
Applied Mathematics, 2015, 6, 684-693 
Published Online April 2015 in SciRes. http://www.scirp.org/journal/am 
http://dx.doi.org/10.4236/am.2015.64063  

How to cite this paper: Soliman, A.A. and Al-Jarallah, E.S. (2015) Asymptotic Stability of Solutions of Lotka-Volterra Preda-
tor-Prey Model for Four Species. Applied Mathematics, 6, 684-693. http://dx.doi.org/10.4236/am.2015.64063  

 
 

Asymptotic Stability of Solutions of 
Lotka-Volterra Predator-Prey  
Model for Four Species 
A. A. Soliman1*, E. S. Al-Jarallah2 
1Department of Mathematics, Faculty of Sciences, Benha University, Benha, Egypt 
2Department of Mathematics, Faculty of Education, Al Jouf University, Al-Jawf, Kingdom of Saudi Arabia 
Email: *a_a_soliman@hotmail.com  
 
Received 1 March 2015; accepted 21 April 2015; published 22 April 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
In this paper, we consider Lotka-Volterra predator-prey model between one and three species. 
Two cases are distinguished. The first is Lotka-Volterra model of one prey-three predators and the 
second is Lotka-Volterra model of one predator-three preys. The existence conditions of nonnega-
tive equilibrium points are established. The local stability analysis of the system is carried out.  
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1. Introduction 
The Lotka-Volterra model provides a nice mathematical device to study and understand complex systems of 
mutually interacting species or agent [1]. In the past decades, Lotka-Volterra type systems have been extensively 
investigated, especially in biology and ecology [2]-[8]. A basic issue addressed in the studies concerns stability 
property of the systems because of its relevance to the coexistence of different species in a community [9]. It 
turns out that the stability of a Lotka-Volterra system relies crucially on the interaction matrix of the system.  

A Lotka-Volterra system of n-dimensions is expressed by the ordinary differential equations [4] [10]: 

( ) ( ) ( )
1

, .
n

i i i ij j
j

x t x t b a x t i N
=

 
= − ∈ 

 
∑                           (1.1) 
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where { }1,2, ,N n=   and n is the species number. In (1.1), the function ( )ix t  represents the density of spe-
cies i at time t, the constant ib , is the carrying capacity of species i, and ija  represents the effect of interspe-
cific (if i j≠ ) or intraspecific (if i j= ) interaction. In vector form, System (1.1) is expressed as 

( ) ,x X b Ax= −  

where ( )1 2, , , nx col x x x=   is an n-dimensional state vector, ( )1 2, , , nX diag x x x=   is an n n×  diagonal 
matrix, ( )1 2, , , nb col b b b=   is an n-dimensional real vector, and ( )ijA a=  is an n n×  community matrix. 

The existence and stability of a nonnegative equilibrium point of system (1.1) or subsystems of (1.1) has been 
investigated by many authors [9] [11] and [12]. The global stability of system (1.1) has been studied by many 
authors [9] [11] [13]-[16]. 

In this paper, we shall concentrate on Lotka-Volterra systems of the fourth dimension. A Lotka-Volterra two 
preys-two predators system is studied by Takeuchi and Adachi [15], and [16]. The first is Lotka-Volterra model 
of one prey-three predators and the second is Lotka-Volterra model of three prey-one predator. 

This work is organized as follows: In Section 2, we describe our model. In Section 3, the existence conditions 
of nonnegative equilibrium points are established. The local stability analysis of the system is carried out in Sec-
tion 4.  

In Section 5, we present an example to clarify each case. 

2. The Model  
Lotka-Volterra Model  
In this section we consider Lotka-Volterra predator-prey model between one and three species and assume that 
there is no interspicific competition between the three species x2, x3 and x4. This is represented by the following 
system of differential equations: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 11 1 12 2 13 3 14 4

2 2 2 21 1 22 2

3 3 3 31 1 33 3

4 4 4 41 1 44 4

,

,

,

.

x t x t b a x t a x t a x t a x t

x t x t b a x t a x t

x t x t b a x t a x t

x t x t b a x t a x t

′ = − − − −   
′ = − −   


′ = − −   


′ = − −    

                 (2.1) 

where ( ) ( ), 1, 2,3, 4ix t i =  represents the density of species i at time t, the constant ib  is the carrying capacity 
of species i and ija  represents the effect of interspecific (if i j≠ ) or intraspecific (if i j= ) interaction. In 
vector form, system (2.1) is expressed as: 

( ) ,x X b Ax= −  

where ( )1 2 3 4, , ,x col x x x x=  is a 4-dimensional state vector, ( )1 2 3 4, , ,X diag x x x x=  is a 4 × 4 diagonal ma-
trix, ( )1 2 3 4, , ,b col b b b b=  is a 4-dimnsional real vector, and 

11 12 13 14

21 22

31 33

41 44

0 0
.

0 0
0 0

a a a a
a a

A
a a
a a

 
 
 =
 
 
 

                              (2.2) 

is a 4 × 4 community matrix. 
The system (2.1) is a prey-predator system if the following assumption is satisfied. 
(H1) 1 10, 0, 1, 2,3, 4, 1,2,3.ii j ja a a i j> < = =   
Two cases of system (2.1) can be distinguished: 
The first case describes a one prey-three predators system where x1 represents the prey and x2, x3, x4 represent 

the predators. In this case we assume that the following conditions are satisfied in addition to (H1): 
(H2) 1 10, 0, 2,3, 4.j ja a j> < =   
(H3) 1 0, 0, 2,3, 4.jb b j> < =   



A. A. Soliman, E. S. Al-Jarallah 
 

 
686 

The second case describes a one predator-three preys system where x1 represents the predator and x2, x3, x4 
represent the preys. In this case we assume that the following conditions are satisfied in addition to (H1). 

(H2)' 1 10, 0, 2,3, 4,j ja a j< > =   

(H3)' 1 0, 0, 2,3, 4.jb b j< > =   

3. Equilibrium Analysis 
3.1. Existence of the Quilibrium Points 
In this section, the existence of the equilibrium points of system (2.1) in each case is investigated. At most there 
are nine possible non-negative equilibrium points for system (2.1) in the first case, the existence conditions of 
them are given as the following: 

1) The equilibrium points ( )0 0,0,0,0E =  and 1
1

11

,0,0,0
bE
a

 
=  
 

 are always exist where E1 is the equili-

brium point in the absence of predation and 1

11

0
b
a

>  according to conditions (H1) and (H3). 

2) The positive equilibrium point ( )1 1 , , 2,3, 4j j jE x x j= =   exists in the first quadrant of the 1 jx x  plane if 
and only if the following condition is satisfied  

(H4): 1 11

1

, 2,3, 4,
j j

b a j
b a

< =  

where 1 jx  and jx  are given by 

1 1
1

11 1 1

11 1 1

11 1 1

,

, 2,3, 4.

jj j j
j

jj j j

j j
j

jj j j

a b a b
x

a a a a

a b a b
x j

a a a a

− 
= − 

− = = − 





                            (3.1) 

3) The positive equilibrium point ( )1 1̂ ˆ ˆ, , , 2,3, 3, 4,jk jk jk kjE x x x j k j k= = = ≠  exists in the first octant of 
1 j kx x x  space if and only if the following conditions are satisfied: 

(H5): 1 1
1 1 1

11 1 1

,kk k k
j j j k

kk k k

a b a bb a a x
a a a a

 −
> = − 

  

1 1
1 1 1

11 1 1

,

2,3, 3, 4, .

jj j j
k k k j

jj j j

a b a b
b a a x

a a a a

j k j k

 −
> =  − 
= = ≠



 

where 1̂ ˆ,jk jkx x  and ˆkjx  are given by 

1 1 1
1

11 1 1 1 1

1 1 1 1 11 1 1

11 1 1 1 1

1 1 1 1 1 1 11

11 1 1 1 1

ˆ ,

ˆ ,

ˆ

jj kk j kk j k jj k
jk

jj kk j j kk k k jj

j kk k k j kk j k j k
jk

jj kk j j kk k k jj

jj k j k j j j k jj k
kj

jj kk j j kk k k

a a b a a b a a b
x

a a a a a a a a a

a a b a a b a a b a a b
x

a a a a a a a a a

a a b a a b a a b a a b
x

a a a a a a a a

− −
=

− −

− − + +
=

− −

− + − +
=

− −
,

2,3, 3, 4, .
jja

j k j k












= = ≠ 

                     (3.2) 

4) The positive equilibrium point ( )1 2 3 4, , ,E x x x x∗ ∗ ∗ ∗ ∗=  exists in the positive cone (nonnegative octant)  
( ){ }4 4

1 2 3 4, , , 0, 1, 2,3, 4 .iR x x x x x R x i+ = = ∈ ≥ =  if and only if the following conditions are satisfied 
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(H6) 33 44 1 13 44 3 14 33 4
2 21 21 134

11 33 44 13 31 44 14 41 33

ˆ ,a a b a a b a a bb a a x
a a a a a a a a a

 − −
> = − − 

 

22 44 1 14 22 4 12 44 2
3 31 31 124

11 22 44 12 21 44 14 41 22

22 33 1 12 33 2 13 22 3
4 41 41 123

11 22 33 12 21 33 13 31 22

ˆ ,

ˆ .

a a b a a b a a bb a a x
a a a a a a a a a

a a b a a b a a bb a a x
a a a a a a a a a

 − −
> = − − 

 − −
> = − − 

 

where , 1, 2,3, 4ix i∗ =  are given by 

, 1, 2,3, 4,i
i

x
x i

A
∗ = =                                 (3.3) 

where 

( )
( )

1 22 33 44 1 12 33 44 2 13 22 44 3 14 22 33 4

2 21 33 44 1 11 33 44 14 41 33 13 31 44 2 13 21 44 3 14 21 33 4

3 22 31 44 1 12 31 44 2 11 22 44 12 21 44 14 41 22 3 14 22 31 4

4

,
,

,

x a a a b a a a b a a a b a a a b
x a a a b a a a a a a a a a b a a a b a a a b

x a a a b a a a b a a a a a a a a a b a a a b

x a

= − − −

= − + − − + +

= − + + − − +

= − ( )22 33 41 1 12 33 41 2 13 22 41 3 11 22 33 12 21 33 13 31 22 4

11 22 33 44 12 21 33 44 13 31 22 44 14 41 22 33

,

.

a a b a a a b a a a b a a a a a a a a a b

A a a a a a a a a a a a a a a a a

+ + + − −

= − − −

 

A is the interaction matrix defined in (2.2). 
For the second case of system (2.1), at most there are fifteen possible nonnegative equilibrium points. The ex-

istence conditions of them are given as the following: 
1) The equilibrium points 

( )0 0,0,0,0E = , 2
2

22

0, ,0,0
bE
a

 
=  
 

, 3
3

33

0,0, ,0
b

E
a

 
=  
 

 and 4
4

44

0,0,0,
bE
a

 
=  
 

 

are always exist where E2, E3, E4 are the equilibrium points in the absence of predation and ( )0, 2,3,4j

jj

b
j

a
> =  

according to conditions (H1) and (H3)'. 
2) The positive equilibrium point ( )1 1 , , 2,3, 4j j jE x x j= =   exists in the first quadrant of 1 jx x  plane if and 

only if the following condition is satisfied 

(H4)': 11 , 2,3, 4.j

j jj

ab j
b a

> =  

where 1̂ jx  and ˆ jx  are given by (3.1). 
3) In the absence of predator and one prey species, both the other two prey species grow. Thus, the equili-

brium point , , 2,3, 3, 4,j k
jk

jj kk

b bE j k j k
a a

 
= = = ≠  
 

 always exists in the interior of j kx x  plane where 0j

jj

b
a

> , 

0k

kk

b
a

>  according to conditions (H1) and (H3)'. 

4) The positive equilibrium point ( )1 1̂ ˆ ˆ, , , 3, 4, 3, 4,jk jk jk kjE x x x j k j k= = = ≠  exists in the first octant of 
1 j kx x x  space if and only if the following conditions are satisfied  

(H5)' 1 1
1 ,j k

j k
jj kk

a ab b b
a a

> +  

1 1
1 1 1

11 1 1

1 1
1 1 1

11 1 1

,

.

kk k k
j j j k

kk k k

jj j j
k k k j

jj j j

a b a bb a a x
a a a a

a b a b
b a a x

a a a a

 −
> = − 

 −
> =  − 




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where 1̂ jkx , ˆ jkx  and ˆkjx  are given by (3.2). 
5) In the absence of predator, all three prey species grow. Thus, the positive equilibrium point  

32 4
234

22 33 44

, ,
bb bE

a a a
 

=  
 

 always exists in the interior of 2 3 4x x x  space. 

6) The positive equilibrium point ( )1 2 3 4, , ,E x x x x∗ ∗ ∗ ∗ ∗=  exists in 4R+  if and only if the following conditions 
are satisfied 

(H6)': 1312 14
1 2 3 4

22 33 44

,aa ab b b b
a a a

> + +  

33 44 1 13 44 3 14 33 4
2 21 21 134

11 33 44 13 31 44 14 41 33

22 44 1 14 22 4 12 44 2
3 31 31 124

11 22 44 12 21 44 14 41 22

22 33 1 12 33 2 13 22 3
4 41

11 22 33 12

ˆ ,

ˆ ,

a a b a a b a a bb a a x
a a a a a a a a a

a a b a a b a a bb a a x
a a a a a a a a a

a a b a a b a a bb a
a a a a a

 − −
> = − − 

 − −
> = − − 

− −
>

− 41 123
21 33 13 31 22

ˆ .a x
a a a a

 
= − 

 

where , 1, 2,3, 4ix i∗ =  are given by (3.3). 

3.2. Remark 
We will use the symbols 1200E , 1030E  and 1004E  to denote the nonnegative equilibrium points ( )12 2, ,0,0x x  , 
( )13 3,0, ,0x x   and ( )14 4,0,0,x x   respectively, where 1 jx  and , 2,3, 4jx j =  are given by (3.1), the symbols 

1230E , 1204E  and 1034E  to denote the nonnegative equilibrium points ( )123 23 32ˆ ˆ ˆ, , ,0x x x , ( )124 24 42ˆ ˆ ˆ, ,0,x x x  and 
( )134 34 43ˆ ˆ ˆ,0, ,x x x  respectively, where 1̂ ˆ ˆ, , , 1, 2, 3, 4,jk jk kjx x x j k j k= = ≠  are given by (3.2) and use the symbols  

0230E , 0204E  and 0034E  to denote the nonnegative equilibrium points 32

22 33

0, , ,0
bb

a a
 
 
 

, 2 4

22 44

0, ,0,
b b
a a

 
 
 

 and

3 4

33 44

0,0, ,
b b
a a

 
 
 

 respectively.  

4. Stability Analysis  
4.1. Stability of Equilibrium Points 
In this section, the local stability analysis of equilibrium points is investigated. Assuming that all previous equi-
librium points existing.  

The Jacobian matrix J of system (2.1) is given by: 

1 11 1 12 2
12 1 13 1 14 1

13 3 14 4

2 21 1
21 2

22 2

3 31 1
31 3

33 3

4 41 1
41 4

44 4

2

0 0
2

.
0 0

2

0 0
2

b a x a x
a x a x a x

a x a x
b a x

a x
a x

J
b a x

a x
a x

b a x
a x

a x

− − 
− − − − − 

 −
− 

− =  −
 −

− 
 − − − 

                  (4.1) 

Computing the variation matrixes corresponding to each equilibrium point and then using Routh-Hurwitz cri-
teria [17], the following results can be observed: 

1) Substituting by E0 in the variation matrix (4.1), we get the eigenvalues , 1, 2,3, 4.i ib iλ = =  
So for the first case, E0 is a saddle point with locally stable manifold in the x2x3x4 space and with unstable 
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manifold in the x1 direction. Near E0 the prey’s population x1 grows while the predators’ populations x2, x3 and x4 
decline. 

For the second case, E0 is a saddle point with locally stable manifold in the x1 direction and with unstable ma-
nifold in the x2x3x4 space. Near E0 the predator population x1 decline while the preys’ populations x2, x3 and x4 
grow. 

2) Substituting by E1 in the variation matrix (4.1), we get the eigenvalues 1 1 0bλ = − < , 1
1

11

0j
j j

a
b b

a
λ = − > ,  

2,3, 4j = . 
(By using (H3) and (H4)). 
So E1 is a saddle point with locally stable manifold in the x1 direction and with unstable manifold in the x2x3x4 

space. Near E1 the prey species x1 remains close to 1

11

b
a

.  

Similarly, E2 has three positive eigenvalues 

12
1 1 2 2 2 3 3 3 3

22

0, 0, 0, 0.
ab b b b b
a

λ λ λ λ= − > = − < = > = >  

(By using (H3)' and (H4)') 
So E2 is a saddle point with locally stable manifold in the x2 direction and with unstable manifold in the x1x3x4 

space. Near E2 the prey species x2 remains close to 2

22

b
a

. 

E3 and E4 have the same stability behavior of E2. 
We now state the local stability behavior of other equilibrium points in the form of Theorems. The proofs of 

these theorems follow directly from the Routh-Hurwitz criteria [12]. 
Theorem 4.1 
1) E12 is locally asymptotically stable in the x1x2 plane. 
2) If E1230 and E1204 exist, then E1200 is a saddle point with locally stable manifold in the x1x2 plane and with 

unstable manifold in the x3x4 plane. 
Proof 
Consider the following subsystem from (2.1) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 11 1 12 2

2 2 2 21 1 22 2

,

.

x t x t b a x t a x t

x t x t b a x t a x t

′ = − −   


′ = − −    
                         (4.2) 

Evaluating the variation matrix of system (4.2) at E12, we have  

11 12 12 12
12

21 12 22 2

.
a x a x

M
a x a x
− − 

=  − − 

 

 

 

The characteristic polynomial is 

( ) ( )2
11 12 22 2 11 22 12 21 12 2 .a x a x a a a a x xλ λ+ + + −                           (4.3) 

Since 
( ) ( )

( ) ( )
12 1 2 11 12 22 2

12 1 2 11 22 12 21 12 2

trace 0,

det 0.

M a x a x

M a a a a x x

λ λ

λ λ

= + = − + <

= = − >

 

 

 

Then, 1λ  and 2λ  have negative real parts. Thus, E12 is locally asymptotically stable in the x1x2 plane. 
Computing the variation matrix (4.1) at E1200, we have 

11 12 12 12 13 12 14 12

21 2 22 2
12

3 31 12

4 41 12

0 0
.

0 0 0
0 0 0

a x a x a x a x
a x a x

J
b a x

b a x

− − − − 
 − − =
 −
 

− 

   

 




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The characteristic equation of matrix V12 is 

( ) ( ) ( )( )2
11 12 22 2 11 22 12 21 12 2 3 31 12 4 41 12 0.a x a x a a a a x x b a x b a xλ λ λ λ + + + − − − − − =        

Comparing with (4.3) we get that 1λ  and 2λ  have negative real parts and 

3 3 31 12 4 4 41 12, .b a x b a xλ λ= − = −   

If E1230 and E1204 exist, then 3 0λ >  and 4 0λ >  (by using (H5) and (H5)'). 
Therefore, E1200 is a saddle point with locally stable manifold in the x1x2 plane and with unstable manifold in 

the x3x4 plane. 

4.2. Remark 
1) Behavior of solutions near the equilibrium points E13 and E14 are the same behavior of solutions near the 

equilibrium point E12. 
2) Behavior of solutions near E1030 and E1004 are the same behavior of solutions near E1200. 
Theorem 4.1 
a) E23 is locally asymptotically stable in the x2x3 plane. 
b) If E1230 exists, then E0230 is a saddle point with locally stable manifold in the x2x3 plane and with unstable 

manifold in the x1x4 plane. 
Proof 
Consider the following subsystem from (2.1) 

( ) ( ) ( )
( ) ( ) ( )

2 2 2 22 2

3 3 3 33 3

,

.

x t x t b a x t

x t x t b a x t

′ = −   


′ = −    
                             (4.4) 

Evaluating the variation matrix of system (4.4) at E23, we have  

2
23

3

0
,

0
b

M
b

− 
=  − 

 

which have the eigenvalues 1 2 0bλ = − <  and 2 3 0bλ = − <  (by using (H3)'). 
Therefore, E23 is locally asymptotically stable in the x2x3 plane. 
Substituting by E0230 in the variation matrix (4.1), we get the eigenvalues  

1312
1 1 2 3 2 2 3 3 4 4

22 33

, , , .
aab b b b b b

a a
λ λ λ λ= − − = − = − =  

If E1230 exists, then 

1 2 3 40, 0, 0, 0.λ λ λ λ> < < >  

(By using (H3)' and (H5)'). 
Hence E0230 is a saddle point with locally stable manifold in the x2x3 plane and with unstable manifold in the 

x1x4 plane. 
Theorem 4.2 
a) E123 is locally asymptotically stable in the x1x2x3 space. 
b) If E∗  exists, then E1230 is a saddle point with locally stable manifold in the x1x2x3 space and with unstable 

manifold in the x4 direction.  
Proof 
Consider the following subsystem from (2.1) 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 11 1 12 2 13 3

2 2 2 21 1 22 2

3 3 3 31 1 33 3

,

,

.

x t x t b a x t a x t a x t

x t x t b a x t a x t

x t x t b a x t a x t

′ = − − −   ′ = − −   


′ = − −    

                     (4.5) 

Evaluating the variation matrix of system (4.5) at E123, we have 
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11 123 12 123 13 123

123 21 23 22 23

31 32 33 32

ˆ ˆ ˆ
ˆ ˆ 0 ,
ˆ ˆ0

a x a x a x
M a x a x

a x a x

− − − 
 = − − 
 − − 

 

which has the characteristic polynomial 
3 2

1 2 3 ,c c cλ λ λ+ + +                                   (4.6) 

where 

[ ]

1 11 123 22 23 33 32

2 11 22 123 23 11 33 123 32 22 33 23 32 12 21 123 23 13 31 123 32

3 11 22 33 12 21 33 13 31 22 123 23 32

ˆ ˆ ˆ ,
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ .

c a x a x a x
c a a x x a a x x a a x x a a x x a a x x
c a a a a a a a a a x x x

= + +

= + + − −

= − −

 

From Routh-Hurwitz criterion, E123 is locally asymptotically stable if and only if 1 0c > , 3 0c >  and 
1 2 3c c c> .  
It is clear that all the coefficients c1, c2 and c3 are positive and 

[ ]
[ ]

1 2 3 11 123 11 22 123 23 11 33 123 32 12 21 123 23 13 31 123 32

22 23 11 22 123 23 11 33 123 32 22 33 23 32 12 21 123 23

33 32 11 22 123 23 11 33 123 32 22 33 23

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

c c c a x a a x x a a x x a a x x a a x x

a x a a x x a a x x a a x x a a x x

a x a a x x a a x x a a x

− = + − −

+ + + −

+ + +[ ]32 13 31 123 32ˆ ˆ 0x a a x x− >

 

Therefore E123 is locally asymptotically stable in the x1x2x3 space. 
Substituting by E1230 in the variation matrix (4.1), we get the characteristic equation 

( )3 2
1 2 3 4 41 123ˆ 0.c c c b a xλ λ λ λ + + + − − =   

Comparing with (4.6), we obtain that 1λ , 2λ  and 3λ  have negative real parts while 4 4 41 123ˆ 0b a xλ = − >  
(by using (H6) and (H6)') 

Therefore, E1230 is a saddle point with locally stable manifold in the x1x2x3 space and with unstable manifold 
in the x4 direction. 

Remark 4.1 
1) Behavior of solutions near E124 and E134 are the same behavior of solutions near the equilibrium point E123. 
2) Behavior of solutions near E1204 and E1034 are the same behavior of solutions near E1230. 
Theorem 4.3 
a) E234 is locally asymptotically stable in the x2x3x4 space. 
b) If E∗  exists, then E0234 is a saddle point with locally stable manifold in the x2x3x4 space and with unstable 

manifold in the x4 direction. 
Proof 
Proof of this theorem follows directly as proof of Theorem 4.2 
Now, we study asymptotic stability of the positive equilibrium E∗ . 
Substituting by E∗  in the variation matrix (4.1), we get the characteristic equation 

4 3 2
1 2 3 4 0,c c c cλ λ λ λ+ + + + =  

where 

1 11 1 22 2 33 3 44 4

2 11 22 1 2 11 33 1 3 11 44 1 4 22 33 2 3 22 44 2 4

33 44 3 4 12 21 1 2 13 31 1 3 14 41 1 4

3 11 22 33 1 2 3 11 22 44 1 2 4 11 33 4

,

,

c a x a x a x a x

c a a x x a a x x a a x x a a x x a a x x

a a x x a a x x a a x x a a x x

c a a a x x x a a a x x x a a a

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

= + + +

= + + + +

+ − − −

= + +

( )

4 1 3 4 22 33 44 2 3 4

12 21 33 1 2 3 12 21 44 1 2 4 13 31 22 1 2 3 13 31 44 1 3 4

14 41 22 1 2 4 14 41 33 1 3 4

4 11 22 33 44 12 21 33 44 13 31 22 44 14 41 22 33 1

,

x x x a a a x x x

a a a x x x a a a x x x a a a x x x a a a x x x

a a a x x x a a a x x x

c a a a a a a a a a a a a a a a a x

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

+

− − − −

− −

= − − − 2 3 4 .x x x∗ ∗ ∗ ∗
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From Routh-Hurwitz criterion [12], E∗  is locally asymptotically stable if and only if 1 3 40, 0, 0c c c> > >  
and 2 2

1 2 3 3 1 4c c c c c c> + .  
It is clear that all the coefficients c1, c2, c3 and c3 are positive and if 

2 2
1 2 3 3 1 4 0.c c c c c c− − >  

Then E∗  is locally asymptotically stable in 4R+ . 
Theorem 4.4 
E∗  is globally asymptotically stable in 4R+  for every carrying capacity 4b R∈ . 
Proof. 
We define the Liapunov function ( )V x  by 

( )
4

1
ln ,i

i i i i
i i

x
V x w x x x

x
∗ ∗

∗
=

 
= − − 

 
∑  

where ( )1 2 3 4, , ,x x x x x= , 0, 1, 2,3, 4.iw i> =  
In the region 

( ){ }1 2 3 4, , , 0, 1, 2,3, 4 .iG x x x x x i= > =  

It is clear that 

( ) ( )
( )
( ) { }

1 , ,

0 ,

0 for .

V x C G R

V x x E

V x x G E

∗

∗

∈

= ⇔ =

> ∈ −

 

Then calculating the time derivative of V along the positive solutions of system (2.1), we have  

( ) ( )( )( )
( )( )( ) ( )( )( )

( ) ( ) ( )

2

1 11 1 1 1 12 2 21 1 1 2 2

1 13 3 31 1 1 3 3 1 14 4 41 1 1 4 4

2 2 2

2 22 2 2 3 33 3 3 4 44 4 4 .

V w a x x w a w a x x x x

w a w a x x x x w a w a x x x x

w a x x w a x x w a x x

∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

= − − − + − −

− + − − − + − −

− − − − − −



 

Then, we can choose  

1
1

1

1, , 2,3, 4.j
j

j

a
w w j

a
= = − =  

Hence, we obtain 

( ) ( ) ( ) ( )2 2 2 21312 14
11 1 1 22 2 2 33 3 3 44 4 4

21 31 41

0.
aa aV a x x a x x a x x a x x

a a a
∗ ∗ ∗ ∗= − − + − + − + − <  

Therefore, it follows from well-known Liapunov-LaSalle theorem that the positive equilibrium E∗  is glo-
bally asymptotically stable in 4R+ . 

5. Numerical Simulations 
The reader can be check local asymptotic stability of the system 2.1 for: 

Example 5.1 

1 12 22 11 13 44 33 14

21 31 2 41 3

1, 0.5, 0.25
1, 0.75, 0.5

b a a a a a a a
a a b a b
= = = = = = = =

= − = = − = = −
 

Example 5.2  

1 11 22 41 44 3 21 33 4

31 2 12 13 14

1, 1, 0.5, 0.25,
0.75, 0.75, 0.5, 0.25

b a a a a b a a b
a b a a a
= − = = = = = = = =

= = = − = − = −
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