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Abstract

In this paper, three types of three-parameters families of quadrature formulas for the Riemann’s

integral on an interval of the real line |(f)= J':f (x)dx are carefully studied. This research is a

continuation of the results in the [1]-[3]. All these quadrature formulas are not based on the inte-
gration of an interpolant as so as the Gregory rule, a well-known example in numerical quadrature
of a trapezoidal rule with endpoint corrections of a given order (see [4]). In some natural restric-
tions on the parameters we construct the only one quadrature formula of the eight order which
belongs to the first, second and third family. For functions whose 8th derivative is either always
positive or always negative, we use these quadrature formulas to get good two-sided bound on
I(f). Additionally, we apply these quadratures to obtain the approximate sum of slowly con-

]

vergent series s=) - a,where a eR.

i=0 i’
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1. Introduction

We consider the three-parameters families S“#7, P*#7  R*#7 of quadrature formulas for the integral
I(f)= f:f (x)dx . These quadratures are linear combinations of the quadrature investigated in papers [1]-[3]

respectively. The error estimates are calculated in dependence of the parameters «, £, y and then in some
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natural restrictions on them these are investigated the quadrature formulas of the 8th order. The desired con-
clusions are made by means of properties of Peano kernels using substantially well-known error formulas. We
construct the only one quadrature formula of the eight order which belongs to the family S*#7, the only one
quadrature formula of the eight order too, which belongs to the family P*#7 and the only one quadrature for-
mula of the eight order too, which belongs to the family R*#” . Because of the Peano kernels for these qua-
dratures have different signs, for functions whose 8th derivative is either always positive or always negative we
use these quadrature formulas to get good bounds on 1(f). So, by suitable choice of parameters one can
increase quadrature order from two or four respectively to eight.

2. The Three-Parameters Family of Quadrature Formulas S*””

We consider family of quadrature formulas S*#7 given by

S“'ﬂ'y(f):gyz( f (a+¥h)+ f (a+¥hn

f(a+2j_#h]+f(a+2j_#hjj @8]

for integral | (f):j (x)dx. This family generalizes the family Q° discussed in [1], here it is enough to put

1 a+l
= y =—, 6:—
a=p.r=7 >
For arbltrary a, the quadrature formula S“”7 is of the second order. The error
E“P7(f)=1(f)- S“ /( ) for the polynomials t,t?,--- is equal
E“/7(t)=0,
(b-a)’
E“/7 (1) = o7 (1+38° (r-1)-3a%y),
wp, (b—a) (a+b)
E M(ts):T(l+3ﬂ2(;/—l)—3a2y).

If atriple (a,f,7) isaroot of the polynomial v, (a,B,7)=1+3p°(y—1)-3a’y the range of quadrature
formula increases. These triples we can write in the form (a(ﬂ,y),ﬂ,y) with

1+3(y-1) B
3y

a(B.y)=

where (B,7)e Dy, ::{([5’,7)6[0,1]2:(1—7)ﬁ2 :13} Then every S“#"#7 s of the fourth order, and
moreover
EVII7 () =0 fori=1,23,

ba)

ga(Br).8 (t) (720n

y(lSﬂ (38°-2)(r-1)+9r-5),

BV (1°) :—(b_zgsﬁam) (15/3 (35° —2)(7—1)+97—5).

If the pair (,7) is a root of the polynomial y/z(ﬁ,y):15ﬂ2(3,82 —2)(7—1)+9)/—5 then the range of
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quadrature increases as before. We can write these pairs in the form (,8(;/),;/) where

1 5y 5425y -»?
ﬁ(y)'_@\/ y-1

5
for 0,—1.
76[ 9}

Every quadrature SHPNNPNT is of the six order but we must restrict the interval for y . The quadrature

nodes belongs to interval [a, b] only for y e Eg} . Graphs of the functions

«(B(r).7)= e B2

and ﬁ(y/) are presented on the Figure 1.
In this case we have

g elB() 787 (ti ) =0 fori=1,---,5

_a) 3
ga(B()7)B()r (te) __ :Et73802) g ( i)\/“ [(147 _ 7)@ +10\/; ~10y2 J’
n(y-1)r

—a) 3
gy () (078) (a+b) 1) ((1@—7)@%0&-1072}

10800n°  (y-1)\y

5
- = L P gt B8 (t=x). .
The six order Peano kernel K (;/,x).:a'[X (t—x) dt—s“"V 7)o "(p(t)) where p(t)= = . This
kernel is a periodic function with period h and on every interval [a+ ih,a+(i +1)h] is symmetrical respect to

its midpoint. So, it is enough to define it on the interval [b—g,b} :

(b—x)e_ h [7/[a+2n_1+a(ﬂ(y),7)h_)(}5+(1_7)[a+wh_xj5}

6! 2x5!

KS (7.%) = (b-x) : h5|7(a+ 2n-1+a(B(7).7) h_x]s @)

2n—-1+ ﬁ(y)

for Xe|:a+ 5 h,a+

for x e{a+

2n—1+a(ﬁ(7),y)h b}
5 :

The kernel Kgg (7, x) is negative for y e E,ﬁj and positive for y e (fz,g} . After numerical calculation

we conclude that 7, > % 7, < 133 (see Figure 2).

1000
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Figure 2. Graph of the kernel K (7,x) for xe[b—h,b] ([a,b]=[-9,1],n=10).

The integral of the six order Peano kernel takes form
3
X (7-14y)y/5-5y +10(y3—ﬁJ
—a 6

27216000 (r-1)r

¢(r) =K (7.x)dx=

(see Figure 3).
From Peano theorem (see [5]) the error

(1-14y)\5-5; +10[y3 —WJ

g(B()r).A() ( £ ) b-a ht £ (f) = C(}/) £ ((f), 3)

~ 27216000 (7-1)47
for any function feCe([a,b]) and 76[%'%}{ /%g} where ée[a,b]. Moreover, using Peano

theorem we can prove the following:

Theorem 1. If y, e{%,;?lj, Vs e(y?z,g} , function f eC6[a,b], and f© has constant sign on interval

[a,b], then
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4 %1076

2x107¢ I

0.3 0.4 0.5

Figure 3. Graph of the function c(y) .

S!Z(ﬂ(?z)vz)v/"(?z),?z <1 ( f ) < Sa(ﬂ(yl)vn)vﬂ(n)vn (4)

if £© is non-negative on interval [a,b], and

S!Z(ﬂ(?l)vn)vﬂ(n)vn < ( f ) < Sﬁt(ﬂ(yz)vyz)vﬂ(fz)vn (5)

if £© isnon-positive on mterval [a,b].
Proof. Assume that f® > 0. From the formula (3), because of c(yl)<0 and f® >0, we have

I ( f ) — gl n)Bn)n +C()/1) (51) < gl n)Bn)n
Similarly
1(f)= S Br2)r2) B2z | c(7,) 6 (&)> SeBr2)r2)Br2) v
because of c(y,)>0 and f>0. u
3
The function y,(y):= (147/—7)1/5—57/ +10,/y 1072 has one root
1 1/5
18—+/30 \f ~0.3478548451. Lets put
( ) (18+J_ ) 2 6\6
3 216
=B(r)= \/; ~0.3399810436, o, =a(f,.7,)= Stz \/; ~0.8611363116 . The quadrature
formula S* ﬂo s of the eight order and
E"Oﬂm( ) 0 fori=1,---,7
(b-a) e

E%foro (18 = — b-a).
(¢) 44100n° 44100( 2)

t— 7
The eight order Peano kernel K :—j t— dt S ho: ’O(p(t)) where p(t):( 7;()*.This kernel
a

is a periodic function with period h and on every interval [a+| +(| +1 symmetrical with respect to its

h,
midpoint. So us for K¢, it is enough to define it on the interval { g,b
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(b-x)" h 2n-1+a, ! 2n-1+f ’
-— a+——h-x 1- a+——2h-x
g 27|72 (A=n)(ar=,
MrXE[a+2n_1ma+2n_;+[%h]
b—x)’ - 7
Kég(X)Z ﬂ_Lyo a+Mh_x (6)
8! 2x7! 2
for X€|:a+wh,a+mhj|’
b-x)° -
( X) for X€|:3+Mh,b:l
8!
(see Figure 4).
This kernel Ky (x) is non-negative, moreover
b b b—a)9 h®
KS(x)dx=2n[ Kg (x)dx= ( = b-a).
[.KS () L,g s ()0 = g 1120000 ~ 1778112000 0%
From the Peano theorem (see [5]) we obtain for any function f e C?® ([a, b]) the expression on the error
h8
g (§) = b—a)f® ' 7
(1) 1778112000( J(E) ()
where £e[a,b].
3. The Three-Parameter Family of Quadrature Formulas P**”
We consider the family of quadrature formulas of the form
PP (£)=T,(f)+7G,(f,a)+(1-7)G,(f.5) 8)
where
h
G, (. A)=——(-3(fo+ f,)+4(f, + )~ (f + f.20)),
242
fo=f(a+th), h=b_—a, Tn(f)=g(f0+ f,)+hY."'f, is the trapezoidal rule, and «, B, y are para-
1.5 %107 -
1x10*9}
5xw”°}

0.2 0.4 0.6 0.8 1.0

Figure 4. Graph of the fragment of the kernel K (x) for xe[b—h,b]
([a,b]=[-9.1], n=10).
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meters. Particular cases y =1 and y =0 are investigated in the paper [2] and P“’ﬂ’l(f)z f+5(f)’
PP (£)=Ql5(f). Weare proved that Q7 and QZf with

n+5 n+5

2
an:gn 1+2cos£wj ,
9 3
2 @, +4n
=—n|1+2cos| —— ||,
A ( ( 3 B

where ¢, e(o,gj and ¢, :arccos(l—léggzj (see Figure 5) are of the six order. If we define the error
n

E“P7(f)=1(f)-P*"7(f) we can compute for the polynomials t,t?,---
E/7(t)=0 fork=1,---,5,

7
g (1°) :_%(_wn +560n* (v, ++3(27-1)U,)),
(b—a)7(a+b)
Ean,ﬁn,y (t7) = —W(—WH +560n4 (Vn +\/§(2}/_1)Un))’

where

W, =81(560n" +63n° — 2430),
1 .2 4 .5
U =198sin—¢_ +105sin—¢ —52sin—¢_—40sin—¢_,
n 3% 3% 3% 3%

V, = —198005%% +105005§ngn +52003§¢n —40cosg¢n.

So, forevery ye [0,1] the quadrature P“/*7 is of the six order. Let

W, +560n* (V, ++/3U, )
TP N T

With y =y, the range of quadrature formula increases. The quadrature P“/»" is of the eight order but
the expression E“ /7 (tg) takes a very complicated form.

t— 7
The eight order Peano kernel K/ (x)z%j:}(t—x)7 dt —penrarn ( p(t)) where p(t):(7_:()+, This kernel

Y T BUUPPRREERE R
0.2- ] ' ]
0.46 - ]
0.1 0.44- o ]
0.0 042 . ]
0.40
0.1~ ]
[ 0.38.
_0'27' ® ® % 6 e o s s s 0 0 s e 0 0 e e e s 0 s s s s 0 e s e ] 0'36—
5 10 15 20 25 30 0 5 10 15 20 25 30

Figure 5. Graphs of the sequences «,, B,, 7,-
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. . . . + - L . a+b
is a symmetrical function respect to the point aTb , S0 it is enough to define it on the interval {Tb} :

where

for xe[b—p,h,b],
1 2
T_ﬂ(‘fn(x)"'é’n (X))
for xe[b—24,h,b— 3 h],
1 3
T_ﬂ(‘fn(x)"'gn (X))
for xe[b—h,b—24,h],

(b—x)’ _%[h"f(;ﬁ jh-x)" +¢, (X)+§3(X)j

=k

for xe[a+(k-1)h,a+kh], k

Il
1
NS
|
|
E
S
|
E

for x [aa—m}
"2 9)

, (x):%(b—xf +%(—3(b—x)7 +4(b-a,n-x) - (b-2e,n-X)’),

n

¢ (x)= (12_4;”“)h (—3(b - x)7),

gﬁ(x):%(%(b—xf+4(b—ﬁnh—x)7),
(1_7n)h
245,

&3 (x)= (-8(b=x)"+4(b=gh—x)"~(b-28,h-x)"),

and h=b_—a. On the Figure 6 we have graphs of the kernels KBP(X) for n=4,5,6. For any n the kernel

Ky (X) is non-positive, moreover the integral

C(n):= I:Kg’(x)dx

(b-a)’
= 928972800m9 (945 (1_ 7n )ﬁn7 + m(_37207/n0(r(13 -3720 (1— 7n )ﬁr? + 3)

+6300m” (y,ay +(1-7,) By ) —20m° (294, +294(1-y,) 7 +1)

+3150m* (1,02 +(1-7,) B ) + 42m* (~20y,a? ~20(1- 7, ) B +1))

inthe case n=2m and
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0.4 0.6 . 1.0

_1 ><]0’10;
s X]O—lol
3 ><10‘]0;

—4x10710

Figure 6. Graphs of the kemnels K" (x) forn=4,5,6.

C(n):=J':Kg’(x)dx

(b-a)’
3628800(2m +1)°

(—45(7/n (6167 1190, +1176c; —700c; +248a; )

+(1-7,) (6168 ~1190/3 +1176 8, —7003; + 2483, ) - 27)
+12m ( 7, (~5950077 +9450a] — 7350ct, +3150a; —620atf )
+(1-7, )(—5950ﬂn2 +94504° — 735037 +3150/3° —6203° ) + 273)
+180m° ( 7, (42007 —5250] +294a;; — 70z )

+(1-7,)(42082 -525¢ + 2945 —70ﬂ§)—2o)

+20m? (yn (-2100c:? +1890¢;; ~ 5880 )

+(1-7,)(~21004 +18903; ~5883; ) +103)

—630m* (7, (202 1007 )+ (17, )(20; ~1057) 1)

+84m° (207,07 ~20(1-7,) 7 +1))

if n=2m+1. From the Peano theorem (see [5]) we obtain for any function f e CS([a,b]) the expression on
the error

E«/n (£)=C(n)f® (&), (10)
where &ela,b] and C(n)<0 foralln.

A Complex Quadrature Formula PZ#7 (f)
Let meN, the step k:b_—a and the nodes x;=a+jk (j=0,1---,m). The integral 1(f) can be
m

g (x)dx. To each integral 1,(f) we apply the
X

written in the form I(f):zm’ll (f), where Ij(f)zj'

j=0"1

quadrature (8):
R (1) =T () 476, (f.a)+(1-7)6;, (1. 5) (11)
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h
where now ijn(f,ﬂ):m(—S(ijoJrfjv )+4(fM+fJM) (ijMJrijn_u)),
ijn(f):rz]( )+h2|1 jir ', :f(xi+th)' h:XMn_Xj an:—:.Nextwedefine

Pma'ﬁ'7 ( f)= Tz_:lj(?)ﬁ'y( ) mzonzl Tymz‘a( ( Jn a)_( fj,2a + fJ,H*Za ))

h(1-y)mn
* ( 7). ( ( Jﬂ+f1”ﬂ) (12ﬁ+f1n2ﬂ)) (12)

1 vy 1-y ol
+h(5—£—§j(( f0,0 + fm,0)+2;fiyoj'

Obviously R“/7(f)=P*/7(f). For every meN, the quadrature formula By 7(f) is of the six
order and Py (f) is of the eight order. The Peano kernel for the quadrature formula 7 (f) is a
periodic function with period k and on every interval [xj,xﬁl} is symmetrical with respect to its midpoint.
The quadrature formula (12) has m(n+4)+1 nodes.

Because of Peano kernels for quadrature formulas S%#70 =~ ponfurn (Pm“"”""'“) have different signs, we
have the following theorem.

Theorem 2. If function f eCB[a, b] , and the derivative f® has constant sign on interval [a,b] , then

Somn(£)<I(F)sPahn(f)  (S0hn(£)<I(F)<Bmn (1)) (13)

if £ is non-negative on the interval [a,b], and
S%-Foro ( f ) > ( f ) > Ponboin ( f ) (Srlo-/fo-ro ( f ) > ( f ) > ’Pm“nvﬁnl7n ( f )) (14)

if £ isnon-positive on the interval [a,b].
Proof. Assume that f® >0. From the formula (7) we have

L(f)=80R7(f)+c(y,) f®(&)> 807 (1)

because of c(y,)>0 and £® >0. Similarly from the formula (10):
L(f)=Pmh7 (£)+C(n) 1) (&)< Porhn ()

because of C(n)<0 and f®>0. o

4. The Three-Parameter Family of Quadrature Formulas R*””

We consider the family of quadrature formulas of the form

R (£)=M,(f)+rH,(f,a)+(1-7)H,(f.5) (15)
where
h
H,(f.4)= 24/1[ [f? + fn;lj—?{f? + fngl]+[fgl + fn:lD,
fo=f(a+th), h :b—Ta’ M, (f)=h>" f . isthe midpoint rule, and «, B, y are parameters. Parti-
|-¢-E

cularcases y =1 and y =0 are investigated in the paper [3] and R“”*(f)=L2(f),
ROPO(£)=LL 4 (f). Weare proved that L% and L/, with

O'Zn:ﬁn 1+2cos 0, + 21 ,
144 3
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ﬁnzﬁn 1+ 2c0s| L4 |,
144 3

108864 j
60835n°

where
~ I ~
@, € (O’Ej and @, =arccos [1—

are of the six order. If we define the error E“/7 (f)=1(f)-R*”7(f) we can compute for the polynomials
t,tz,---

E“/7 (t)=0 for k=1,+-5,

(b-a)'
8668430991360n°

7 (1) = (vvn +425845n" (V, -3 (27 -1)U, ))
where

U, :1835825in%¢3n +1268705in§g7;n —630435ing¢3n —370305inggﬁn,

V, =-183582 cos%@n +126870 cos%@n +63043 cosggbn —37030 cosg(ﬁn ,

W, = 81(—2468413440 +425279232n* +161395255n* )
So, forevery y e [0,1] the quadrature R 7 s of the six order. Let
W, +42584n* (V, /30 )
- 85168+/3nU,,

n

(see Figure 7). o
With y =7, the range of quadrature formula increases. The quadrature R P s of the eight order but
the expression E% /7 (ta) takes a very complicated form.

s t—x)
The eight order Peano kernel K (x) :%j:(t—x)7 dt—R%% 7 (p(t)) where p(t) :( 7):)* . This kernel

. . . . - _ . a+b
is a symmetrical function respect to the point aTer , S0 it is enough to define it on the interval [T b} :

020 | | - U oas e
0.15 [ -
046
0.10- ] :
L 044
0.05 [
0.00 042
~0.05" 040 ' ]
-0.10 0.38 - . .
-0.15", | 036 ]
5 10 15 20 25 30 0 5 10 15 20 25 30

Figure 7. Graphs of the sequences &,, f£,, 7,-
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[ 3 1
for xe|b—=pghb—=pgn],
e[o-2nb-2an]

(16)

for x{b—%h,b—gﬁnh},
(b;!x)s _%{hg[b—(%+ jjh_x]7+gn(x)+5:(x)]
for x{b—(k%)h,b—(k—%)h}, k :[ﬂ—l,---,n—l,

[ a+b}
for xe|a,— |,
2

Ka' (b—x)

where

$ _(l_fn)h ( _1 ~ - j7_ ( _3 Z - )7
gn(x)—W 2| b Eﬁnh X 3| b Eﬂnh X ,
& (x)= 2p 2|b- Ah=x] =8 b=ZFh—x| +|b-—fh-x| |

and h =b—_a' On the Figure 8 we have graphs of the kernels Kf(x) for n=4,5,6. For any n the kernel
n

Kq' (x) is non-negative, moreover the integral

S Au)e 17
~seaagoagore 25 (G A7) )

C(n)= .[:KBR (x)dx =

where
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and

4% 10710 L
3 x 10—]0 :
2% 10710 |

1x 10—10 L

0.2 0.4 0.6 0.8 1.0

Figure 8. Graphs of the kernels K (x) forn=4,5,6.

v, (a, B,y :20160(5a (l+14a2)7/+ﬂ3(5+70ﬁ2+69ﬂ4)(1—y)),

=-3(3+ s (a)y +m(B)(1-7)),
120(—-18+ 11, ()7 + 1, (B) (1= 7)),

( )
(. 7)
(a.B.7)=
Vs (t, f.7) =80(116 + 15 () 7 + 115 (B) (1= 7)),
(. .7) =
(. B.7)=

vi(a, By

A

1680(~7+ py (@) 7 + 4y (B)(1-7)),

672(7+ pis (o) 7 + 15 (B)(1-7))

v,(a. By

Vs (a, B,y

#,(2) = 2027 (805-+ 2(6720+ (25179 + 247040+ 357832)) ),

#1, (1) =74 (230 +34(480 + 4 (1199 +11202))),

(4)=
115 (A)=—214% (230 + A(960+11992)),
1, (A)=104%(23+481),

s (2) =—23027.

From the Peano theorem (see [5]) we obtain for any function f eC® ([a, b]) the expression on the error

Ein (£)=C(n) £®(¢),

where ¢£e[a,b] and C(n)>0 foralln.
Theorem 3. If function f eCB[a, b] , and the derivative f® has constant sign on interval [a,b] , then

if 0

if f©

R&nﬁnin ( f)g I (f)g b ( f)

is non-negative on the interval [a,b], and

R&nﬁnin ( f)Z I (f)z b ( f)

is non-positive on the interval [a,b].

Proof. Assume that f® >0. From the formulas (10) and (18):

L(f)=R™M7(£)+C(n)t® (&)= R™M7(f)

(18)

(19)

(20)
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because of C(n)>0 and f® >0 and
|(f):’Panv/fnv7n(f)+C(n) f(s)(gz)gfpan-/}nvfn(f)

because of C(n)<0 and >0, 0

5. Series Estimation

The sum of a series
s=>Ya, (21)
n=0

can be approximated by a finite sum Z::Oan . The error of this estimation can be represented as the sum of the
series Y " a.

Therefore, if we have a method of estimating the sum of an infinite series, then this method will enable us to
estimate the error of the N-term approximation. One way to estimate the sum of the series is to take into conside-

ration the fact that a series can be viewed as an integral over an infinite domain
L(F)=] f(x)dx (22)
. . 1 . . .
for some function f:[1,.0) >R for which f (n +§] =a, forall n. Therefore, if for a given series, we know

an explicitly integrable function f (x) with this property, then we can take the value 1(f) of the integral as
an estimate for s.

Theorem 4. We assume that the function f is such that

1) f is either positive and decreasing, or negative and increasing.

2) [f(x)dx is convergent.
3) feC® ([O,oo)).
4) £® s either positive or negative on [O,oo).

5 f(i)=a;.
6) s=>"a.
Under this assumptions, if £® >0 then
m-1 - m-1 © ~
a2+ [ (X)dce Ry () <s<3a + [af (1) By (1), (23)
j=0 j=0 2
where

Sl B £ -3)
(6]

1 5|7 1 5|7
+H flm-=+= /— —-flm-=-= /— .
{ [ 2 2\230 2 2\230
If £©>0, then we get a similar inequality, but with the right-hand side instead of the left-hand side, and

vice versa.
Proof. First, from the inequalities (19) we have:
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L(f)<pahm(£)=T,(f)+7G,(f.a,)+(1-7,)G,(f.5,).

We can rewrite this inequality in an equivalent form:

Tn(f)zI(f)_7nGn(f’an)_(l_yn)Gn(f':Bn)' (24)
In this inequality we put: a=m, (m>2), h=1, n>4 so
n-1 m+n-1
Tn(f)zé(f(m)+(m+n))+i_lf(m+i)=%am+%am+n+j_zmlaj,

Gn(f,/l)zﬁ(—s(f(mhf(m+n))+4(f(m+l)+ f(m+n-1))
—(f(m+22)+ f(m+n-21))).

Because of

. . . N, N, 1
fima, =0, fim f (t)=0, lima, =-— =, limf, = =, limy, =

n—o0

than passing with nto oo in the inequality (24) we obtain

%am + i a, zj:f (x)dx+P, ().

j=m+1

We complete the first part of the proof by adding the term %am + Z'Jtéaj to the both sides of this inequality.

Let f(x)="f (x—%). From the inequalities (19) we have:

H(f)zROA™(F) =M, (F)+7.H,(F.@)+(1-7)H,(F.5,).
We rewrite this inequality in an equivalent form:
Nln(f)S I(f)_an”(f’dn)_(l_fn)Hn(f!ﬁn)

andput: a=m, (m>2), h=1, n>4.Passingwith n to o we obtain

Ya; <[ it (x)dx+P,(f) (25)
j=m 2
because of
. . . 7. = 7. 1
lima, =0, limf (t)=0, limg, =— |—, limg, =, |—, lim7, ==.
k—>o0 k t—wo ( ) n—w 230 n»wﬂ 230 I']A)aoy 2
We complete the proof by adding the term ijjaj to the both sides of the inequality (25). a
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