely inspired by the 
works of Mason [3] and Deheuvels and Mason [13]. 

There are two main methods for estimating copula functions: parametric and nonparametric methods. The 
Maximum likelihood estimation method (MLE) and the moment method are popular parametric approaches. It 
happens that one may use a nonparametric approach like the MLE-method and, at the same time, estimates mar-
gins by using parametric methods. Such an approach is called a semi-parametric estimation method (see [4]). A 
popular nonparametric method is the kernel smoothing. Scaillet and Fermanian [5] presented the kernel 
smoothing method to estimate bivariate copulas for time series. Genest and Rivest [6] gave a nonparametric em-
pirical distribution method to estimate bivariate Archimedean copulas. 

A pure nonparametric estimation of copulas treats both the copula and the margins in a parameter-free way 
and thus offers the greatest generality. Nonparametric estimation of copulas goes back to Deheuvels [7] who 
proposed an estimator based on a multivariate empirical distribution function and on its empirical marginals. 
Weak convergence studies of this estimator can be found in Fermanian et al. [8]. Gijbels and Mielniczuk [9] 
proposed a kernel estimator for a bivariate copula density. Another approach of kernel estimation is to directly 
estimate a copula function as explored in [5]. Chen and Huang [1] proposed a new bivariate kernel copula esti-
mator by using local linear kernels and a simple mathematical correction that removes the boundary bias. They 
also derived the bias and the variance of their estimator, which reveal that the kernel smoothing produces a 
second order reduction in both the variance and mean square error as compared with the unsmoothed empirical 
estimator of Deheuvels [7]. 

Omelka, Gijbels and Veraverbeke [10] proposed improved shrinked versions of the estimators of Gijbels and 
Mielniczuk [9] and Chen and Huang [1]. They have done this shrinkage by including a weight function that re-
moves the corner bias problem. They also established weak convergence for all newly-proposed estimators. 

In parallel, powerful technologies have been developed for density and distribution function kernel estimation. 
We refer to Mason [3], Dony [11], Einmahl and Mason [12], Deheuvels and Mason [13]. In this paper, we’ll ap-
ply these recent methods to kernel-type estimators of copulas. The existence of kernel-type function estimators 
should lead to nonparametric estimation by confidence bands, as shown in [13], where general asymptotic si-
multaneous confidence bands are established for the density and the regression function curves. Furthermore, to 
our knowledge, there is not yet such type of results in nonparametric estimation of copulas. This motivated us to 
extend such technologies to kernel estimation of copulas by providing asymptotic simultaneous optimal confi-
dence bands. 

Let ( ) ( )1 1, , , ,n nX Y X Y
 be an independent and identically distributed sample of the bivariate random vec-

tor ( ),X Y , with continuous marginal cumulative distribution function F and G. To construct their estimator, 
Chen and Huang proceed in two steps. In the first step, they estimate margins by 

( ) ( )1 1
1 2

1 1ˆˆ , ,n ni i
n ni i

n n

x X y Y
F x K G y K

n b n b= =

   − −
= =   

   
∑ ∑  

where 1nb  and 2nb  are some bandwidths and K is the integral of a symmetric bounded kernel function k sup-

ported on [ ]1,1− . In the second step, the pseudo-observations ( )ˆ ˆ
i n iU F X=  and ( )ˆ

î n iV G Y=  are used to es-
timate the joint distribution function of the unobserved ( )iF X  and ( )iG Y , which gives the estimate of the  
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unknown copula C. To prevent boundary bias, Chen and Huang suggested using a local linear version of the 
kernel k given by  

( )
( ) ( ) ( ){ }
( ) ( ) ( )

2 1
, 2

0 2 1

, , 1 ,
, , ,u h

k t a u h a u h t u uk t t
h ha u h a u h a u h

− − = < < 
−  

  

where ( ) ( ) ( )
1

, d
u h j

j u h
a u h t k t t

−
= ∫  for 0,1, 2j = ; [ ]0,1u∈  and 0 1h< <  is a bandwidth. Finally, the local li-

near kernel estimator of the copula C is defined as  

( ) ( ), , ,
1

ˆ ˆ1ˆ , ,
n

LL i i
n h u h v h

i

u U v V
C u v K K

n h h=

   − −
=       

   
∑                          (1) 

where ( ) ( ), , .
x

u h u hK x k t dt
−∞

= ∫  The subscript h in ( ) ( ),
ˆ ,LL

n hC u v  is a variable bandwidth which may depend ei-

ther on the sample data or the location ( ),u v . 
Our best achievement is the construction of asymptotic confidence bands from a uniform in bandwidth law of 

the iterated logarithm (LIL) for the maximal deviation of the local linear estimator (1), and the uniform conver-
gence of the bias to zero with the same speed of convergence. 

The paper is organized as follows. In Section 2, we expose our main results in Theorems 1, 2 and 3. Simula-
tion studies and applications to real data sets are also made in this section to illustrate these results. In Section 3, 
we report the proofs of our assertions. The paper is ended by Appendix in which we postpone some technical 
results and numerical computations. 

2. Main Results and Applications 
2.1. Main Results 
Here, we state our theoretical results. Theorem 1 gives a uniform in bandwidth LIL for the maximal deviation of 
the estimator (1). Theorem 2 handles the bias, while Theorem 3 provides asymptotic optimal simultaneous con-
fidence bands for the copula function ( ),C u v .  

Theorem 1. Suppose that the copula function ( ),C u v  has bounded first order partial derivatives on [ ]20,1 . 
Then for any sequence of positive constants ( ) 1n n

b
≥

 satisfying 0 1, 0n nb b< < → , ( ) 1lognb n −≥ , and for some 
0c > , we have almost surely  

( ) [ ]

( ) ( ) ( ) ( ) ( )
2

, ,
log , 0,1

ˆ ˆlimsup sup sup , , ,
n

LL LL
n n h n h

c nn u vh b
n

R C u v C u v A c
→∞ ∈≤ ≤

 
 − = 
  

                   (2) 

where ( )A c  is a positive constant such that ( )0 3A c< ≤  and 
1 2

2 log logn
nR

n
 

=  
 

.  

Remark 1. Theorem 1 represents a uniform in bandwidth law of the iterated logarithm for the maximal devi-
ation of the estimator (1). As in [15] we may use it, in its probability version, to construct simultaneous asymp-
totic confidence bands from the estimator (1). In this purpose, we must ensure before hand that the bias term 

( ) ( ) ( ) ( ), ,
ˆ, , ,LL

n h n hB u v C u v C u v= −  converges uniformly to 0, with the same rate nR , as n →∞ . But this re-
quires that the copula function ( ),C u v  admits bounded second-order partial derivatives on the unit square 
[ ]20,1 . 

Theorem 2. Suppose that the copula function ( ),C u v  admits bounded second-order partial derivatives on 
[ ]20,1 . Then for any sequence of positive constants ( ) 1n n

b
≥

 satisfying 0 1nb< < , ( )2 log log 1 ,nnb n o=  
and for some 0c > , we have almost surely,  

( ) [ ]

( ) ( ) ( )
2

,
log , 0,1

ˆsup sup , , 0, .
n

LL
n n h

c n u vh b
n

R C u v C u v n
∈≤ ≤

− → →∞                      (3) 

Because a number of copula families do not possess bounded second-order partial derivatives, the application 
of these results is limited by a corner bias problem. To overcome this difficulty and apply these results to a wide 



D. Bâ et al. 
 

 
2080 

family of copulas, we adopt the shrinkage method of Omelka et al. [10], by taking a local data-driven bandwidth 
( )ˆ ,nh u v  satisfying the following condition:  

(H1) 
( ) [ ]

( ) ( )
2, 0,1

ˆ ,
0, sup , 0, ,n

u v n

h u v
b u v n

h∈

 
 ∀ > − > → →∞
 
 

   

where nh  is a sequence of positive constants converging to 0, and ( , )b u v  is a real-valued function defined by  

( ) ( ){ } ( ){ }{ }, max min , 1 ,min , 1 , 0.b u v u u v vα αα α α= − − >                    (4) 

For such a bandwidth ( )ˆ ,nh u v , the local linear kernel estimator can be rewritten as  

( )
( ) ( ) ( ) ( ) ( ) ( )ˆ ˆˆ , ,1 , 1,, ,

1

ˆ ˆ1ˆ , .ˆ ˆ,1 1,n nn

n
LL i i

u h u v h vn h u v
i n n

u U v V
C u v K K

n h u h v=

   − −
=       

   
∑                     (5) 

By condition (H1), (5) is equivalent for n  large enough to  

( ) ( ) ( ) ( ), ,,
1

ˆ ˆ1ˆ , .
,1 1,n nn

n
LL i i

u h v hn h
i n n

u U v V
C u v K K

n h b u h b v=

   − −
=       

   
∑                       (6) 

This latter estimator (6) is exactly the improved shrinked version proposed by Omelka et al. [10]. It enables 
us to keep the bias bounded on the borders of the unit square and then to remove the problem of possible un-
boundedness of the second order partial derivatives of the copula function C. To set up asymptotic optimal si-
multaneous confidence bands for the copula C, we need the following additional condition:  

(H2) ( )log ˆ , , 0 , 1, 1, .n n
c n h u v b u v n

n
 ≤ ≤ ∀ ≤ ≤ → →∞ 
 

  

If conditions (H1) and (H2) hold, then we can infer from Theorem 1 that  

( )
( ) ( ) ( )

( ) ( ) ( )ˆ ˆ, , , ,
0 , 1

ˆ ˆsup , , , .
n n

LL LL
n n h u v n h u v

u v
R C u v C u v A c n

≤ ≤
− → →∞  

This is still equivalent to  

( ) ( )
( ) ( ) ( )

( ) ( )ˆ ˆ, , , ,
0 , 1

ˆ ˆsup , , 1, .
n n

LL LLn
n h u v n h u v

u v

R
C u v C u v n

A c≤ ≤
− → →∞                    (7) 

To make use of (7) for forming confidence bands, we must ensure that the bandwidth ( )ˆ ,nh u v  is chosen in 
such a way that the bias of the estimator (5) may be neglected, in the sense that  

( ) ( )
( ) ( ) ( )ˆ, ,

0 , 1

ˆsup , , 0, .
n

LLn
n h u v

u v

R
C u v C u v n

A c≤ ≤
− → →∞                      (8) 

This would be the case if condition H2) holds and ( )2 log log 1nnb n o= .  
Theorem 3. Suppose that the assumptions of Theorem 1 and Theorem 2 hold. Then for any local data-driven 

bandwidth ( )ˆ ,nh u v  satisfying (H1) and (H2), and any 0> , one has, as n →∞ ,  

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )( )ˆ ˆ, , , ,
ˆ ˆ, , , , , 0 , 1 1

n n

LL LL
n nn h u v n h u v

C u v C u v E C u v E u v ∈ − + ∀ ≤ ≤ →                (9) 

and,  

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )( )ˆ ˆ, , , ,
ˆ ˆ, , , , , 0 , 1 0,

n n

LL LL
n nn h u v n h u v

C u v C u v C u v u v ∈ − ∆ + ∆ ∀ ≤ ≤ →              (10) 

where ( ) ( ) ( )
1n

n

A c
E

R
= +  , ( ) ( ) ( )

1n
n

A c
R

∆ = −  , and 
1 2

2 log logn
nR

n
 

=  
 

.  
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Remark 2. Whenever (9) and (10) hold jointly for each 0> , we will say that the intervals  

( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )

ˆ ˆ, , , ,
ˆ ˆ, , , , , , ,

n n

LL LL
n n n h u v n h u v

n n

A c A c
u v u v C u v C u v

R R
α β

 
= − +    
 

              (11) 

provide asymptotic simultaneous optimal confidence bands (at an asymptotic confidence level of 100%) for the 
copula function ( ), , 0 , 1.C u v u v≤ ≤  So, with a probability near to 100%, we can write for all ( ) [ ]2, 0,1 ,u v ∈   

( ) ( ) ( ), , , , .n nC u v u v u vα β∈                                  (12) 

2.2. Simulations and Data-Driven Applications 
2.2.1. Simulations 
We make some simulation studies to evaluate the performance of our asymptotic confidence bands. To this end, 
we compute the confidence bands given in (11) for some classical parametric copulas, and check for whether the 
true copula is lying in these bands. For simplicity, we consider for example two families of copulas: Frank and 
Clayton, defined respectively as follows:  

( )
( )( )

( ),

e 1 e 11, log 1 , , ,
e 1

u v

FC u v
θ θ

θ θ θ
θ

− −

−

 − − = − + ∈ = −∞ ∞ 
−  

                 (13) 

and 

( ) ( ) ( )
1

, , 1 , 0, .CC u v u v
θθ θ

θ θ
−− −= + − ∈ ∞                         (14) 

We fix values for the parameter θ , and generate n pairs of data: ( ), , 1, ,i iu v i n= 
, respectively from the 

two copulas by using the conditional sampling method. The steps for drawing from a bi-variate copula C are: 
• step 1: Generate two values u and v from ( )0,1 ,  
• step 2: Set iu u= ,  

• step 3: Compute ( )1
2i iv C v u−= , where ( ) ( )2 ,i i i i

i

C v u C u v
u
∂

=
∂

. 

Then iu  and iv  are random observations drawn from the copula C. To compute the estimator 

( )
( ) ( )ˆ, ,

ˆ ,
n

LL
n h u v

C u v , we take 1 lognh n=  and ( ),b u v  given by formula (4), with 0.5α = , so that conditions (H1)  

and (H2) are fulfilled. That is the case for ( ){ }1 4
log log .nb n n=  The function ,w hK  is obtained by integrat-

ing the the local linear kernel function , nw hk  defined in the introduction, where k is the Epanechnikov kernel 

density defined as ( ) ( ) { }
2

10.75 1 xk x x ≤= −  . Finally for any ( ) [ ]2, 0,1u v ∈ , we compute the confidence inter-

val (11) by taking ( ) 3A c = .  
In Figure 1, we represent the confidence bands and the Frank copula, while Figure 2 represents the confi-

dence bands and the Clayton copula. One can see that the true curves of the two parametric copulas are well 
contained in the bands. 

We can also remark some simulitudes between Figure 1 and Figure 2. This seems normal because of the 
closeness of the values of θ  used for the Frank and clayton copulas. Indeed, we made several simulations with 
other values for θ  and observed every time that the representations of both copulas were rather similar for 
enough closed values of θ  like 2, 3, 4, 5 and different for values of θ  taken away enough like 2 and 25. But 
in any case the copula function lies in our nonparametric bands. 

As we cannot visualize all the information in the above figures, we provide in Appendix some numerical 
computations to best appreciate the performance of our bands. To this end, we generate 10 couples ( ),u v  of 
random numbers uniformly distributed in ( )0,1  and compute, for each of them and for each of the considered 
copulas, the lower bound ( ),n u vα , the upper bound ( ),n u vβ  and the true value of the copula ( ),C u v  for 
different values of θ . These computations are given in Appendix (see, Table A1 and Table A2). In Table A1 
( ),C u v  represents the Clayton copula calculated from (14), for 0.5, 2,6θ = . ( ),n u vα  and ( ),n u vβ  are re-

spectively the lower and upper bounds of our proposed confidence intervals obtained from (11) by taking  
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Figure 1. Confidence bands for the Frank copula in 3D, with 5θ = . 

 

 
Figure 2. Confidence bands for the Clayton copula in 3D, with 2θ = . 
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( ) 3A c = . Similarly Table A2 summarizes the Frank copula for 2,5,18θ = − . We can see that all the values of 
( ),C u v  are contained in their respective confidence intervals. This shows the performance of our bands. The 

negative values observed for the lower bounds in the tables are normal because the values of estimator  

( )
( ) ( )ˆ, ,

ˆ ,
n

LL
n h u v

C u v  may be less than the quantity 
( )

n

A c
R

. Since copulas are positive valued, one may replace the 

negative values by zero without affecting the performance of the bands.  

2.2.2. Data-Driven Applications 
In this subsection, we apply our theoretical results to select graphically, among various copula families, the one 
that best fits sample data. Towards this end, we shall represent in a same 2-dimensional graphic the confidence 
bands established in Theorem 3 and the curves corresponding to the different copulas considered. To illustrate 
this, we use data expenses of Senegalese households, available in databases managed by the National Agency of 
Statistics and Demography (ANSD) of the Republic of Senegal (www.ansd.sn). The data were obtained from 
two sample surveys: ESAM2 (Senegalese Survey of Households, 2nd edition, 2001-2002) and ESPS (Monitor-
ing Survey of Poverty in Senegal, 2005-2006). Because of the not availability of recent data, we deal with the 
pseudo-panel data utilized in [17], which consist of two series of observations of size 116n =  extracted from 
the surveys of 2001 and 2006. 

Instead of smoothing these observations denoted by ( ); , 1, ,i iX Y i n= 
, we deal with pseudo-observations  

( ) ( ) ( )ˆ ˆ, , ,
1 1i i n i n i

n nU V F X G Y
n n

 =  + + 
 

to define the kernel estimator of the true copula. Here, nF  and nG  are empirical cumulative distribution 
functions associated respectively with the samples 1, , nX X  and 1, , nY Y .  

This application is limited to Archimedean copulas. We will consider for example three parametric families of 
copulas: Frank, Gumbel and Clayton. Our aim is to find graphically, using our confidence bands, the family that 
best fits these pseudo-panel data. The unknown parameter θ , for each family, is estimated by inversion of 
Kendall’s tau ( ( )τ θ ). For this, we first calculate the empirical Kendall’s tau (we find ˆ 0.408τ = ), and then we 
deduce from it the values of the parameter θ  for each family (see Table 1 below). 

1D  is the Debye function of order 1 defined as: ( )1 0

1 d
e 1

x

t

tD x t
x

=
−∫ . 

Figure 3 shows that the Clayton family seems more adequate to fit our pseudo-panel data. That is, the depen-
dence modeling for these Senegalese households expense data is more satisfactory with the Clayton family than 
for the other two copulas. 

We now apply the maximum likelihood method for fitting copulas and compare it with our graphical method 
described in Figure 3. For this, it suffices to compute (see Table 2 below), for each of the three copulas, the 
log-likelihood function defined as  

 
Table 1. Expression of Kendall’s tau and estimated values for θ. 

Copula ( )τ θ  θ  

Clayton ( )2θ θ +  1.38 

Gumbel ( )1θ θ−  1.69 

Frank ( ){ }1

41 1 D θ
θ

− −
 

−0.57 

 
Table 2. Log-likelihood values. 

Copula Estimation of θ Log-likelihood 

Clayton 1.38 547.61 

Gumbel 1.69 28.57 

Frank −0.57 299.78 
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Figure 3. Simultaneous representation of the three copulas into the confidence bands. 

 

( ) ( )12
1

, u, v log , ,
n

C i i
i

L C u vθ
=

= ∑  

where ( ) ( )12 , ,C u v C u v
u v
∂ ∂

=
∂ ∂

, ( )1u , , nu u= 
 and ( )1v , , nv v= 

. The copula that best fits the data is that, 

which has the greatest log-likelihood.  
From Table 2, we can see that the maximum likelihood method also leads to the Clayton family as the best 

copula for fitting our data. So we recommend it to model the dependence structure of the Senegalese households 
expense data in the years 2001 and 2006. 

2.3. Concluding Remarks 
This paper presented a nonparametric method to estimate the copula function by providing asymptotic confi-
dence bands based on the local linear kernel estimator. The results are applied to select graphically the best co-
pula function that fits the dependence structure of the Senegalese households pseudo-panel data. 

In perspective, similar results can be obtained with other kernel-type estimators of copula function like the 
mirror-reflection and transformation estimators.  

3. Proofs 
In this section, we first expose technical details allowing us to use the methodology of Mason [3] described in 
Proposition 1 and Corollary 1 that are necessary to prove our results. In the second step we give successively the 
proofs of the theorems stated in Section 2. 

We begin by decomposing the difference ( ) ( ) ( ),
ˆ , ,LL

n hC u v C u v− , ( ) [ ]2, 0,1u v ∈  as follows:  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , ,

Deviation Bias

ˆ ˆ ˆ ˆ, , , , , , .LL LL LL LL
n h n h n h n hC u v C u v C u v C u v C u v C u v   − = − + −   

 

   

The probabilistic term  

( ) ( ) ( ) ( ) ( ), , ,
ˆ ˆˆ , : , ,LL LL

n h n h n hD u v C u v C u v= −  

is called the deviation of the estimator from its expectation. We’ll study its behavior by making use of the me-
thodology described in [3]. The other term that we denote  

( ) ( ) ( ) ( ), ,
ˆ, : , ,LL

n h n hB u v C u v C u v= −  

is the so-called bias of the estimator. It is deterministic and its behavior will depend upon the smoothness condi-
tions on the copula C and the bandwidth h. 

Recall the estimator proposed by Deheuvels in [7], which is defined as  

( ) { } ( ) ( )
1

1ˆ ˆ ˆ ˆ ˆ, , , , ,
n

n i i i n i i n i
i

C u v U u V v U F X V G Y
n =

= ≤ ≤ = =∑  

where nF  and nG  are the empirical cumulative distribution functions of the marginals F and G. This estima-
tor is asymptotically equivalent (up to a term ( )1O n− ) with the estimator based directly on Sklar’s Theorem 
given by  

( ) ( ) ( )( )1 1, , ,n n n nC u v H F u G v− −=  

with nH  the empirical joint distribution function of ( ),X Y . Then the empirical copula process is defined 
as  

( ) ( ) ( ), , , .n nu v n C u v C u v= −    

To study the behavior of the deviation ( ),
ˆ ,n hD u v , we introduce the following notation. Let  

( ) { }
1

1, ,
n

n i i
i

C u v U u V v
n =

= ≤ ≤∑   

be the uniform bivariate empirical distribution function based on a sample ( ) ( )1 1, , , ,n nU V U V
 of i.i.d random 

variables uniformly distributed on [ ]20,1 . Define the following empirical process  

( ) ( ) ( ) ( ) [ ]2, , , , , 0,1 .n nu v n C u v C u v u v = − ∈ 
   

Then one can observe that  

( ) ( ) 1, , .n nu v u v
n

= +                                 (15) 

For all ( ) [ ]2, 0,1u v ∈ , define  

( ) ( ) ( )

{ }

( ) ( ) { }

( )

, ,

, ,
1

1 1

, ,
1

1

ˆ , ,

ˆ ˆ1 ,

ˆˆ1 ,

1: , , ,

LL
n h n h n

n
i i

u h v h i i
i

n
n i n i

u h v h i i
i

n

i i
i

g C u v C u v

u U v V
K K U u V v

n h h

u F oF U v G oG V
K K U u V v

n h h

g U V h
n

=

− −

=

=

= −

    − −
= − ≤ ≤            

   − −
 = − ≤ ≤          

=

∑

∑

∑






 

where g belongs to a class of measurable functions   defined as  
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( ) ( ) ( ) ( ) { }

[ ] [ ] [ ]

1 2
, ,

2
1 2

, , , , ,

, 0,1 ,0 1 and , : 0,1 0,1 nondecreasing.

u h v h

u s v t
s t g s t h K K s u t v

h h

u v h

ζ ζ

ζ ζ

 − −   = = − ≤ ≤   
    

∈ < < 








 

Since ( ),nC u v  is an unbiased estimator for ( ),C u v , one can observe that  

( ) ( ), , ,
ˆ , , .n h n h n h nn g g nD u v u v− = −    

To make use of Mason’s Theorem in [3], the class of functions   must verify the following four conditions: 
(G.i) ( )

0 1
sup sup , , :

h g
g U V h κ

∞≤ ≤ ∈
= < ∞


  

(G.ii)There exists some constant 0C′ >  such that for all [ ]0,1h∈ , ( )2sup , ,
g

g U V h C h
∈

  ′≤ 


  

(F.i)   satisfies the uniform entropy condition, i.e., ( ) 0
0 0 00, 0 : ,C N C νν −∃ > > ≤   .  

(F.ii)   is a point wise measurable class, i.e. there exists a countable sub-class 0  of   such that for all 
g ∈ , there exits ( ) 0m m

g ⊂   such that mg g→ . 
The checking of these conditions constitutes the proof of the following proposition which will be done in 

Appendix. 
Proposition 1. Suppose that the copula function C has bounded first order partial derivatives on ( )20,1 . As-

suming (G.i), (G.ii), (F.i) and (F.ii), we have for 00, 0 1,c h> < <  with probability one  

( ) ( )

( ) ( )

( )
( )

2
0

,

log , 0,1

ˆ , ,
limsup sup sup ,

log log log

n h n

c nn u vh h
n

nD u v u v
A c

h h n→∞ ∈≤ ≤

−
=

∨


 

where ( )A c  is a positive constant.  
Corollary 1. Under the assumptions of Proposition 1, for any sequence of constants 0 1,nb< <  satisfying 

( ) 10, logn nb b n −→ ≥ , one has with probability one  

( ) ( )

( ) ( ) ( )
2

,

log , 0,1

ˆ , ,
sup sup .

loglog
n

n h n
n

c n u vh b
n

nD u v u v
O b

n∈≤ ≤

−
=


 

Proof. (Corollary 1) 
First, observe that the condition ( ) 1lognb n −≥  yields  

log
1.

log log
nb
n
≤                                     (16) 

Next, by the monotonicity of the function logx x x
 on [ ]0,1 e , one can write for n large enough, 

log logn nh h b b≤  and hence,  

( ) ( )log loglog log loglog .n nh h n b b n∨ ≤ ∨                         (17) 

Combining this and Proposition 1, we obtain  

( ) ( )

( ) ( )
( )

2

,

log , 0,1

ˆ , ,
sup sup 1 .

log
log log 1

log log
n

n h n

c n u vh b nn
n

nD u v u v
O

b
b n

n
∈≤ ≤

−
=

 
∨ 

 





 

Thus the Corollary 1 follows from (16). 
Proof. (Theorem 1) 
The proof is based upon an approximation of the empirical copula process n  by a Kiefer process (see [14], 

p. 100). Let ( ), ,u v t  be a 3-parameters Wiener process defined on [ ] [ )20,1 0,× ∞ . Then the Gaussian 
process ( ) ( ) ( ), , , , 1,1,u v t u v t t uv= − ⋅    is called a 3-parameters Kiefer process defined on  



D. Bâ et al. 
 

 
2087 

[ ] [ )20,1 0,× ∞ . 
By Theorem 3.2 in [14], for 2d = , there exists a sequence of Gaussian processes  
( ) [ ]{ }, , , , 0,1 , 0C u v n u v n∈ >  such that  

( ) [ ]
( ) ( ) ( )( )

2

3 23 8

, 0,1

sup , , , log ,n C
u v

n u v u v n O n n∗

∈

− =   

where  

( ) ( ) ( ) ( ) ( ) ( ), ,
, , , , ,1, 1, , .C C C

C u v C u v
u v n u v n u n v n

u v
∗ ∂ ∂

= − −
∂ ∂     

This yields  

( ) [ ]

( )
( ) [ ]

( )
2 2, 0,1 , 0,1

, ,,
limsup sup limsup sup .

2 log log 2 log log
Cn

n nu v u v

u v nu v

n n n

∗

→∞ →∞∈ ∈

=


                  (18) 

By the works of Wichura on the iterated law of logarithm (see [15]), one has  

( ) [ ]

( )
2, 0,1

, ,
limsup sup 3,

2 log logn u v

u v n

n n

∗

→∞ ∈

≤


                            (19) 

which readily implies  

( ) [ ]

( )
2, 0,1

,
limsup sup 3.

2 log log
n

n u v

u v

n→∞ ∈

≤


 

Since ( ),n u v  and ( ),n u v  are asymptotically equivalent in view of (15), one obtains  

( ) [ ]

( )
2, 0,1

,
limsup sup 3.

2 log log
n

n u v

u v

n→∞ ∈

≤


 

The proof is then finished by applying Corollary 1 which yields  

( ) [ ]

( )
2

,

log , 0,1

ˆ ,
limsup sup sup 3.

2 log log
n

n h

c nn u vh b
n

nD u v

n→∞ ∈≤ ≤

≤                          (20) 

Thus, there exists a constant ( )A c , with ( )0 3A c< ≤ , such that  

( ) [ ]

( ) ( ) ( ) ( ) ( )
2

1 2

, ,
log , 0,1

ˆ ˆlimsup sup sup , , .
2 log log

n

LL LL
n h n h

c nn u vh b
n

n C u v C u v A c
n→∞ ∈≤ ≤

   − =  
   

            (21) 

Proof. (Theorem 2) 
For all ( ) [ ]2, 0,1u v ∈ , one has  

( ) ( ) ( ) ( )1 1
, ,1 1

, , d du h v hC u v C u v k s k t s t
− −

= ∫ ∫  

and  

( ) ( ) ( ) ( )1, 2,
, , ,

ˆ , ,LL n i n i
n h u h v h

u U v V
C u v K K

h h
ζ ζ    − −

=             
   

with ( ) ( )1
1,

ˆ ˆ
n i n i iU F oF U Uζ −= =  and ( ) ( )1

2,
ˆ ˆ

n i n i iV G oG V Vζ −= = . We can easily show that  

( ) ( ) ( ) ( )( ) ( ) ( )1 1 1 1
, 1, 2, , ,1 1

ˆ , , d d .LL
n h n n u h v hC u v C u sh v th k s k t s tζ ζ− −

− −
= − −∫ ∫  

Hence  



D. Bâ et al. 
 

 
2088 

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )
, ,

1 1 1 1
1, 2, , ,1 1

ˆ, , ,

, , d d .

LL
n h n h

n n u h v h

B u v C u v C u v

C u sh v th C u v k s k t s tζ ζ− −

− −

= −

 = − − − ∫ ∫


 

By continuity of F and G, we have for n large enough,  

( ) ( )1 1
1,

ˆ ~n nu sh FoF u sh u shζ − −− = − −  

and  

( ) ( )1 1
2,

ˆ ~ .n nv th GoG v th v thζ − −− = − −  

Thus,  

( ) ( ) ( ) ( ) ( )1 1
, , ,1 1

, , , d d .n h u h v hB u v C u sh v th C u v k s k t s t
− −

= − − −  ∫ ∫  

By applying a 2-order Taylor expansion and taking account of the symmetry of the kernels ( ), .u hk  and 
( ), .v hk  i.e.,  

( ) ( )1 1
, ,1 1

d 0 and d 0,u h v hsk s s tk t t
− −

= =∫ ∫  

we obtain, by Fubini, that for all ( ) [ ]2, 0,1u v ∈ ,  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 22 1 1 2 2
, , ,2 21 1

2 22 1 12 2
, ,2 21 1

, , ,
, 2 d d

2

, ,
d d .

2

n h u h v h

u h v h

C u v C u v C u vhB u v s st s k s k t s t
u vu v

C u v C u vh s k s s t k t t
u v

− −

− −

 ∂ ∂ ∂
= + + 

∂ ∂∂ ∂  
 ∂ ∂

= + 
∂ ∂  

∫ ∫

∫ ∫
 

Since the second order partial derivatives are assumed to be bounded, then we can infer that  

( ) [ ]
( ) ( )

2

2
,

log , 0,1

sup sup ,
n

n h n
c n u vh b

n

B u v O b
∈≤ ≤

=  

and hence,  

( ) [ ]
( ) ( )

2

1 2 2

,
log , 0,1

sup sup , 1 .
2 log log 2log log

n

n
n h

c n u vh b
n

nbn B u v O o
n n∈≤ ≤

  
= =       

            (22) 

Proof. (Theorem 3) 
From (8), we can infer that for any given 0>  and 0δ > , there exists N ∈  such that for all n N> ,  

( ) ( )
( ) ( ) ( ) ( ) [ ]2ˆ, ,

ˆ , , , , 0,1 .
n

LLn
n h u v

R
C u v C u v u v

A c
δ

 
− > ∀ ∈ >  

 
    

That is  

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) [ ]2ˆ ˆ, , , ,
ˆ ˆ, , , , , 0,1 1 .

n n

LL LL
n h u v n h u v

n n

A c A c
C u v C u v C u v u v

R R
δ

 
− ≤ ≤ + ∀ ∈ > − 

 
          (23) 

On the other hand we deduce from (7) that for all ( ) [ ]2, 0,1u v ∈ ,  

( )
( ) ( ) ( )

( ) ( ) ( )( ) ( )
ˆ ˆ, , , ,

ˆ ˆ, , 1 1 .
n n

LL LL
pn h u v n h u v

n

A c
C u v C u v o

R
= ± +  

Case 1. If  

( )
( ) ( ) ( )

( ) ( ) ( )( ) ( )
ˆ ˆ, , , ,

ˆ ˆ, , 1 1 ,
n n

LL LL
pn h u v n h u v

n

A c
C u v C u v o

R
= − +  
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then (23) becomes  

( )
( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( ) [ ]

ˆ, ,

2
ˆ, ,

ˆ , 1 ,

ˆ , 1 , , 0,1 1 .

n

n

LL
n pn h u v

n

LL
n pn h u v

n

A c
C u v E o C u v

R

A c
C u v o u v

R
δ


− − ≤




≤ − ∆ − ∀ ∈ > −


 



 

Thus, for any given ( )0,1τ ∈  and all large n, we can write  

( )
( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( ) [ ]

ˆ, ,

2
ˆ, ,

ˆ , ,

ˆ , , , 0,1 1 .

n

n

LL
nn h u v

n

LL
nn h u v

n

A c
C u v E C u v

R

A c
C u v u v

R

τ

τ δ


− − ≤




≤ − ∆ − ∀ ∈ > −


 



                  (24) 

Case 2. If  

( )
( ) ( ) ( )

( ) ( ) ( )( ) ( )
ˆ ˆ, , , ,

ˆ ˆ, , 1 1 ,
n n

LL LL
pn h u v n h u v

n

A c
C u v C u v o

R
= + +  

then, analogously to Case 1, we can infer from (23) that, for any given ( )0,1τ ∈  and all large n,  

( )
( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( ) [ ]

ˆ, ,

2
ˆ, ,

ˆ , ,

ˆ , , , 0,1 1 .

n

n

LL
nn h u v

n

LL
nn h u v

n

A c
C u v C u v

R

A c
C u v E u v

R

τ

τ δ


+ ∆ + ≤




≤ + + ∀ ∈ > −


 



                  (25) 

Letting τ  tends to 0, it follows from (24) and (25) that 

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) [ ]( )2
ˆ ˆ, , , ,

ˆ ˆ, , , , , 0,1 1
n n

LL LL
n nn h u v n h u v

C u v E C u v C u v u v δ− ≤ ≤ − ∆ ∀ ∈ > −           (26) 

or  

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) [ ]( )2
ˆ ˆ, , , ,

ˆ ˆ, , , , , 0,1 1 .
n n

LL LL
n nn h u v n h u v

C u v C u v C u v E u v δ+ ∆ ≤ ≤ + ∀ ∈ > −           (27) 

Now, by observing that  

( )
( ) ( ) ( ) ( )

( ) ( ) ( )ˆ ˆ, , , ,
ˆ ˆ, , , ,

n n

LL LL
n nn h u v n h u v

C u v C u v− ∆ ≤ + ∆ ∀  
 

we can write, for any 0> , with probability tending to 1,  

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) [ ]2ˆ ˆ, , , ,
ˆ ˆ, , , , , , 0,1

n n

LL LL
n nn h u v n h u v

C u v C u v E C u v E u v ∈ − + ∀ ∈  
 

and 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) [ ]2ˆ ˆ, , , ,
ˆ ˆ, , , , , , 0,1 .

n n

LL LL
n nn h u v n h u v

C u v C u v C u v u v ∉ − ∆ + ∆ ∀ ∈  
 

That is, (9) and (10) hold.  
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Appendix  
1. Proof of Proposition 1  
Proof. It suffices to check the conditions (G.i), (G.ii), (F.i) and (F.ii) given in Section 3. 

Checking for (G.i). For ( ) [ ]2, 0,1u v ∈  and g ∈ , one has  

( ) { }

( ) ( ) { }

{ } ( ) ( ) { }

( ) ( ) { }

, ,

ˆ ˆ

, ,

1 1
, ,ˆ ˆ,1 1

1 1
, , , ,1 1

ˆ ˆ
, , ,

d d ,

d d ,

d d , 4 1.

i i

i i

i i
i i u h v h i i

u U v V
h h

u h v h i i

u h v h i iU u th V v sh

u h v h i i u h v h

u U v Vg U V h K K U u V v
h h

k t t k s s U u V v

k t k s t s U u V v

k t k s t s U u V v k k

− −

−∞ −∞

≤ − ≤ −− −

− −

   − −
= − ≤ ≤      

   

= − ≤ ≤

= − ≤ ≤

≤ − ≤ ≤ ≤ +

∫ ∫

∫ ∫

∫ ∫





 


 

Then,  

( ) , ,, , 4 1 : .i i u h v hg U V h k k κ
∞
≤ + =

 
This implies  

( )
0 1
sup sup , , : .i i

h g
g U V h κ

∞≤ ≤ ∈
= < ∞

  
Checking for (G.ii). 
We have to show that  

( )2sup , , ,
g

g U V h C h
∈

′≤
  

where C′  is a constant. Recall that ( ) ( )1 1
1,

ˆ
n nu FoF uζ − −=  and ( ) ( )1 1

2,
ˆ

n nv th GoG vζ − −− = . Then, we can write  

( ) ( ) ( ) { }

( ) ( )

( ) ( ) { } ( )

( )

2

1, 2,2
, ,

2

1, 2,
, ,

1, 2,
, ,

, , ,
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ζ ζ
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 − −   
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     

= − +

  



 

 
Now we express A and B as integrals of the copula function ( ),C u v .  

( ) ( ) { }

( ) ( )
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Since because ( ),u hK ⋅  takes its values in [0, 1] as a distribution function, we observing that  
( ) ( )2

, ,u h u hK x K x≤ . Then we can write  

( ) ( )

( ) ( )

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( )

1, 2,2 2
, ,

1, 2,
, ,

1 1 1 1
, , 1, 2,1 1

1 1 1 1
, , 1, 2,1 1

, d d
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h h
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ζ ζ

ζ ζ

ζ ζ

ζ ζ

− −

− −

− −

− −

 − −   
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∫ ∫





 

d d .s t  

 

We can also notice that  

( ) ( ) ( ) ( )1 1
, ,1 1

, = , d d .u h v hC u v k s k t C u v s t
− −∫ ∫  

Thus  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )( )
( ) ( ) ( )

1 12 1 1
, , 1, 2,1 1

1 1 1 1
, , 1, 2,1 1
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 − − − 

+

∫ ∫

∫ ∫

∫ ∫



 
For n enough large, we have by continuity of F and G,  

( ) ( )1 1
1,

ˆ ~n nu sh FoF u sh u shζ − −− = − −  

and  

( ) ( )1 1
2,

ˆ ~ .n nv th GoG v th v thζ − −− = − −  

By splitting the integrals, we obtain after simple calculus that  
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All these six terms can be bounded up by applying Taylor expansion. Precisely, we have  

( ) ( )( )1 , ,u vT h C u v C u v≤ +  

( ) ( )( )2 , ,u vT h C u v C u v≤ +
 

( )( )3 ,uT h C u v≤
 

( )( )4 ,vT h C u v≤
 

( )( )5 ,vT h C u v≤
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( )( )6 , .uT h C u v≤
 

From this, we can conclude that  

( ) ( ) ( )( )2 , , 4 , , ,u vg U V h h C u v C u v≤ +  

and  

( )2sup , , ,
g

g U V h C h
∈

  ′≤ 


 

with ( ) ( )( )4 , , .u vC C u v C u v′ = +   
Checking for (F.i). We have to check that   satisfies the uniform entropy condition. 
Consider the following classes of functions: 

{ }; 1,x m mλ λ= + ≥ ∈   

( ){ }0 ; 1,K x m mλ λ= + ≥ ∈   

( ) ( ){ }; 1,K x m K y m mλ λ λ= + + ≥ ∈   

( ) ( ) { } ( ) [ ]{ }2, ; 1 , , 0,1K x m K y m x u y v m u vλ λ λ= + + − ≤ ≤ ≥ ∈ ∈   . 

It is clear that by applying the lemmas 2.6.15 and 2.6.18 in van der Vaart and Wellner (see [16], p. 146-147), 
the sets 0, , ,     are all VC-subgraph classes. Thus, by taking the function ( ) ( ) 2, , 1x y G x y k= +  as 
a measurable envelope function for   (indeed ( ) ( ) ( ), , , ,sup gG x y g x y x y∈≥ ∀ ), we can infer from Theo-
rem 2.6.7 in [16] that   satisfies the uniform entropy condition. Since   and   have the same structure, 
we can conclude that   satisfies this property too. That is, 

( ) 0
0 0 00, 0 : , , 0 1.C N C νν −∃ > > ≤ < <     

Checking for (F.ii). 
Define the class of functions  

( ) ( ) { } [ ]( )21 2
0 , , , ; , 0,1 ;0 1 .u h v h
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K K s u t v u v h

h h
ζ ζ − −    = − ≤ ≤ ∈ < <    

     
   

It’s clear that 0  is countable and 0 ⊂  . Let  

( ) ( ) ( ) { } ( ) [ ]21 2
, ,, , , , 0,1u h v h

u x v y
g x y K K x u y v x y

h h
ζ ζ− −   

= − ≤ ≤ ∈ ∈   
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   

and, for 1m ≥ ,  

( ) ( ) ( ) { }1 2
, ,, , ,
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h h
ζ ζ− −   

= − ≤ ≤   
   

  

where 2
2 2

1 1
mu m u

m m
 = +   and 2

2 2

1 1
mv m v

m m
 = +  . 

Let ,m m m mu u v vα β= − = −  and define  

( ) ( )1 1
,

m m m
m u

u x u x u u
h h h h
ζ ζ α

δ
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Then, one can easily see that 2

10 m m
α< ≤  and 2

10 m m
β< ≤ . 

This implies, for all large m, that , 0m uδ   and , 0m vδ  , which are equivalent to  

( ) ( )1 1mu x u x
h h
ζ ζ− −   

   
   


 and ( ) ( )2 2 .mv y v y

h h
ζ ζ− −   

   
   


 

By right-continuity of ,w hK , we obtain  

( ) [ ] ( ) ( )2, 0,1 , , , ,mx y g x y g x y m∀ ∈ → →∞  

and conclude that   is pointwise measurable class. 

2. Numerical Computations 

Table A1. Confidence bands for clayton copula calculated for some random couples of values ( ),u v . 

Different values of θ  ( ),u v  ( ),n u vα  ( ),C u v  ( ),n u vβ  

0.5θ =  

(0.58, 0.12) −0.320 0.097 0.701 

(0.54, 0.47) −0.139 0.302 0.887 

(0.07, 0.50) −0.455 0.056 0.857 

(0.21, 0.59) −0.355 0.162 0.672 

(0.18, 0.42) −0.441 0.118 0.585 

(0.42, 0.52) −0.204 0.268 1.032 

(0.73, 0.61) 0.005 0.475 0.887 

(0.07, 0.96) −0.271 0.069 0.755 

(0.69, 0.85) 0.090 0.602 1.118 

(0.28, 0.72) −0.298 0.233 0.729 

2θ =  

(0.96, 0.29) 0.081 0.289 1.100 

(0.16, 0.45) −0.362 0.152 0.664 

(0.67, 0.75) 0.066 0.576 1.093 

(0.22, 0.47) −0.320 0.203 0.706 

(0.12, 0.55) −0.240 0.118 0.786 

(0.85, 0.80) 0.082 0.716 1.109 

(0.46, 0.42) −0.174 0.326 0.852 

(0.83, 0.22) −0.327 0.217 0.700 

(0.65, 0.26) −0.223 0.248 0.804 

(0.11, 0.30) −0.251 0.103 0.776 

6θ =  

(0.32, 0.40) −0.163 0.307 0.863 

(0.85, 0.65) 0.073 0.638 1.100 

(0.31, 0.70) −0.143 0.309 0.884 

(0.51, 0.60) 0.015 0.484 1.012 

(0.89, 0.14) 0.139 0.139 1.267 

(0.80, 0.66) 0.131 0.637 1.158 

(0.24, 0.87) −0.244 0.239 0.782 

(0.10, 0.13) −0.283 0.096 0.744 

(0.31, 0.08) −0.333 0.079 0.694 

(0.65, 0.53) 0.009 0.509 1.018 
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Table A2. Confidence bands for Frank copula calculated for some random couples of values ( ),u v . 

Different values of θ  ( ),u v  ( ),n u vα  ( ),C u v  ( ),n u vβ  

2θ = −  

(0.48, 0.25) −0.398 0.075 0.628 

(0.12, 0.80) −0.338 0.077 0.689 

(0.35, 0.68) −0.337 0.189 0.688 

(0.73, 0.21) −0.317 0.119 0.710 

(0.74, 0.44) 0.203 0.279 0.823 

(0.14, 0.67) −0.131 0.066 1.158 

(0.56, 0.81) 0.070 0.418 0.950 

(0.98, 0.21) 0.077 0.202 1.036 

(0.29, 0.25) −0.461 0.038 0.566 

(0.77, 0.22) −0.316 0.137 0.714 

5θ =  

(0.47, 0.38) −0.294 0.297 0.733 

(0.13, 0.86) −0.398 0.128 0.628 

(0.68, 0.02) −0.478 0.019 0.548 

(0.34, 0.20) −0.373 0.146 0.654 

(0.41, 0.47) −0.254 0.315 0.773 

(0.53, 0.24) −0.354 0.212 0.673 

(0.38, 0.33) −0.343 0.235 0.683 

(0.31, 0.60) 0.233 0.280 0.793 

(0.21, 0.97) 0.032 0.209 0.994 

(0.07, 0.48) −0.356 0.063 0.670 

18θ =  

(0.87, 0.45) −0.234 0.449 0.793 

(0.78, 0.44) −0.240 0.439 0.786 

(0.60, 0.72) 0.044 0.593 0.983 

(0.43, 0.57) −0.214 0.425 0.812 

(0.26, 0.33) −0.298 0.246 0.729 

(0.10, 0.90) 0.052 0.100 0.975 

(0.86, 0.40) −0.285 0.399 0.741 

(0.46, 0.62) 0.194 0.456 0.833 

(0.05, 0.52) −0.449 0.049 0.578 

(0.45, 0.04) −0.416 0.039 0.611 
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