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Abstract 
In this work we describe the algorithms to construct the skeletons, simplified 1D representations 
for a 3D surface depicted by a mesh of points, given the respective eigenfunctions of the Discrete 
Laplace-Beltrami Operator (LBO). These functions are isometry invariant, so they are independent 
of the object’s representation including parameterization, spatial position and orientation. Sever-
al works have shown that these eigenfunctions provide topological and geometrical information of 
the surfaces of interest [1] [2]. We propose to make use of that information for the construction of 
a set of skeletons, associated to each eigenfunction, which can be used as a fingerprint for the sur-
face of interest. The main goal is to develop a classification system based on these skeletons, in-
stead of the surfaces, for the analysis of medical images, for instance. 
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1. Skeletons 
A curve-skeleton is a 1D model of a 3D object that captures the general characteristics of the original object, and 
it is also known as centerline. They are useful for visualization and virtual navigation. Another application is re- 
gistration of 3D objects: given a query object, the task is to find similar objects in a database by using the curve- 
skeleton as a fingerprint. A great variety of algorithms for the generation of skeletons have been developed in 
recent years [3] [4]. 

Shape intrinsic information should not depend on the given representation of the object. However, many of 
the current methods of skeleton construction have the weakness of being sensitive to changes on scale factors, 
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changes in the surface’s triangulation, orientation, etcetera. It is desirable that the curve-skeletons have certain 
properties in order to be used as fingerprints [1]: 
• Topology preserving. Two objects have the same topology if they have the same number of connected com-

ponents and cavities. Though a 1D curve cannot have cavities, skeletons must be able to grasp objects cha-
racteristics related to its genus. 

• Scaling invariant. It is necessary for the skeletons to be measurement unit independent; i.e. that it does not 
depend on the way in which the object could be measured. 

• Isometry invariant. The skeleton of an object should be independent of the object’s given depiction and loca-
tion. 

• Rotation invariant. Therefore, checking if two objects are similar needs no prior alignment. 
• Similarity. Similar objects should have similar fingerprints. 

In particular, it is known, that the eigenfunctions of the Laplace-Beltrami Operator satisfy several of the 
properties required for a fingerprint [1], for instance: 

The eigenfunctions depend only on the gradient and divergence which are dependent on the Riemannian 
structure of the manifold, so they are clearly isometry invariant. 

The eigenfunctions are normalizable, therefore, there is no need to concern about scale factors. 
Recently, several methods have been developed making use of these eigenfunctions to construct the curve- 

skeletons of objects of interest [5]. 

2. Surfaces Representation  
Object File Format (.off) files are used to represent the geometry of a model by specifying a triangulation of the 
model’s surface. The OFF files in the Princeton Shape Benchmark [6] conform to the following standard: 

OFF files are text files. 
It has a header line with the string OFF. 
The second line states the number of vertices, the number of faces, and the number of edges; however the 

number of edges can be ignored for our purpose. 
The next lines describe the Cartesian coordinates of each vertex, written one per line. The enumeration of the 

vertices is given by the order they occurred in the file, starting with 0. 
After the list of vertices, the faces are listed; starting with the number of sides and followed by the oriented 

list of vertices included. All the faces are oriented in the same direction. 
The faces can have any number of vertices, although they usually are triangles. For example, Table 1 shows 

the description of a unitary cube in this format. 

Case of Study  
Our present case of study are surfaces of rat-hippocampus, obtained from MRI images. On reported works, a re-
lation between morphological changes in the hippocampus and Alzheimer disease in early stages has been found; 
nowadays there are many studies in image analysis of this and other different brain structures [7]. 

As many works have shows, the first eigenfunction of the Laplace-Beltrami operator clearly identifies a prin-
cipal direction of the surfaces of interest, so it is very useful to build a skeleton. Besides that, we noticed that the 
second eigenfunction reveals additional geometrical information, such as localization of protuberance. Thus, we 
decided to build a skeleton based on the second eigenfunction also. The construction of both skeletons will be 
described in detail in section 4. We expect that the properties of these skeletons will provide important informa-
tion regarding the geometry of objects of interest in order to classify them in a more detailed manner. 

3. Laplace-Beltrami Operator  
Let 2f C∈  be a real-valued function defined on a Riemannian manifold M:  

:f M → R .                                       (1) 
The Laplace-Beltrami operator is defined as  

( )divf f∆ = ∇                                       (2) 

This operator appears in several equations in physics:  
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Table 1. Unitary cube. 

OFF     

8 6 0   

0.0 0.0 0.0   

1.0 0.0 0.0   

0.0 1.0 0.0   

1.0 1.0 0.0   

0.0 0.0 1.0   

1.0 0.0 1.0   

0.0 1.0 1.0   

1.0 1.0 1.0   

4 0 1 3 2 

4 0 4 5 1 

4 0 2 6 4 

4 3 1 5 7 

4 3 7 6 2 

4 6 7 5 4 

 
2wave equation : ttu u c∆ =                                 (3) 

2diffusion equation : tu u α∆ =                                (4) 

The method of separation of variables allows us to isolate the spatial dependence of u from the temporal de-
pendence. Let ( ) ( ) ( ),u r t f r a t= , substituting this into the wave equation produces  

2 ttafc
f a

λ∆
= =                                      (5) 

f fλ∆ =                                        (6) 

The substitution into diffusion equation leads to the same result. The solution of Equation (6) is a set of eigen-
values 1 2, ,λ λ   and a set of eigenfunctions 1 2,  ,f f   which can be thought as fundamental vibration modes. 

Finite Element Method  
We do not have an equation describing a differentiable variety M, thus we work with a discrete representation of 
a triangulated surface S described by an OFF file. We need a numerical integration method to solve Equation (6) 
on S. We have opted to use the Finite Element Method [2]. 

First of all, we choose N linearly independent form functions 1 2, , , NF F F  as a basis of a vector space. 
These base functions :iF S → R  are chosen to simplify the calculations, so they are constructed as linear func-
tions that “sample” function f at each vertex of the triangulated surface:  

( )
1 for  ,
0 for  .i

i j
F j

i j
=

=  ≠
                                 (7) 

The function f then can be written as a linear combination of these base functions  

i if U F=∑                                       (8) 

The substitution of this approximation in (6) reduces the equation to a generalized eigenvalue problem. 
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AU BUλ=                                       (9) 
where the entry Ui is the contribution of f at vertex i on S. The components of matrix A are given by: 

dij i jS
A F F s= ∇ ⋅∇∫                                   (10) 

and the components of matrix B are: 

dij i jS
B F F s= ⋅∫                                    (11) 

Figure 1(a) and Figure 1(b) show the first and second eigenfunctions, respectively, of Equation (9) applied 
on a triangulated surface of a rat-hippocampus. The lower values are colored in blue and the higher ones in red. 
We can see the monotonous behavior of the first function whereas the second function grows from the middle of 
the surface through its extremes. 

4. The Construction of the Skeletons  
The first step is to transform the OFF format into a graph, in this way we can use standard Graph Theory me-
thods. Let be { },=G V E , the vertices V are indexed as they are in the OFF file, and the edges E can be easily 
obtained from the list of faces. 

We chose the adjacency lists representation for simplicity and efficiency on a triangulated surface with thou-
sands of vertices, usually each one is adjacent only up to five or six vertices; although that number depends on 
the triangulation and the surfaces. Table 2 shows the adjacency lists of the unitary cube above. 

Although the graph is undirected, we allow redundancy of edges in order to simplify the search for local 
maxima and minima of the eigenfunctions. 
 

    
(a)                                      (b) 

Figure 1. First (a) and second (b) eigenfunctions on a hippocampus surface. 
 

Table 2. Adjacency lists for the unitary cube. 

0: 1 4 2 

1: 3 5 0 

2: 0 6 3 

3: 2 1 7 

4: 5 0 6 

5: 1 7 4 
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We do not want to modify the OFF files, so we use an auxiliary file with the values of the first eigenfunctions 
calculated for each vertex, this is done with the method described in the previous section. On the surfaces stu-
died, we have observed that each eigenfunction gives different information: 
• The first eigenfunction f1 has one maximum and one minimum at opposite points of the surface, these ex-

treme points give us a principal axis, and a main direction (Figure 1(a)). So we decide to use this function to 
build a polygonal skeleton, which can give us information about curvature and torsion.  

• The second eigenfunction f2 has several local maxima and minima at the prominent protuberances of the 
surface (Figure 1(b)). So we decide to use this function to build a tree-based skeleton that captures the ar-
borescent structure of the surface.  

So we need two variations of the same algorithm, one for each eigenvalue. 

4.1. First Eigenfunction Skeleton  
Let M and m be the vertices with the absolute maximum and minimum values of the first eigenfunction: 

( )1 Mf M e=  and ( )1 mf m e= , respectively. We define a set of energy levels { }0 1, , , ne e e  equally spaced:  

( ) , 0,1, ,i m M m
ie e e e i n
n

= + − =                                (12) 

The vertices fall between these energy levels, however there are some edges with one vertex in one level and 
the other in the following, so we define a boundary as a subgraph { },i i i=B V E :  

( ) ( ) ( ){ }1 1,

All vertices of 
i i i

i i

j k f j e f k e= ∈ ≤ ∧ ≥

=

E E

V E
                           (13) 

These boundaries generate a partition of the original graph. 
We perform a deep-first search to find one vertex in the boundary Bi, and a second deep-first search to get all 

the vertices in it. It is possible that for some energy levels these are so close to each other that the algorithm 
cannot find a definite boundary; in this case we skip to the next level. 

Each boundary Bi is a “ring” of vertices, which must be reduced into a centroid ci that can be calculated as a 
“center of mass”:  

1 , for  1, 2, , 1;  
i

i j i i
ji

c r i n N V
N ∈

= = − =∑
V

                          (14) 

where rj represents the coordinates of the vector of vertex j. Obviously, the boundaries for em and eM have just 
one vertex, so 0 mc r=  and n Mc r= . 

Finally we connect these centroids to build the skeleton; this last step is performed by the Prim’s algorithm 
[8]. This algorithm finds the minimum cost-spanning tree of the set of centroids ci, using their Euclidean dis-
tances as the costs function. Although the skeleton for the first eigenfunction is a polygonal, it can be seen as a 
degenerated tree (a one-degree tree). 

Figure 2(a) and Figure 2(b) show the first eigenfunction skeletons of two surfaces for 32 energy levels. 

4.2. The Second Eigenfunction Skeleton  
As we exposed for the first eigenfunction, we search for the absolute maximum and minimum points 

( )2 Mf M e=  and ( )2 mf m e=  and, in this case, we also search for local minima and maxima. A local maxi-
mum (or minimum) is a vertex l which is surrounded by vertices of lower (or upper) values of f2.  

( ) ( ) ( ) ( ) ( ) ( ){ }2 2 2 2,  , ,  ,l u l u f l f u u l u f l f u= ∈ ∀ ∈ ∈ ⇒ > ∨∀ ∈ ∈ ⇒ <L V V E V E         (15) 

The search can be easily done in the adjacency lists of E. 
We use the coordinates vectors of these vertices as the base of the centroids set:  

( ) ( )
0

1

;
,  ,   an enumeration of ;

,  where .

m

li l

p M

c r
c r l i l

c r p+

=

= ∀ ∈

= =

L L

L

                         (16) 
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We define the energy levels ei as in (12) and the boundaries Bi as in (13). However each one of these bounda-
ries could have k connected components 1 2, , ,i i ikB B B , each one has its own centroid 1 2, , ,i i ikc c c , as de-
fined in (14). The algorithm for the second eigenfunction process the surface as a tree structure: it performs a 
deep-first search for a set of boundaries with their respective branch of centroids, and then it performs a second 
search to find a second branch, an so on. The partition of the surface defined by the first search avoids the algo-
rithm to fall into the same boundaries. 

In this case, the Prim’s algorithm shows all its performance in the construction of the skeleton, connecting the 
set of centroids as a minimum-cost spanning tree. In order to avoid that the skeleton cuts the surface, we add di-
rections to the distances between centroids. We associate the information of the energy level to each centroid:  

( )( ) ( ) ( )2  for the centers defined in 16 ,i lh c f l=                         (17) 

( )  for the centroid of .ik i ikh c e= B                              (18) 

The algorithm connects the centroids in increasing order of ( )h c . Figure 3(a) and Figure 3(b) show the 
second eigenfunction skeletons of the same surfaces as Figure 2 and Figure 3. 
 

    
(a)                                                    (b) 

Figure 2. Skeletons of the first eigenfunction on hippocampus (a) and hippocampus (b). 
 

    
(a)                                                    (b) 

Figure 3. Skeletons of the second eigenfunction on hippocampus (a) and hippocampus (b). 
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5. Conclusions and Further Work  
We have developed the algorithms for building the skeletons for the first and second eigefunctions of the Lap-
lace-Beltrami operator calculated on an rat-hippocampus surface depicted by an OFF file. 

The skeleton for the first eigenfunction is built as a polygonal structure along the main axis of the surface. 
The skeleton for the second eigenfunction has a tree-structure with two main branches, each one with a similar 
structure to the first skeleton, and small branches for some local maxima at prominent protuberances. 

This is a first step for the developing of a classification system. The next steps are to generalize these results 
for different anatomical structures, and define characterization methods for these skeletons based on their geo-
metrical and topological properties, such as critical points of curvature and torsion, bifurcation points, number of 
branches, etcetera. 
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