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Abstract 
We consider linear partial differential equations of first order  
( ) ( ) ( ) ( ) ( ) ( ) ( )x ta x t w x t b x t w x t h x t w x t r x t, , , , , , ,+ = +  on a region ( ) ( )E a b a b1 1 2 2, ,= × . We will see 

that we can write the equation in partial derivatives as an Fredholm integral equation of the first 
kind and will solve this latter with the techniques of inverse problem moments. We will find an 
approximated solution and bounds for the error of the estimated solution using the techniques on 
problem of moments. 
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1. Introduction 
We consider linear partial differential equation of first order of the general form: 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , ,x ta x t w x t b x t w x t h x t w x t r x t+ = +                         (1) 

where the unknown function ( ),w x t  is defined in ( ) ( )1 1 2 2, ,E a b a b= × . We will consider Dirichlet conditions 
on the boundary S E= ∂  and ( ),a x t , ( ),b x t , ( ),h x t  and ( ),r x t  are known functions. 

Equation (1) is a particular case of the quasi-linear equation  

( ) ( ) ( ) ( ) ( ) ( )1, , , , , , , , , , .x ta x t w w x t b x t w w x t h x t w a b h C E+ = ∈  

The conventional method to solve this equation is reduced to find all surfaces ( ),z w x t=  that satisfy the 

How to cite this paper: Pintarelli, M.B. (2015) Linear Partial Differential Equations of First Order as Bi-Dimensional Inverse 
Moments Problem. Applied Mathematics, 6, 979-989. http://dx.doi.org/10.4236/am.2015.66090  

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2015.66090
http://dx.doi.org/10.4236/am.2015.66090
http://www.scirp.org
mailto:mariabpintarelli@gmail.com
http://creativecommons.org/licenses/by/4.0/


M. B. Pintarelli 
 

above equation. This equation expresses that the tangent to a curve on the surface ( ),z w x t=  is proportional to 
( ), ,a b h . The solution of the quasi-linear equation can therefore be expressed by 

( ) ( ) ( )d d d, , , , , ,
d d d
x t za x t w b x t w h x t w
s s s
= = =                 (2) 

where ( ) ( ) ( ) ( ) ˆˆ ˆr s x s i t s j z s k= + +  is a parametric curve belonging to the solution surface. Then we must 
solve a system of three simultaneous differential equations of the first order. 

The general solution of this system of three equations consists of families of curves which are described by a 
system of three parametric equations with three arbitrary constants determined by initial conditions. This system 
is generally not linear and it is known that a system of non linear ordinary differential equations is difficult to 
solve explicitly. In general, geometrically in 3R , the curves are determined by at least two intersecting surfaces 
transversely. This can be accomplished, for example, eliminating the parameter s and obtain 

( ) ( )1 1 2 2, , , ,w x t w c w x t w c= =                             (3) 

where 1c  and 2c  are arbitrary constants. The general solution will be  

( )2 1w wϕ=                                         (4) 

where ϕ  is an arbitrary function of 1w . For a particular solution you can find the function ϕ  de modo que 
( )2 1w wϕ=  so to satisfy ( )1 , , 0f x t z =  y ( )2 , , 0f x t z = . 

We will show that, the partial differential Equation (1) can be transformed into a integral equation and that 
this one can be numerically solved using techniques normally employed with generalized moment problems 
[1]-[3]. This approach was already suggested by Ang [4] in relation with the heat conduction equation and we 
have applied to the non linear Klein-Gordon equation [5]. 

Next section is devoted to show how the differential Equation (1) is transformed into integral equation of first 
kind that can be seen as generalized moments problem as is shown in Section 3. There we also proof a theorem 
that guarantees under certain conditions the stability and convergence of the finite generalized moment problem. 
In Section 4, we exemplify the general method by applying it to some linear PDEs which are particular cases of 
Equation (1). Finally in Section 5, the method is applied to solve an equation of Klein Gordon with boundary 
conditions in a rectangular region.  

The d-dimensional generalized moment problem [1] [2] can be posed as follows: find a function u on a 
domain dΩ ⊂ R  satisfying the sequence of equations 

( ) ( )dn nu x g x x nµ
Ω

= ∈∫ N                              (5) 

where ( )ng  is a given sequence of functions lying in ( )2 ΩL  linearly independent. 
Many inverse problems can be formulated as an integral equation of the first kind, namely, 

( ) ( ) ( ) ( ), d ,
b

a
K x y u y y f x x a b= ∈∫  

( ),K x y  and ( )f x  are given functions and ( )u y  is a solution to be determined, ( )f x  is a result of 
experimental measurements and hence is given only at finite set of points. It follows that the above integral 
equation is equivalent to the following moment problem 

( ) ( ) ( ), d 1,2,
b

n na
K x y u y y f x n= =∫   

Also we consider the multidimensional moment problems 

( ) ( ) ( ), d 1,2, , .d
n nK x y u y y f x n

Ω
= = Ω ⊂∫ R  

Moment problem are usually ill-posed [6] [7]. There are various methods of constructing regularized solutions, 
that is, stable appoximate solutions with respect to the given data μn. One of them is the method of truncated 
expansion [4]. 

The method of truncated expansion consists in approximating (5) by finite moment problems 

( ) ( )d 1,2, , .i iu x g x x i nµ
Ω

= =∫                             (6) 
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Solved in the subspace 1 2, , , ng g g  generated by 1 2, , , ng g g  (6) is stable. Considering the case where 
the data ( )1 2, , , nµ µ µ µ=   are inexact, we apply some convergence theorems and error estimates for the 
regularized solutions. 

2. Linear Partial Differential Equations of First Order as Integral Equations of First  
Kind 

Let ( )( ), 0F w x t =  be a partial differential equations such as (1). The solution ( ),w x t  is defined on the re-  

gion ( ) ( )1 1 2 2, ,E a b a b= ×  and verifies Dirichlet conditiones on the boundary C E= ∂ : 

( ) ( ) ( ) ( )1 1 1 2, ,w a t s t w b t s t= =  

( ) ( ) ( ) ( )2 3 2 4, ,w x a s x w x b s x= =  

Let ( ) ( )( )1 2,F F w F w∗ =  be a vectorial field such that w verifies ( ) ( )div F h w∗ ∗=  with h∗  a known 
function and, reciprocally, if w verifies ( ) ( )div F h w∗ ∗=  then ( )( ), 0.F w x t =  

Let ( ), , ,u x t τ ξ  be the auxiliary function such that 

( ) ( )( )1 2, , , , , , , .u uk x t uk x tτ ξ τ ξ∇ =  

Since 

( ) ( )udiv F uh w∗ ∗=  

we have 

( ) ( )d d .
E E
udiv F A uh w A∗ ∗=∫∫ ∫∫  

Moreover, as 

( ) ( )udiv F div uF F u∗ ∗ ∗= − ⋅∇  

and 

( ) ( )
( ) d

d d d

C

E E E

uF n s

udiv F A div uF A F u A
∗

∗ ∗ ∗

= ⋅∫

= − ⋅∇∫∫ ∫∫ ∫∫


 

we obtain 
( ) ( )d d d

E C E
uh w A uF n s F u A∗ ∗ ∗= ⋅ − ⋅∇∫∫ ∫ ∫∫                          (7) 

where ( ), .u u uτ ξ∇ =  
Then (7) gives: 

( ) ( )d d d
E E C
uh w A F u A uF n s∗ ∗ ∗+ ⋅∇ = ⋅∫∫ ∫∫ ∫  

and 

( ) ( )( ) ( )( )1 2d d d d .
E E E E
uh w A F u A uh w F u A uh w F u F u Aτ ξ

∗ ∗ ∗ ∗ ∗+ ⋅∇ = + ⋅∇ = + +∫∫ ∫∫ ∫∫ ∫∫  

Then 

( ) ( )( ) ( ) ( )1 2

1 2

2

=1
, , , , d d ,

b b
i ia a

i
u h w F w k x t G x tτ ξ τ ξ ξ τ∗ + = 
 

∑∫ ∫                   (8) 

where 

( ) ( ) ( )( ) ( ) ( )( )( )
( ) ( )( ) ( ) ( )( )( )

2

2

1

1

1 1 1 1 1 1

2 2 2 2 2 2

, , , , , , , , , d

, , , , , , , , d .

b

a

b

a

G x t u x t b F w b u x t a F w a

u x t b F w b u x t a F w a

ξ ξ ξ ξ ξ

τ τ τ τ τ

= −

+ −

∫

∫
 

We apply this to the Equation (1). For this we write: 
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( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , , .a w b w h w rτ ξτ ξ τ ξ τ ξ τ ξ τ ξ τ ξ τ ξ+ = +  

We take as vector field 

( ) ( )( ) ( ) ( ) ( ) ( )( )1 2, , , , , ,F F w F w a w b wτ ξ τ ξ τ ξ τ ξ∗ = =  

and 

( ) ( )( ) ( )( )1 21 1 1 1, , , e em x m tu x t τ ξτ ξ − + + − + +=  

where 1m  y 2m  are arbitrary constants. Then  

( ) ( ) ( )( ) ( ) ( )( )
( )

, , , ,

.

div F a w b w

aw bw a w b w hw r a w b w h w
τ ξ

τ ξ τ ξ τ ξ

τ ξ τ ξ τ ξ τ ξ∗

∗

= +

= + + + = + + + =
 

Therefore, Equation (8) yields  

( ) ( )( ) ( )1 2 1 2

1 2 1 2
1 21 1 d d , d d .

b b b b

a a a a
uw h a b m x a m t b G x t urτ ξ ξ τ ξ τ+ + − + − + = −∫ ∫ ∫ ∫              (9) 

3. Solution of Generalized Moment Problems 
If (9) can be written in the form: 

( )( ) ( ) ( )1 2

1 2
, , , , d d ,

b b

a a
F w K x t x tτ ξ τ ξ τ ξ ϕ=∫ ∫  

with ( ) ( )2,x t L Eϕ ∈ , then taking a basis ( ){ },m m
x tψ  of ( )2L E  this Fredholm integral equation of first kind 

can be transformed into a bi-dimensional generalized moment problem 

( )( ) ( )1 2

1 2
, , d d 0,1,2,

b b
m ma a

F w K mτ ξ τ ξ τ ξ µ= =∫ ∫                     (10) 

where 

( ) ( ) ( )1 2

1 2
, , , , , d d

b b
m ma a

K K x t x t x tτ ξ τ ξ ψ= ∫ ∫                          (11) 

and the moments mµ  are 

( ) ( )1 2

1 2
, , d d .

b b
m ma a

x t x t x tµ ϕ ψ= ∫ ∫                               (12) 

If the functions ( ){ },m m
K τ ξ  are linearly independent then the generalized moment problem defined by 

Equations (10), (11) and (12) can be solved considering the correspondent finite problem 

( )( ) ( )1 2

1 2
, , d d 0,1,2, ,

b b
m ma a

F w K m n n Nτ ξ τ ξ τ ξ µ= = ∈∫ ∫              (13) 

whose solution we denote ( ) ( ) ( )( ), , , .np F wτ ξ β τ ξ τ ξ≈ =  

If ( )F w  has continuous inverse, then ( )( ) ( )1 , ,n nF p wτ ξ τ ξ− =  is an estimation of ( ),w τ ξ . 
To reach this result let consider the basis ( ){ } 0

,i i
φ τ ξ

∞

=
 obtained from the sequence ( ){ } 0

,
n

m m
K τ ξ

=
 by  

Gram-Schmidt method and addition of the necessary functions in order to have an orthonormal basis. 
We then approximate the solution ( ) ( )( ), ,F wβ τ ξ τ ξ=  de (13) with 

( ) ( )
0

, ,
n

n i i
i

p τ ξ λφ τ ξ
=

= ∑  

with 

0
0,1, ,

i

i ij j
j

C i nλ µ
=

= =∑   

where the coefficients ijC  verifies 
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( )
( ) ( )

( )
( )

1 1

2

, ,
1 , 1 ; 1

,

i i k
ij kj i

k j k

K
C C i n j i

τ ξ φ τ ξ
φ τ ξ

φ τ ξ

− −

=

 
 = − ⋅ < ≤ ≤ <
 
 
∑           (14) 

( ) 1
, 0,1, , .ii iC i nφ τ ξ

−
= = 

                                         (15) 

We extend to the bi-dimensional case the arguments of reference [8] [9] and we have the following. 
Theorem 1. Let { } 0

n
m m

µ
=

 be a set of real numbers and let ε  and E be two positive numbers such that  

( ) ( )2 1

2 1

2
2

0
, , d d

n b b
m ma a

m
K τ ξ β τ ξ τ ξ µ ε

=

− ≤∑ ∫ ∫                         (16) 

y 

( ) ( )2 1

2 1

2 22 2 2
1 1 2 2 d d

b b

a a
b a b a Eτ ξβ β τ ξ − + − ≤ ∫ ∫  

then 

( )
( )

2 1

2 1

2
2 T 2

2, d d min ; 0,1, ,
8 1

b b

a a n

ECC n N
n

β τ ξ τ ξ ε
  ≤ + = 

+  
∫ ∫           (17) 

where C is the triangular matriz with elements ijC  ( )1 ;1 .i n j i< ≤ ≤ <  
And 

( ) ( )
( )

2 1

2 1

2
2 T 2

2, , d d .
8 1

b b
na a

Ep CC
n

τ ξ β τ ξ τ ξ ε− ≤ +
+

∫ ∫                  (18) 

Si ( )1F x−  is Lipschitz in 2R , ie if ( ) ( )1 1F x F y x yλ− −− ≤ −  for some λ  and ( ) 2,x y R∀ ∈  then 

( ) ( )
( )

2 1

2 1

2
2 T 2

2, , d d .
8 1

b b
na a

Ew w CC
n

τ ξ τ ξ τ ξ λ ε
 
 − ≤ +
 + 

∫ ∫               (19) 

Proof. The demonstration is similar to that we have done for the unidimensional generalized moment problem 
[8], which is based in results of Talenti [10] for the Hausdorff moment problem. Here we simply introduce the 
necessary modification for the bi-dimensional case. 

Without loss of generality we take { } 0
0 n

m m
µ

=
=  in (16). 

We write 

( ) ( ) ( ), , ,n nh tβ τ ξ τ ξ τ ξ= +  

where ( ),nh τ ξ  is the orthogonal projection of ( ),β τ ξ  on the linear space that the set ( ){ } 0
,

n
m m

K τ ξ
=

 gene- 
rates and ( ) ( ) ( ), , ,n nt hτ ξ β τ ξ τ ξ= −  is the orthogonal projection of ( ),β τ ξ  on the orthogonal complement.  
In terms of the basis ( ){ } 0

,i i
φ τ ξ

∞

=
 the functions ( ),nh τ ξ  and ( ),nt τ ξ  reads 

( ) ( ) ( ) ( )
0 1

, , ; , ,
n

n i i n i i
i i n

h tτ ξ λφ τ ξ τ ξ λφ τ ξ
∞

= = +

= =∑ ∑  

with 

0
0,1,

i

i ij j
j

C iλ µ
=

= =∑   

and the matrix elements ijC  given by (14) and (15). 
In matricial notation: 

1 1

2 2 .

n n

C

λ µ
λ µ

λ µ λ µ

λ µ

   
   
   = = ⇒ =
   
   
   

 
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Besides 

( ) ( ) ( ) ( )2 1 2 1

2 1 2 1
, , d d y , , d d .

b b b b
i i i ia a a a

Kλ β τ ξ φ τ ξ τ ξ µ β τ ξ τ ξ τ ξ= =∫ ∫ ∫ ∫  

Therefore 

( )2 1

2 1

2 2T T T 2, d d , , .
b b

na a
h C C C C C Cτ ξ τ ξ λ λ µ µ µ ε= = ≤ ≤∫ ∫  

To estimate the norm of ( ),nt τ ξ  we observe that each element of the orthonormal basis ( ){ } 0
,i i

φ τ ξ
∞

=
 can  

be written as a function of the elements of another orthonormal basis, in particular the set ( ){ } , 0
,kl k l

P τ ξ
∞

=
 con 

( ) ( ) ( )1 2,kl k lP L Lτ ξ τ ξ=  with ( )1kL τ  Legendre polynomial in ( )1 1,a b , ( )2lL ξ  Legendre polynomial in 
( )2 2,a b  

( ) ( ),
0 0

, ,i kl i kl
k l

Pφ τ ξ γ τ ξ
∞ ∞

= =

= ∑∑  

The Legendre polynomials ( )1kL τ  verify  

( )( ) ( ) ( ) ( )1 1 1 1
d 1 0,1,2,

d k ka b L k k L kτ τ τ τ
τ

− − = + =     

and analogous property for the polynomials ( )2 .lL ξ   
Defining ,1kl i kl ii nλ λ γ∞∗

= +
= ∑  we can demonstrate that 

( ) ( )
( )

( ) ( )2 1 2 1

2 1 2 1

2 22 2
1 12

0 0

1, d d 1 , d d
4 1

b b b b
n kla a a a

k l
t k k b a

n
ττ ξ τ ξ λ β τ ξ τ ξ

∞ ∞
∗

= =

≤ + ≤ −
+

∑∑∫ ∫ ∫ ∫  

and 

( ) ( )
( )

( ) ( )2 1 2 1

2 1 2 1

2 22 2
2 22

0 0

1, d d 1 , d d .
4 1

b b b b
n kla a a a

k l
t l l b a

n
ξτ ξ τ ξ λ β τ ξ τ ξ

∞ ∞
∗

= =

≤ + ≤ −
+

∑∑∫ ∫ ∫ ∫  

From these equations we deduce that 

( )
( )

( ) ( ) ( ) ( )2 1 2 1

2 1 2 1

2 2 22 2
1 1 2 22

1, d d , , d d
8 1

b b b b
na a a a

t b a b a
n

τ ξτ ξ τ ξ β τ ξ β τ ξ τ ξ ≤ − + − +
∫ ∫ ∫ ∫  

( )
( )

2 1

2 1

2
2

2, d d .
8 1

b b
na a

Et
n

τ ξ τ ξ∴ ≤
+

∫ ∫  

Adding the expressions for the two standards ( ),nh τ ξ  y ( ) 2
,nt τ ξ  result (17) is reached. An analogous 

demonstration proves inequality (18).                                                           □ 

4. Numerical Examples 
Let consider the equation 

0x txtw w+ =  

in the domain ( ) ( )0,2 0,2E = ×  and boundary condition on E∂  given by 

( ) ( )2 22 20, e 2, 3et tw t w t− −= =  

( ) ( ) ( ) ( ) 2,0 1 ,2 1 ew x x w x x −= + = +  

The exact solution is ( ) ( ) 2 2, 1 e .tw x t x −= +   
In Figure 1(a) the approximate numerical solution (dark gray) and the exact one (light gray) are compared. 

Was taken ( ), i j
ij x t x tψ =  with 0,1, 2i =  and 0,1,2.j =  

And 1 2 1m m= =  in u. 

 
984 



M. B. Pintarelli 
 

 
(a)                                                     (b) 

Figure 1. (a) ( ) ( ) 2 2, 1 e tw x t x −= + ; (b) ( ), e x tw x t − −= .                                                              

 
Thus were taken 9n =  moments. 
The accuracy is, in this case ( ) ( )2 2 2

90 0
, , d d 0.437848.p x t w x t x t− =∫ ∫  

Let consider the equation 

( ) ( ) ( ) ( )( )2 2 1x txt t w x t w t t x t x w+ + + = − + + +  

in the domain ( ) ( )0,3 0,3E = ×  and boundary condition on E∂  given by  

( ) ( ) 30, e 3, et tw t w t− − −= =  

( ) ( ) 3,0 e ,3 ex xw x w x− − −= =  

The exact solution is ( ), e .x tw x t − −=  
In Figure 1(b) the approximate numerical solution (dark gray) and the exact one (light gray) are compared. 
Was taken ( ), i j

ij x t x tψ =  with 0,1, 2i =  and 0,1,2.j =  
And 1 2 1m m= =  in u.  
Thus were taken 9n =  moments. 
The accuracy is, in this case ( ) ( )3 3 2

90 0
, , d d 0.333021.p x t w x t x t− =∫ ∫  

5. Application 
We want to find ( ) ( )2,w x t L E∈  with ( ) ( )1 1 2 2, ,E a b a b= ×  such that satisfies the Klein-Gordon equation 

( ) ( ) ( )( ) ( ), , , ,xx ttw x t w x t h w x t r x t− = +                          (20) 

where h y r are known functions. 
And boundary conditions  

( ) ( ) ( ) ( )1 1 1 2, ,w a t g t w b t g t= =  

( ) ( ) ( ) ( )2 3 2 4, ,w x a g x w x b g x= =  
we write 

( ) ( ) ( )( ) ( ), , , , .w w h w rττ ξξτ ξ τ ξ τ ξ τ ξ− = +                          (21) 

We take as vector field 

( ) ( )( ) ( ) ( )( )1 2, , , ,F F w F w w wτ ξτ ξ τ ξ∗ = = −  

and 
( ) ( )( ) ( )( )1 1 1 1, , , e e .x tu x t τ ξτ ξ − + + − + +=  
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Then 

( ) ( ),div F w w hττ ξξ τ ξ∗ ∗= − =  

where 

( ) ( )( ) ( ), , , .h h w rτ ξ τ ξ τ ξ∗ = +  

Since 
( ) ( )udiv F uh w∗ ∗=  

we have 

( ) ( )d d .
E E
udiv F A uh w A∗ ∗=∫∫ ∫∫  

Moreover, as 

( ) ( ) .udiv F div uF F u∗ ∗ ∗= − ⋅∇  

Therefore 

( ) ( )d d d
E E E
udiv F A div uF A F u A∗ ∗ ∗= − ⋅∇∫∫ ∫∫ ∫∫                       (22) 

in addition 

( ) ( ) ( )( ) ( ) ( )d d d
E E E E
div uF A uw uw udiv F A u w u w Aτ ξ τ τ ξ ξτ ξ

∗ ∗= − = + −∫∫ ∫∫ ∫∫ ∫∫        (23) 

then (22) and (23) we obtain: 

( )d d .
E E
F u A u w u w Aτ τ ξ ξ

∗ ⋅∇ = −∫∫ ∫∫                          (24) 

Also doing integration by parts is reached: 

( ) ( ) ( ) ( )( )2 2, , 1 1 d
E E
F udA A x t B x t uw x t A∗ ⋅∇ = + − + − +∫∫ ∫∫                  (25) 

with 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

2

2

1

1

1 1 1 1

2 2 2 2

, , , , , , , , , d

, , , , , , , , , d .

b

a

b

a

A x t w b u x t b w a u x t a

B x t w b u x t b w a u x t a

τ τ

ξ ξ

ξ ξ ξ ξ ξ

τ τ τ τ τ

= −

= −

∫

∫
 

From (23), (24) and (25) and after several calculations: 

( ) ( ) ( ) ( ) ( ) ( )2 1

2 1

2 2, , 1 1 1 1 d d .
b b

a a
A x t B x t u w x t w x w t x tτ ξ

  + = + − + + − − + +   ∫ ∫  

If t x=  then 

( ) ( ) ( ) ( )2 1

2 1
, , 1 d d .

b b

a a
t A t t B t t u t w w x tτ ξϕ  = + = + − + ∫ ∫                     (26) 

We write (26) as: 

( )
( )

( )( )2 1

2 1

1 2e d d .
1

b b t

a a

t
w w x t

t
τ ξ

τ ξ

ϕ − + + +  = − + + ∫ ∫                               (27) 

We can see that (27) is an integral equation of the form  

( ) ( ) ( )1 2

1 2
, , , d d

b b

a a
w K t tτ ξ τ ξ τ ξ ϕ∗ ∗=∫ ∫  

where the unknown function is ( ),w w wτ ξτ ξ∗ = − + , the kernel is ( ) ( )( )1 2, , e tK t τ ξτ ξ − + + +=  and  

( ) ( )
( )

.
1

t
t

t
ϕ

ϕ∗ =
+
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To solve (27) as a problem of two-dimensional moments we apply seen in Section 3 and we obtain an 
approximation ( ),np τ ξ  to w wτ ξ− + . 

Now we solve the partial differential equation of the first order 

( ),w w rτ ξ τ ξ− + =                                      (28) 

where ( ) ( ), ,nr pτ ξ τ ξ= , ( ), 1a τ ξ = − , ( ), 1b τ ξ =  y ( ), 0h τ ξ = .  
To find the solution of the Equation (28) algorithm of Section 3 applies. 

Numerical Examples 
We want to find ( ) ( )2,w x t L E∈  with ( ) ( )0,2 0,E = × ∞  such that satisfies the Klein-Gordon equation 

( ) ( ) ( ) ( ) ( )212, , 4 8 1 , 2e x t
tt xxw x t w x t t t w x t − − +− = + + +                       (29) 

with boundary conditions 

( ) ( ) ( ) ( )2 21 2 10, e 2, 3e 0t tw t w t t− + − − += = >  

( ) ( ),0 1 e , 0 2.xw x x x−= + < <  

The exact solution is ( ) ( ) ( )21, 1 e x tw x t x − − += + . 
In Figure 2(a) the approximate numerical solution (dark grey) and the exact one (light grey) are compared. 
For the first step was taken the base ( ) ei t

i t tψ −=  with 0,1, ,8i =   and as an auxiliary function  
( ) ( ) ( )1 1, , , e x tu x t ξ ττ ξ − + − += . For the second step was taken the base ( ), ei j x t

ij x t x tψ − −=  with 0,1, 2i =  and 
0,1,2.j =  

And ( ) ( )( ) ( )( )1 1 0.5 1 1, , , e x tu x t ξ ττ ξ − + + − + +=  in order to avoid discontinuities.  
Thus were taken 9n =  moments. 
The accuracy is, in this case ( ) ( )2 2

90 0
, , d d 0.0997437.p x t w x t x t

∞
− =∫ ∫  

We want to find ( ) ( )2,w x t L E∈  with ( ) ( )0,2 0,2E = ×  such that satisfies the Klein-Gordon equation 

( ) ( ), , ew
tt xxw x t w x t− = −                                   (30) 

with boundary conditions 

( )
( )

( )
( )2 2

6 60, ln 2, ln
3 7

w t w t
t t

   
   = =
   + +   

 

( )
( )( )

( )
( )( )2 2

6 6,0 ln , , 2 ln
2 1 1 2 1 3

w x w x
x x

   
   = =
   + + + +   

 

The exact solution is ( )
( )( )2

6, ln
2 1 1

w x t
x t

 
 =
 + + + 

.  

In Figure 2(b) the approximate numerical solution (dark grey) and the exact one (light grey) are compared. 
For the first step was taken the base ( ) ei t

i t tψ −=  with 0,1, ,8i =   and as an auxiliary function  
( ) ( ) ( )1 1, , , e x tu x t ξ ττ ξ − + − += . For the second step was taken the base ( ), ei j x t

ij x t x tψ − −=  with 0,1, 2i =  and 
0,1,2.j =  

And ( ) ( )( ) ( )( )1 1 0.5 1 1, , , e x tu x t ξ ττ ξ − + + − + +=  in order to avoid discontinuities.  
Thus were taken 9n =  moments. 
The accuracy is, in this case ( ) ( )2 2 2

90 0
, , d d 0.615126.p x t w x t x t− =∫ ∫  

6. Conclusions 
The linear partial differential equations of first order 
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(a)                                                     (b) 

Figure 2. (a) ( ) ( ) ( )21, 1 e x tw x t x − − += + , (b) ( )
( )( )2

6, ln
2 1 1

w x t
x t

 
 =
 + + + 

.                                              

 
( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , ,x ta x t w x t b x t w x t h x t w x t r x t+ = +  

on a region ( ) ( )1 1 2 2, ,E a b a b= ×  can be written as an Fredholm integral equation  

( ) ( )( ) ( )1 2 1 2

1 2 1 2
1 21 1 d d , d d .

b b b b

a a a a
uw h a b m x a m t b G x t urτ ξ ξ τ ξ τ+ + − + − + = −∫ ∫ ∫ ∫         (31) 

If (31) can be written in the form: 

( )( ) ( ) ( )1 2

1 2
, , , , d d ,

b b

a a
F w K x t x tτ ξ τ ξ τ ξ ϕ=∫ ∫  

with ( ) ( )2,x t L Eϕ ∈ , then taking a basis ( ){ },m m
x tψ  of ( )2L E  this Fredholm integral equation of the first 

kind can be transformed into a bi-dimensional generalized moment problem 

( )( ) ( )1 2

1 2
, , d d 0,1,2,

b b
m ma a

F w K mτ ξ τ ξ τ ξ µ= =∫ ∫                    (32) 

where 

( ) ( ) ( )1 2

1 2
, , , , , d d

b b
m ma a

K K x t x t x tτ ξ τ ξ ψ= ∫ ∫                           (33) 

and the moments mµ  are 

( ) ( )1 2

1 2
, , d d .

b b
m ma a

x t x t x tµ ϕ ψ= ∫ ∫                               (34) 

If the functions ( ){ },m m
K τ ξ  are linearly independent then the generalized moment problem defined by 

Equations (32), (33) and (34) can be solved considering the correspondent finite problem. 
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