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Abstract

In this paper, we take Q¢ subsemilattice of D and we will calculate the number of right unit, idem-
potent and regular elements a of Bx (Q16) satisfied that V (D, a) = Q16 for a finite set X. Also we will
give a formula for calculate idempotent and regular elements of Bx (Q) defined by an X-semilattice
of unions D.
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1. Introduction

Let X be a nonempty set and By be semigroup of all binary relations on the set X. If D is a nonempty set of sub-
sets of X which is closed under the union then D is called a complete X-semilattice of unions.
Let f be an arbitrary mapping from X into D. Then one can construct a binary relation «; on X by

o, = U ({x}x f (x)) The set of all such binary relations is denoted by B, (D) and called a complete semi-

xeX

group of binary relations defined by an X-semilattice of unions D.
We use the notations, ya ={xe X|yax}, Ya=|Jya, V(D,a)={Ya|Y €D}, Y ={yeX|ya=T}.
yeY

A representation of a binary relation « of the form « = U (YT“ ><T) is called quasinormal. Note that,
Tev(x*,a)
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if a= J (YT“ ><T) is a quasinormal representation of the binary relation « , then Y nY; =& for T,
Tev(x*,a)
T'eV(X",a) and T=T". .
A complete X-semilattice of unions D is an Xl-semilattice of unions if A(D, Dt) eD forany teD and
Z =|JA(D,D,) forany nonempty element Z of D.

teZ
Now, «eB, (D) issaid to be right unitif Soa =/ forall feB, (D).Also, aeB, (D) isidempotent
if aca=a.And aeB, (D) issaidtoberegularif aofeoa=a forsome BeB, (D).
Let D', D" be complete X-semilattices of unions and ¢ be a one-to-one mapping from D' to D". A mapping

@:D'— D" is a complete isomorphism provided ¢(uD,)= (] ¢(T') for all nonempty subset D, of the se-
T'eDy
milattice D'. Besides that, if ¢:V(D,a)—> D’ is a complete isomorphism where « B, (D), ¢(T)a=T
forall TeV(D,a), ¢ issaidtobeacomplete o -isomorphism.
Let Q and D' be respectively some X1 and X-subsemilattices of the complete X-semilattice of unions D. Then

R,(Q,D')={a e B, (D)« regular element, o complete a-isomorphism}

where ¢:Q — D’ complete isomorphism and V (D,a)=Q . Besides, let us denote

RQD)= U R,(QD) and R(D)= | R(Q.D)
9e®(Q,D’) Q'«Q(Q)
where

®(Q,D')={plp:Q— D’ isacomplete a-isomorhism 3« € B, (D)}
Q(Q) = {Q’|Q’ is X1 -subsemilattices of D which is complete isomorphic to Q}

This structure was comprehensively investigated in Diasamidze [1].
Lemma 1. [1] If Q is complete X-semilattice of unions and | (Q) is the set all right units of the semigroup

B, (Q) then I(Q)zRidQ (Q.Q).
Lemma 2. [2] Let X be a finite set, D be a complete X-semilattice of unions and
Q={T,T,.T,,T,.,T;.T,.T,, T} be X-subsemilattice of unions of D satisfies the following conditions
TcT,cT,cT,cT,cT,, T,cT,cT,cT,cT, cTi,
TcT,cT,cT,cTycT,, T,cT,cT,cT.cT, T,
TN\T, =0T, \T, #J, TN\, =0, T\T, =,
TLuT, =TT, uT, =T, T, #Q.
Qs XI-semilattice of unions. ...
Theorem 1. [2] Let X be a finite set and Q be Xl-semilattice. If D'={T,T,,T,,T,,T,,T,,T,,T,} is «-iso-
morphic to Qand Q(Q)=m,, then

IR(D")[=m, .4-(2‘@“?4)‘?1‘ (z\T’z‘T’l\ _1)).(3\ﬂ\fs\ _ ol ).(gh’a\m _ iy ) T

,(G\T@\Tz\ _S\E\few),(ﬁm\ﬂ\ _ g\ ),8\X\f3\_

8
Theorem 2. [2] Let aeB, (Q) be a quasinormal representation of the form a=U(Yi"‘xTi) such that
i=1
V(D,a)=Q. aeB, (D) isa regular iff for some complete « -isomorphism ¢:Q — D’c D, the following
conditions are satisfied:
Y o go(Tl), YUY, o go(Tz), Y, OY,) UYy o go(T3),
Y OYSOYS oe(T,), YUY, UY Y uYS UYY oe(T),
YUY, UYS O OYSOY 20(T;), Y ne(T,) =9,
Y no(T) 23, Y ne(T,)=2D, Y¥ne(T)=3, Y7 ne(T,)=a.

C2)
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Let X be a finite setand D ={T,,T,,T,,T, T, T;, T,,T;, To} be a complete X-semilattice of unions which satis-
fies the following conditions
TcT,cT,cTycT, T,
TcTcT,cTycT, cT,,
TicT,cT, cTycT, T,
TcTcT,cT,cT, cT,,
T,cT,cT,cTycT, T,
T,cTcTycT,cT, Ty,
T,cT,cT,cTycT, T,
T,cTcT,cT, cT, T,
T\T, 0, T,\T,#Q, T,\T, =3,
TN\T, 20, T,\T, 20, T,\T, =2,
TuT, =T, T,uUT, =T,
TUT, =T, TNT, =Y

The diagram of the D is shown in Figure 1. By the symbol 23(X ,9) we denote the class of all complete X-
semilattice of unions whose every element is isomophic to an X-semilattice of the form D.

All subsemilattice of D ={T,,T,,T,,T, T, T,,T,. T, T,} are givenin Figure 2.

In Diasamidze [1], it has shown that subsemilattices 1 - 15 are XI-semilattice of unions and subsemilattices 17 -
24 are not Xl-semilattice of unions. In Yesil Sungur [3] and Albayrak [4], they have shown that subsemilattices
25 and 26 are Xl-semilattice of unions if and only if T, T, =&". Also they found that number of right unit,
idempotent and regular elements in subsemilattices.

In this paper, we take in particular, Qg ={T,T,,T, T;,T,,T;, T, Ty} subsemilattice of D. We will calculate the
number of right unit, idempotent and regular elements « of B, (Qg) satisfied that V (D,a)=Q, for a fi-

nite set X. Also we will give a formula for calculate idempotent and regular elements of B, (D) defined by an
X-semilattice of unions D ={T,,T,,T,,T, T, Ts. T, To. Ty} .

Figure 1. Diagram of D.
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2. Results

Let Qg ={T.T,,T,. T,,T;.T,,T,, Ty} be complete X-subsemilattice of D satisfies the following conditions
TcT,cT,cTycT, cT,,
TcT,cT,cT, T, T,
TcThcT,cT,cT, Ty,
TcT,cT,cTy,cT, T,
TN\T.2d, T.\T, =3,
T\T, 20, T,\T, 20,
T, UT, =T, T,UT, =T,
T+
The diagram of the Qg is shown in Figure 3. From Lemma 2 Qg is XI-semilattice of unions.

Let Q% denote the set of all XI-subsemilattice of the semilattice D which are isomorphic of the X-semi-
lattice Qq6. Then we get

Q16‘9XI = {{Tl’T3'T4’TS’TG'T7’T8’T9}’{TZ'T3’T4'T5'T6’T7 'TS’TQ}}

Let aeB, (Qla) be a idempotent element having a quasinormal representation of the form

T
FLiLALEE R

Figure 2. All subsemilattice of D.

Figure 3. The diagram of the Q.

G2
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Co

a= (YT“ xT)u (Yi“ xT, ) such that V (D, a) = Q. First we calculate number of this idempotent elements in

Bx (Qle)-
Lemma 3. If X is a finite set and 1 (Qy) is the set all right units of the semigroup B, (Qy). then the num-
ber |I (Qu )| may be calculated by formula:

| I (Qm )| _ ((me\ _1). 2\(T5mT4)\T3\ ) ) (3\T5\T4\ _ Z\Tsxm ) ) (3\T4\T5\ _ mes\ )

(T71Tg )\ Te| _(6\Ts 7| _ 5\T8 \Ty| ) . (6\T7 \To| _ 5\T7 \Tg| ) 8\X\T9\_

I
w

-5

Proof. From Lemma 1 we have 1(Q;)=R, (Qq Qg) where id, is identity mapping of the set Q.

idQ16
For thisreason D'=Q in Theorem 1. Then we obtain

|| (Q16 )| = ((Z\Tg\T\ _1) oI5 Ta)\T| )_(3\T5\T4\ _ ol )_(3\T4\T5\ _ 2\T4\T5\)

. 5‘(T7 ATg)\Te| (6\Ta \T7| 5\T8 \T7| ) . (6\T7 \Tg| _ 5\T7 \Tg| ) . 8\X \Tg\'

Theorem 3. If X is a finite set and 17(Qy) is the set all idempotent elements of the semigroup B, (Qy),
then the number |1”(Qy )| may be calculated by formula:

|* (QlG )| _ ((2\T3\T2\ _1) . 2\(T5“T4)\T3\ ),(S\TS\TA\ _ 2\T5\T4\ ),(3“4”5\ _ 2\T4\T5\)
,5\(T7 AT \Tg| ,(G\Ta\Tﬂ _5\T8\T7\ ),(6\T7 \Tg| _5\T7\Ta\),8\X\T9\
n ((Z\Tg\m _1) ) 2\(T5nT4)\T3\ ).(3\T5\T4\ _ 2\T5\T4\ ).(3\T4\T5\ _ 2\T4\T5\ )

.5‘(T7 AT )\Tg| ) (G\T8 | S\Tg \Ty| ) ) (6\T7 \To| 5\T7 \Tg| ) . 8\>< \Tg\l

Proof. By using Lemma 3 we have number of right units of the semigroup B, (le) defined by
s ={T. . T, T5.T6. ;. Te. Ty} for T e{T,,T,}. Then number of idempotent elements of 1”(Qy) calculated

by formula 17 (Qg)= >, |I(D’)|.Byusing

D'eQigdxi

Qi = {{T11T31T41T51T6'T7’T3-T9} ) {T21T31T4-T5-T61T7 -Tg:Tg}}

we obtain above formula. O
Now we will calculate number of regular elements « € B, (Qlﬁ) having a quasinormal representation of the

9
form az(YT“ xT)uU(Yi“ xTi) such that V (D,a)=Qy. Let R*(Qy) be the set all regular elements of the
i=3

semigroup By (Qy). By using Q% ={{T,. T3, T, To. To T To To o (T2 o T T, Te T Ty T |} We get
|Q(Q1e, )| =2 . The number of all automorphisms of the semilattice Q¢ is g = 4. These are

TT,T,LT.T,T,T, TT,T,LT.T,T,T,
Qzﬁnnnnngn] :Gnnnnngn]
TT,T,LT,T,T,T, TT,T,T.T,T,T,T,
:@BBERREE) :ngnnnngj

Then |CD(Q16 )| =4 . Also by using
D]f:{TZ’T3’T4’T5’T6’T7’T8’T9}’ DZ’
D?Z = {T27T3'T47T57T6'T8'T7’TQ}’ D‘;
DS, :{Tl’TS’T4’T5’T6’T7’TS’T9}’ Dé
D7, :{Tl’TS’T4’T5’T6’TS’T7’T9}’ D8,

(0T T T T T T T}
M T T T, T T T, T, )
M T T T T T T T}
=TT T, T T o T,
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we get R*(Qle)=_OlR(Di)-

Theorem 4. If X is a finite set and R"(Qy ) is the set all regular elements of the semigroup B, (Qy ), then
the number |R* (Q16)| may be calculated by formula:

R (QIG )| _ 4_2((2\T3\T2\ _1).2‘(T5AT4)\T3‘ )_(3\T5\T4\ _2\T5\T4\ ).5\(T7 ATg VT
,(3\T4\T5\ _2\T4\T5\),(6\T8\T7\ _5\T8\T7\ ),(6\T7\Ts\ _5\T7\T8\),8\X\T9\
+4.2 .((Z\Tg\m _1) ) 2‘(T5mT4)\T3‘).(3\T5\T4\ _ T\ )_5\(T7 ATg \Tg|
,(3\T4\T5\ _2\T4\T5\),(6\T8\T7\ _5\T8\T7\ ),(6\T7\Ts\ _5\T7\Te\),8\X\T9\_
Proof. To account for the elements that are in R*(Qy ), we first subtract out intersection of R(D;)’s. Let
a eR(D{)NR(D;).Byusing Theorem2and Q, ={T,T,,T,,T;, T, T,. T, Ty}
aeR(D))nR(D;)=aeR(D/) and aeR(D;)
=Y oT, YUYy 2T, YUY, uY” oT;
YPOYy OY) oT, YYPuY, uY,S oY uYy uYy o,
YUYy oYY oYy OY, oT,, Y nT 29,
YINT, 20, Y NT, #0, Y7/ T, #0, Y NT, #J,
Yo oT,, YUY oT, YA uYSuYs o7,
Yo OYy OY) oT, Y uY Y, oY oY uYy o,
YUY UYSOYS UYS OYS o T, Y T, = O,

YSNT, 20, Y, NT, 20, Y7 NT, #3, Y NT, #D.

We get D=Y,"NT, <Y, n(Y UY,”UY”) which is a contradiction with Y, Y/, Y;", Y. are dis-
joint sets. Then R(D;)"R(D;)=@ . Smilarly’ R(D/)"R(Dj)=@ for i,j=1.--,6. Thus we obtain

R*(Qs)|=[R(D))|+[R(D3)]+|R(D3)|+[R(D;)|+|R(D%)| +|R ()] +|R(D} )| + R (Dy )|

From Theorem 1 we get above formula. [

Corollary 1. If X is a finite set, Iy is the set all idempotent elements of the semigroup B, (D) and Rp is the
set all regular elements of the semigroup B, (D), then the number |I,| and |R,| may be calculated by for-
mula:

(o) =2[r @) [Re)l= 2R (@)

1= i=
Proof. Let Ip be the set of all idempotent elements of the semigroup B, (D) Then number of idempotent
element of B (D) is equal to sum of idempotent elements of the subsemigroup defined by Xl-subsemilattice
of D. |I"(Q)| isgiven in Diasamidze [1] for (i=1,2,---,15). From Theorem 3 we have number of idempotent
elements of the subsemigroup B, (le) . Then the number |ID| may be calculated by formula

|(ID)| = 126: 1"(Q )| Similarly the number |R,| may be calculated by formula |(RD )| = 126: R (Q )| . O
i=1 i=1
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