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Abstract 
The data topology structure of uniform experiment design (UD) is too complex to be reasonable 
regressed. In this paper, the principle and method of distinguish the training data and testing data 
were described to make a reasonable regression when uniform experiment design combined with 
support vector regression (SVR). Two equivalent ways which were the smallest enclosing hyper-
sphere perceptron (SEH) and the enclosing simplex perceptron (ES) were provided to discover the 
topology relationship of the process parameter datum. To give an application, a series of experi-
ments about laser cladding layer quality were conducted by UD to get the relationship of load, ve-
locity and wearing capacity. Results showed that only the testing datum recommended by the two 
perceptrons got a good forecasting by SVR. Therefore, the two perceptrons could guide experi-
ments with process parameter data of complex topology structure. Further, the application could 
be extended over a much wider field of experiments. 
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1. Introduction 
Many researches focus on experimental design combining with nonlinear regression. The experiment design 
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method includes uniform design, central composite experimental design and Taguchi’s approach; the nonlinear 
regression method includes artificial neural network, support vector machine and so on. Some focus on the ex-
perimental design optimizing the nonlinear regression parameters; others focus on the nonlinear regression op-
timizing the experimental design to get the best process parameters under the desired results. 

Yanwei Li et al. [1] used uniform design optimized support vector machine to be an experimental guide to 
find macrocyclic compounds which were used to detect and minimize the radiocesium pollution. Weihong Li et 
al. [2] proposed a multi-objective uniform design search method as a SVM model selection tool, and applied this 
optimized SVM classifier to face recognition. Xiaolin Yu [3] used uniform design and least support vector ma-
chines method for reliability analysis of large complex structures. Guangya Zhang [4] used support vector ma-
chine to develop the non-linear quantitative structure-property relationship model of the G/11 xylanase based on 
the amino acid composition, and used the uniform design to optimize the running parameters of SVM. Ni L.J. [5] 
improved v-support vector machines method to build classification models for discriminating adulteration milks 
based on near infrared spectra of different sample sets, and used uniform design table to find good value of pa-
rameters of v and sigma. Xiaolin Yu et al. [6] proposed the reliability analysis method based on uniform design 
method and supported vector machine to get the failure probability. A joint optimization method is proposed by 
Changsheng Xiang et al. [7] for phase space reconstruction and least square support vector machine parameters. 
The phase space reconstruction and least squares support vector machine parameters are jointly designed using 
uniform design. Wang Zhi-ming et al. [8] developed a small-scale search method based on uniform design using 
support vector regression. Chuang S.C. et al. [9] realized that one found many non-rectangular types of input 
domains on which traditional UD methods could not be adequately applied when conducting a typical computer 
experiment, and proposed a new UD method that was suitable for design area. Pan Jinshui et al. [10] investi-
gated the possibility of optimizing mammalian cells transfection efficiency by using a method referred to as 
least-squares support vector machine, which required only a few experiments based on UD to maintain fairly 
high accuracy. Xiao Wang et al. [11] used the central composite rotatable experimental design combining with 
the artificial neural network (ANN) to establish the relationships among the laser power, velocity, clamp pres-
sure, joint strength, and joint width. 30 experiments were conducted based on four factors five-level design. 
Yuwen Sun et al. [12], focused on the influence of laser power, scanning speed and powder feed rate on the 
shape factor and the cladding bead geometry (layer width, layer height and molten depth) with regard to inject-
ing Ti6Al4V powder on TC4 substrate. Response surface methodology was used to build the mathematical model. 
Dongxia Yang et al. [13], carefully selected the laser welding parameters of laser power, welding speed and wire 
feed rate to produce a weld joint with the minimum weld bead width and the fusion zone area. Taguchi approach 
was used as a statistical design of experimental technique for optimizing the parameters. They found that the ef-
fect of welding parameters on the welding quality decreased in the order of welding speed, wire feed rate, and 
laser power. They also found the optimal combination of welding parameters. H. Beygi et al. [14], fabricated Ni 
coated aluminum nanoparticles by electroless nickel deposition. Effect of two groups of parameters on the 
process plating rate were investigated: bath composition (main salt, reducing agent and complexing agent con-
centration) and process parameters (pH, plating time and bath temperature). Simulation of the process was per-
formed using ANN. It was based on the ANN model to design a high efficiency electroless bath, while minimum 
received materials were used and maximum plating rate was obtained. Wang Zhifei et al. [15] proposed an opti-
mization design scheme based on orthogonal testing and support vector machines to get relationships between 
each parameter and product quality features. Orthogonal testing design was used to estimate the appropriate ini-
tial value and variation domain of each variable to decrease the number of iterations and improve the identifica-
tion accuracy and efficiency. 

However, an important step has been neglected in existing research, which is the regression validity. The 
searching point might go out of the experimental domain, which is not obvious to know. So the searching point 
will find a bad forecasting value on the regression surface, particularly when the process parameters arranged by 
the experimental design have complex topology boundary, for example the uniform design. 

In this paper, we choose a case of uniform design combining with support vector machine to proposed two 
perceptrons to determine the parameters topology boundary (distinguish training data and testing data). And then 
an experimental datum set of wear behavior of laser cladding layer is studied to show the function of the two 
perceptrons. 
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2. Principle 
The process parameter vector should be inside the domain of the experiment, if not, the forecasting is not rea-
sonable because of data absence. For example, in Figure 1(a)), 10 experiment data are regressed by SVR (hori-
zontal axis is process parameter, and vertical axis is the target), the curve goes horizontally towards a constant 
value outside the experiment domain, which is exactly the constant b of the pattern function of SVR (Equation 
(9)). For two-dimension case, in Figure 1(b)), the SVR surface gives good forecast only above the parameter 1- 
parameter 2 plane where the experimental data exist, whereas SVR surface keeps constant in other place. 

Should the forecasting value always be constant outside the experiment data space because we do not do the 
experiment? Certainly, no. So, the SVR forecasts well within the experiment data space, while it could not fore-
cast the outside of the experiment data space. 

The forecasting is false outside the experiment domain by SVR. The curve/surface goes horizontally towards 
a constant value (which is the constant b (Equation (9)) of the pattern function of SVR) outside the experiment 
domain and causes a false forecasting. 

Although distinguishing the inside and outside of the experiment data space is easy in one-dimension (only 
one parameter in Figure 1), the task in higher dimension (two or above) is not so easy. Therefore, the method for 
higher dimension is elaborated below. 

2.1. The Task: Distinguishing the Training Data and Testing Data 
In this paper, the task is to distinguish the training data and the testing data among lots of experimental data 
when the experiment is conducted by UD. The key point is whether the testing data lie inside the training data 
domain or not, because the function of regression is generated by the training data. So, if the testing data lie out-
side the training data domain, the regression is not reasonable because of data insufficiency. 

Two equivalent perceptrons are provided to discover this topology relationship in higher dimension of para-
meter space. They are the smallest enclosing hypersphere (SEH) perceptron and the enclosing simplex (ES) 
perceptron. 

2.1.1. The SEH Perceptron 
The SEH in a feature space defined by a kernel k enclosing a dataset { }1, , nx x  is computed by finding *α  
as solution of the optimization problem: 

( ) ( )
1 , 1

Max , ,
n n

i i i i j i j
i i j

k x x k x xα α α
= =

−∑ ∑                          (1) 

 

 
(a)                                                          (b) 

Figure 1. The diagrammatic sketch of outside and inside of the experiment data space. (a) One-dimension; (b) Two-dimen- 
sion.                                                                                                       
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The pattern function is: 

( ) ( ) ( )*, 2 ,i i
i

f x k x x k x x dα= − +∑                              (3) 

where: 

( ) ( )* * *

, 1 1
2 , ,

n n

i j i j i i i
i j i

d k x x k x xα α α
= =

= −∑ ∑                           (4) 

And k is a radical base kernel:  

( ) ( )2 2, expk x x x x δ′ ′= − −                                  (5) 

where δ  is Gauss parameter. So, calculate Equation (3), if ( ) 0f x < , then x lies inside the SEH, if ( ) 0f x > , 
then x lies outside the SEH, specially, x lies on the SEH edge with ( ) 0f x = . The SEH is not a “pure round 
sphere” shape; it can adapt the data “shape” automatically. 

2.1.2. The ES Perceptron 
Another simple method could judge whether a point lies inside or outside a point set. A point inside the speci-
men point set should be enclosed in the simplex consisted of n closest points. In s dimension space, n equals to  
s + 1. For example, in 2D space, an internal point should be enclosed by the 3 closest points (for example, in 
Figure 2, point 18 is enclosed by point 8, 11, 13), while an external one do not (for example, point 17 is not in 
the triangle of the 3 closest points 2, 4, 7). 

Generally, in s dimension space, there are s + 2 determinants about a point ( )*
1, , sX x x=   and its s + 1 

closest points: ( )1, ,, ,i i s iX x x=  , 1, , 1i s= + : 
 

 
Figure 2. The 16 load-velocity 2D points based on UD, point 17 and 
18 represent new process data; point 18 is enclosed by the 3 closest 
points (point 8, 11, 13), so it lies inside the point set, but point 17 is not 
enclosed by its 3 closest points (point 2, 4, 7), so it lies outside.              
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If 1,2, , 1 *,2, , 1 0s sD D+ +⋅ ≥
 

, 1,2, , 1 1,*, , 1 0s sD D+ +⋅ ≥
 

, ⋅⋅⋅, and 1,2, , 1 1,2, ,* 0sD D+ ⋅ ≥
 

 are simultaneously true, then 
point *X  is an internal point, otherwise, it is an external point. 

The distance L between two points 1 2,X X  is defined as: 

1 2L X X= −                                          (7) 

2.1.3. Comparison of the Two Perceptron 
The ES perceptron includes distance calculation, reorder, and determinant calculation, while the SEH perceptron 
iterates depend on 3 artificial parameters (δ , iteration step length and iterations), so, ES is objective and fast, 
the most important, the region determined by ES is smaller than SEH.  

2.2. Regression of SVR 
Considering a training dataset: 

( ) ( ){ } ( )1 1, , , , , , , 1, , .n s
n n i iT x y x y X Y x X R y Y R i n= ∈ × ∈ = ∈ = =   

Choosing parameter ε  and kernel k to solute the optimization problem: 

( )( ) ( ) ( ) ( )
, 1 1 1
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= = =

− − + + − −∑ ∑ ∑                  (8) 
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n
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=

− = ≥ ≥ =∑                          (9) 

With the optimization solution * *, , 1, ,i i i nβ α =  , the pattern function is: 

( ) ( ) ( )* *

1
,

n

i i i
i

g x k x x bβ α
=

= − +∑                                 (10) 

( ) ( )* *

1
,

n

j i i i j
i

b y k x xβ α ε
=

= − − −∑                                (11) 

where * 0jα > , the corresponding support vector is ( ),j jx y . And k is also a radical base kernel as shown in 
Equation (5), g(x) is the regression target function. 

SVR could get a nonlinear regression function g(x) based on a training dataset without artificial judgment of 
the function power ahead of time. And the training dataset is recommended by the SEH or ES perceptron. 

3. Experiment 
UD was proposed by Wang Yuan and Fang Kaitai [16], which is an efficient way to reduce the experiment times. 
The experiment time is related to the parameter levels instead of the factors (dimensions of parameters). But the 
regression analysis needs complex method, not similar to orthogonal experiment whose data distribution boun-
dary is in good order. So, before regression analysis, the data distribution region should be found firstly. Further, 
UD is used to arrange process parameters where exist two kinds of data: training data and testing data. Training 
data are used for regression by SVR, while testing data are used to test the generalization of the regression func-
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tion. The SEH or ES perceptron is used to distinguish the testing data from the training data among all the 
process parameters. 

A laser cladding layer quality forecasting experiment is conducted for a clear view of the principle. We coat 
the Ni-based alloy on the CrMo in order to develop the resistance to wear of the substrate material via laser 
cladding process. The experiment task is to get wearing capacity under the variety of the combinations of the 
load (the pressure to the material) and the loading velocity (the velocity of moving the material). So, in this ex-
periment, we have two experimental factors (process parameters): load and velocity, and the experimental target 
is wearing capacity. 

The levels number of the load and velocity could be given as any natural number you want, and it means that 
you should do much more experiments if the levels number is higher. When the experiment factors and levels 
are determined, the experiment could be arranged by UD table and its application table which could be known in 
Ref. [16]. 

Here, the levels are given as 16, so, it means that we need only 16 experiments (orthogonal experiment needs 
162 = 256 experiments). The levels of the load and velocity are respect 1 - 16 Mpa and 0.24 - 3.87 m/s. The 
combination of the two parameters and corresponding experimental results are listed in Table 1. 

4. Results and Discussion 
The wearing capacity varies with different load and velocity, so the regression aim is to obtain the function: 
wearing capacity = f (load, velocity). But it is troublesome that the domain is not in good order. If the testing 
data we choose lie outside of the domain, the testing data is invalid. Here, we use the SEH or ES perceptron to 
judge whether the testing data lie inside the domain or not. 

Firstly, the process parameters are normalization. The corresponding nondimensional quantities are shown in 
Table 2, which are arranged by unitary processing blow. 

min

max min

p pu
p p

−
=

−
                                   (12) 

 
Table 1. The processing parameters (load and velocity) and experimental results (wearing capacity) based on UD.               

Order number Load l (Mpa) Velocity v (m/s) Wearing capacity w (mg) 

1 1 2.42 1.56 

2 2 0.73 91.38 

3 3 3.14 21.45 

4 4 1.45 9.53 

5 5 3.87 90.18 

6 6 2.18 38.01 

7 7 0.48 100.58 

8 8 2.90 127.95 

9 9 1.21 44.91 

10 10 3.63 141.38 

11 11 1.93 74.76 

12 12 0.24 126.53 

13 13 2.66 147.12 

14 14 0.97 11.44 

15 15 3.38 212.07 

16 16 1.69 204.93 
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Table 2. The nondimensional processing parameters and experimental results.                                            

Order number Load l Velocity v Wearing capacity w 

1 0 0.6 0 

2 0.0666666666666667 0.133241379310345 0.426705301159035 

3 0.133333333333333 0.8 0.0945278358350751 

4 0.2 0.333241379310345 0.0379218126543796 

5 0.266666666666667 1 0.421005130153905 

6 0.333333333333333 0.533241379310345 0.173142694280828 

7 0.4 0.0664827586206897 0.470406612198366 

8 0.466666666666667 0.733241379310345 0.600418012540376 

9 0.533333333333333 0.26648275862069 0.205918677560327 

10 0.6 0.933241379310345 0.664212426372791 

11 0.666666666666667 0.46648275862069 0.347710431312939 

12 0.733333333333333 1.95904116683588E−18 0.593767813034391 

13 0.8 0.66648275862069 0.69147824434733 

14 0.866666666666667 0.2 0.04678890366711 

15 0.933333333333333 0.86648275862069 1 

16 1 0.4 0.965941478244347 

 
where p is given process parameter, pmin and pmax are the minimum and maximum of p, and u is the unitary 
processing result. The 16 load-velocity 2D points are shown in Figure 2, where 17 and 18 represent new expe-
riments which will be discussed later. 

The strategies described in this paper have been implemented in Delphi package, and the artificial parameters 
for SEH are given as: δ2 = 0.5, iteration step length = 0.01, iterations = 100000. There are no artificial parame-
ters for ES. 

4.1. The SEH Perceptron 
If the training data and testing data are chosen randomly (among the 16 points), the testing data might lie outside 
the training data, so the regression analysis is invalid. For example, if point 15 (an edge point)is chosen as the 
testing data and the remain as the training data, it is found that point 15 lies outside the training data, and this 
could be felt by the SEH perceptron, as shown in Figure 3. Point 15 could not get an effective forecasting value, 
because the curve surface collapses without any support data. 

However, if an internal point is chosen as the testing data, the situation will be changed. As shown in Figure 4, 
point 11 is an internal point, so, it is circled in the SEH. The forecasting result is also good, the 3D point is al-
most on the surface which is regressed by point 1 to 16 not include 11, the error between the forecasting value 
and the testing value is small as shown in Table 3. Furthermore, the surface regressed by point 1 to 16 (the re-
gression error is shown in Table 4) agrees perfectly with the surface regressed by point 1 to 16 excluding point 
11 in Figure 5(a), that is to say point 11 don’t affect the regression surface. The contour of regression surface is 
shown in Figure 5(b), from which we can see that a low velocity with a high load or a high velocity with a low 
load may cause a low wear capacity. 

If a point at the edge of the training data which is also in the SEH is chosen as a testing datum, the forecasting 
result will be just as good as shown in Figure 6 and Table 5. For example, point 7, the forecasting value agrees 
with the testing value very well. The testing errors are bigger than training errors because the training data are 
still sparse, so, this could be improved by increasing the number of experiments. Further, the measured value of 
wearing capacity even varies under the same experimental parameters. 
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(a)                                                    (b) 

Figure 3. Point 15 is chosen as testing datum and the rest are training data, so the SVR is fail to forecast point 15 via 3D re-
gression surface. (a) Point 15 lies outside the SHE; (b) Point 15 is far away from the 3D regression surface.                     
 

 
(a)                                                    (b) 

Figure 4. Point 11 is chosen as a testing datum and the rest are training data, so the SVR forecasts point 11 via 3D regression 
surface successfully. (a) Point 11 lies inside the SHE; (b) Point 11 agrees with the regression surface.                          
 

When point i is a testing datum and others (exclude i) are training data, the forecasting value is compared with 
experimental value in Table 6. If point i is a vertex (labeled with “*”) of the points set, it has a large error; while 
if point i is an internal point, it agrees with the experiment well. Therefore, the SEH perceptron could make sure 
whether a process parameter vector is fitted for being a testing datum or not. It is important to point out the li-
mitation of SEH that the domain which encloses the training data is not the minimum, and this could be solved 
by the ES perceptron. 
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Table 3. The comparison of the regressive value and experimental value, 11 is testing datum while the rest are training data.    

Category Order number Regressive value Experimental value Error 

Training data 

1 9.99999999998066E−5 0 9.99999999998066E−5 

2 0.426605301159035 0.426705301159035 0.000100000000000194 

3 0.0946278358350749 0.0945278358350751 9.9999999999808E−5 

4 0.0380218126543794 0.0379218126543796 9.9999999999808E−5 

5 0.420905130153904 0.421005130153905 0.000100000000000193 

6 0.173242694280828 0.173142694280828 9.99999999998061E−5 

7 0.470506612198366 0.470406612198366 9.99999999998062E−5 

8 0.600318012540376 0.600418012540376 0.000100000000000191 

9 0.205818677560327 0.205918677560327 0.000100000000000193 

10 0.664312426372791 0.664212426372791 9.99999999998063E−5 

12 0.593667813034391 0.593767813034391 0.000100000000000191 

13 0.69157824434733 0.69147824434733 9.9999999999804E−5 

14 0.0468889036671098 0.04678890366711 9.99999999998016E−5 

15 0.9999 1 0.0001 

16 0.965841478244347 0.965941478244347 0.000100000000000188 

Testing data 11 0.290105323107535 0.347710431312939 0.057605108205404 

 
Table 4. The comparison of the regressive value and experimental value, all points are training data.                         

Category Order number Regressive value Experimental value Error 

Training 
data 

1 0.000100000000000065 0 0.000100000000000065 

2 0.426605301159035 0.426705301159035 9.9999999999935E−5 

3 0.0946278358350751 0.0945278358350751 0.000100000000000066 

4 0.0380218126543797 0.0379218126543796 0.000100000000000067 

5 0.420905130153905 0.421005130153905 9.99999999999346E−5 

6 0.173242694280828 0.173142694280828 0.000100000000000065 

7 0.470506612198366 0.470406612198366 0.000100000000000066 

8 0.600318012540376 0.600418012540376 9.99999999999322E−5 

9 0.206018677560327 0.205918677560327 0.000100000000000065 

10 0.664312426372791 0.664212426372791 0.000100000000000065 

11 0.347610431312939 0.347710431312939 9.99999999999336E−5 

12 0.593667813034391 0.593767813034391 9.99999999999296E−5 

13 0.691578244347331 0.69147824434733 0.000100000000000063 

14 0.0468889036671101 0.04678890366711 0.000100000000000061 

15 0.9999 1 9.99999999999317E−5 

16 0.965841478244347 0.965941478244347 9.99999999999297E−5 
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(a)                                                    (b) 

Figure 5. The meshed surface is regressed by point 1-16, while the unmeshed one is regressed by point 1-16 except 11. The 
two surfaces agree with each other very well. The minimum of wearing capacity could be found from the contour map. (a) 
The regression surface; (b) Contour map of the regression surface.                                                        
 

 
Figure 6. Successful forecasting of point 7. Point 7 is an edge point 
but also inside the SEH, so, it could be well forecasted.                     

4.2. The ES Perceptron 
If point 5 is chosen as a testing datum, the three closest points are 3, 8, 10, (Figure 2) and then calculate the de-
terminants: 

3 3 5 5

3,8,10 8 8 5,8,10 8 8

10 10 10 10

1 1
1 0.075 0, 1 0.075 0
1 1

v l v l
D v l D v l

v l v l
= = > = = >  

3 3 3 3

3,5,10 5 5 3,8,5 8 8

10 10 5 5

1 1
1 0.075 0, 1 0.075 0
1 1

v l v l
D v l D v l

v l v l
= = − < = = >  
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Table 5. The comparison of the regressive value and experimental value, 7 is testing datum while the rest are training data.     

Category Order number Regressive value Experimental value Error 

Training data 

1 9.99999999998298E−5 0 9.99999999998298E−5 

2 0.426605301159035 0.426705301159035 0.0001 

3 0.0946278358350749 0.0945278358350751 9.99999999998314E−5 

4 0.0380218126543795 0.0379218126543796 9.99999999998319E−5 

5 0.420905130153904 0.421005130153905 0.0001 

6 0.173242694280828 0.173142694280828 9.99999999998295E−5 

8 0.600318012540376 0.600418012540376 0.0001 

9 0.206018677560327 0.205918677560327 9.99999999998301E−5 

10 0.664312426372791 0.664212426372791 9.99999999998302E−5 

11 0.347610431312939 0.347710431312939 0.000100000000000169 

12 0.593667813034391 0.593767813034391 0.0001 

13 0.69157824434733 0.69147824434733 9.99999999998279E−5 

14 0.0468889036671098 0.04678890366711 9.99999999998255E−5 

15 0.9999 1 0.0001 

16 0.965841478244347 0.965941478244347 0.0001 

Testing data 7 0.511627554231799 0.470406612198366 0.0412209420334334 

 
Table 6. The forecasting value with testing datum i, and the rest which exclude i are training data.                             

Testing datum Forecasting value Experimental value Error 

1* 0.0946121461542633 0 0.0946121461542633 

2* 0.304917078854684 0.426705301159035 0.121788222304351 

3 0.105857476045276 0.0945278358350751 0.0113296402102009 

4 0.058732997030738 0.0379218126543796 0.0208111843763584 

5* 0.697172327371774 0.421005130153905 0.276167197217869 

6 0.23007565198397 0.173142694280828 0.0569329577031421 

7 0.511627554231799 0.470406612198366 0.0412209420334334 

8 0.638136672782094 0.600418012540376 0.037718660241718 

9 0.228954275971837 0.205918677560327 0.0230355984115102 

10 0.720643430299488 0.664212426372791 0.0564310039266972 

11 0.290105323107535 0.347710431312939 0.057605108205404 

12* 0.0340008498964455 0.593767813034391 0.559766963137946 

13 0.62181360078527 0.69147824434733 0.06966464356206 

14 0.017009590761577 0.04678890366711 0.029779312905533 

15* 0.564395828283023 1 0.435604171716977 

16* 0.142331101478923 0.965941478244347 0.823610376765424 
*Vertex of the specimen parameter points set. 



N. Yang et al. 
 

 
1007 

3,8,10D  and 3,5,10D  are opposite-sign, so, point 5 lies outside the triangle 3, 8, 10, it is not recommended to be a 
testing datum. Other cases are shown in Table 7, furthermore, if two new experiments No. 17 and 18 whose 
nondimensional parameters are respect (0.3, 0) and (0.7, 0.6) as shown in Figure 2 are conducted, according to 
the ES perceptron, No.18 is recommended to be a testing datum, while No.17 is not. 

If a point lies outside the domain slightly, ES will found this, while SEH won’t. So, the domain determined by 
ES is smaller than SEH. 

5. Conclusions 
The important contribution of this paper is to answer such a question: why and how to distinguish the training 
data and testing data when uniform experiment design combined with nonlinear regression. 

In this paper, two equivalent perceptrons which are the SEH perceptron and the ES perceptron are proposed to 
discover the topology boundary of the process parameter vectors and to distinguish training data and testing data. 
The distinguishing procedure is to determine if a testing datum lies inside the training datum domain. To give an 
application, experiments about laser cladding layer quality forecasting are conducted to prove if it is better that 
SEH or ES combines with SVR. The forecasting values of the testing data recommended by the two perceptrons 
are compared with their experimental values which are conducted based on uniform design. Results show that 
only the testing data recommended by the two perceptrons get a good forecasting by SVR, and the domain de-
termined by ES is smaller than SEH. 

So, the two perceptrons could guide experiments with process parameter data of complex topology structure. 
Further, not restricted to the experiment in this paper, the application could be extended over a wider field of 
experiments. 
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Table 7. Testing data recommended by the ES perceptron.                                                             

No. Three closest  
points Determinants Inside or outside the 

triangle 
Recommend 

or not 

15 13, 16, 10 
13,10,16 0.00005519 0D = > ; 15,10,16 0.151 0D = >  

13,15,16 0.0756 0D = − < ; 13,10,15 0.0756 0D = − <  
Outside No 

11 13, 9, 14 
13,9,14 0.151 0D = > ; 11,9,14 0.075 0D = >  

13,11,14 0.075 0D = > ; 13,9,11 0.001 0D = >  
Inside Yes 

5 3, 8, 10 
3,8,10 0.075 0D = > ; 5,8,10 0.075 0D = >  

3,5,10 0.075 0D = − < ; 3,8,5 0.075 0D = >  
Outside No 

8 10, 6, 11 
10,6,11 0.151167 0D = > ; 8,6,11 0.0755957 0D = >  

10,8,11 0.0754974 0D = > ; 10,6,8 0.000073692 0D = >  
Inside Yes 

17* 7, 2, 4, 
7,2,4 0.074 0D = − < ; 17,2,4 0.064 0D = − <  

7,17,4 0.04 0D = − < ; 7,2,17 0.03 0D = >  
Outside No 

18* 13, 11, 8 
13,11,8 0.075 0D = − < ; 18,11,8 0.035 0D = − <  

13,18,8 0.029 0D = − < ; 13,11,18 0.011 0D = − <  
Inside Yes 

*Represents the order number of new experiment. 
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