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Abstract 
This paper describes a method of calculating the Schur complement of a sparse positive definite 
matrix A. The main idea of this approach is to represent matrix A in the form of an elimination tree 
using a reordering algorithm like METIS and putting columns/rows for which the Schur comple-
ment is needed into the top node of the elimination tree. Any problem with a degenerate part of 
the initial matrix can be resolved with the help of iterative refinement. The proposed approach is 
close to the “multifrontal” one which was implemented by Ian Duff and others in 1980s. Schur 
complement computations described in this paper are available in Intel® Math Kernel Library 
(Intel® MKL). In this paper we present the algorithm for Schur complement computations, expe-
riments that demonstrate a negligible increase in the number of elements in the factored matrix, 
and comparison with existing alternatives. 
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1. Introduction 
According to F. Zhang [1], the term “Schur complement” was used first by E. Haynsworth [2]. Haynsworth 
chose this term because of the lemma (Schur determinant lemma) in the paper [3] that was edited by Schur him-
self. In spite of matrix 1A BD C−−  being used in this lemma as a secondary term, later this matrix came to play 
an important role in mathematical algorithms as the Schur complement. It is denoted as ( ) 1

locA D A BD C−= − . 
For example, in mathematical statistics, the Schur complement matrix is important in computation of the proba-
bility density function of multivariate normal distribution, and in computational mechanics the Schur comple-
ment matrix correlates to media stiffness. 

Partial solving of systems of linear equations plays an important role in linear algebra for implementation of 
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efficient preconditioners based on domain decomposition algorithms. Partial solutions usually involve sparse 
matrices. For this reason Schur complement computations and partial solving have been implemented in Intel® 
Math Kernel Library (Intel® MKL) [4]. This paper covers the ideas behind the implementation. 

There are a number of papers that focused on efficient implementation of the Schur complement. As example, 
Aleksandrov and Samuel [5] in their paper proposed algorithm to calcluate the Schur complement for Sparse 
system. Yamazaki and Li published an idea [6] of how to implement Schur complement efficiently on cluster. 
And we need to mention MUMPS solver [7] that integrated the Schur complement computation a few years ago. 

Intel® MKL PARDISO [4] can be considered as one of the multifrontal methods that have been proposed by 
Duff [8] and further expanded by Liu [9]. This method is divided into three stages. First, the initial matrix un-
dergoes a reordering procedure like the one developed by Karypis [10] [11] in order to represent it in the form of 
a dependency tree. Then symbolic factorization takes place, where the total number of nonzero elements is 
computed in LDU decomposition. And finally, factorization of the permuted matrix in the LDU form is per-
formed like the factorization proposed in Amestoy [12]-[16]. In the last stage, both forward and backward subs-
titutions are implemented to compute a solution for the two triangular systems. 

The proposed implementation of the Schur complement continues the work of the authors in the area of mul-
tifrontal direct sparse solvers. In Kalinkin [17], the basic algorithm was implemented for symmetric, positive 
definite matrices. In the presentations [18] and [19], the proposed algorithm was significantly improved by ba-
lancing the dependency tree. In [20], the algorithm was expanded to non-positive definite matrices and non- 
symmetric matrices. In this paper, we propose to move all matrix elements that correlate to Schur complement to 
the top of the dependency tree in order to improve parallelization of computations. 

Let A be a symmetric positive definite sparse matrix (the symmetry and positive definiteness of the matrix is 
set in order to simplify the algorithm description avoiding the case of degenerate matrix minors): 

T

,locA B
A

B C
 

=  
 

                                     (1) 

where locA  and C are square sparse positive definite matrices, and B is a sparse rectangular matrix. Then we 
can make the following decomposition, which is similar to a Cholesky decomposition of matrix A: 

T T
11 11 12
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,
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                             (2) 

where 
T T 1 T

11 11 12 11;    ;    .loc locA L L B L L S C BA B−= = = −  

The matrix ( )locS A A=  is the Schur complement. The general approach to computing the Schur comple-
ment based on this formula and mathematical kernels can be expressed in the form of pseudocode: 
 

Algorithm 1. Simple Schur complement computational algorithm. 

1) Calculate decomposition of T
11 11locA L L=  with the factorization step of the direct solver; 

2) Calculate 1 T
temp locB A B−=  with the solving step applied to multiple right-hand sides; 

3) Calculate temp tempC BB=  as sparse-dense matrix-matrix multiplication; 

4) Calculate tempS C C= −  as a difference. 

 
This algorithm has several significant disadvantages that can form barriers for its implementation for large 

sparse systems. The main disadvantage is in the step 2 of Algorithm 1 involving the conversion of sparse matrix 
BT into a dense matrix, which requires allocating a lot of memory for storing temporary data. Also, if we con-
sider BT as a dense matrix a large number of zero elements are processed in multiplication 1

locA−  BT, which 
would make this step one of the most computational intensive parts of the algorithm and would significantly in-
crease the overall computational time. To prevent this, we propose the following algorithm based on the multi-
frontal approach which calculates the Schur complement matrix first, and then the factorization of the matrix A 
without significant memory requirements for the computations to proceed. 
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2. Schur Complement Computational Algorithm 
As in the papers [17]-[20], consider a sparse symmetric matrix Aloc as in the left of Figure 1, where each shaded 
block is a sparse sub-matrix and each white block is a zero sub-matrix. Using reordering algorithm procedures 
[10] [11], this matrix can be rotated to the pattern shown in the right of Figure 1. A reordered matrix is more 
convenient for computations than the initial one since Cholesky decomposition can start simultaneously from 
several entry points (for the matrix on the right of Figure 1, the first, second, fourth, and fifth rows of the matrix 
L can be calculated independently. 

Let us append the original matrix Aloc stored in the sparse format with zeroes so that its nonzero pattern 
matches completely that of the matrix L. The elements of L in row 3 can be computed only after the elements in 
rows 1 and 2 are computed; similarly, element in row 6 can be computed only after elements in rows 4 and 5 are 
computed. The elements in the 7th row can be computed last. This allows us to construct the dependency tree 
[10] [11]: a graph, where each node corresponds to a single row of the matrix and each graph node can be com-
puted only if its children (nodes on which it depends) are computed. A deeper discussion of the algorithm with 
pseudocode of the distribution of nodes of the tree between processes can be found in [17]. The dependency tree 
for the matrix is given in Figure 2 (the number in the center of a node shows the row number). 

Such a representation allows us to modify Algorithm 1 using the following notation: node Zj is a child of Zi if 
Zj resides lower than Zi in the dependency tree (Figure 2) and there is a connection from Zj to Zi. 
 

Algorithm 2. LLT decomposition based on the dependency tree. 

1) locL A=  

2) for i = 1, number_of_tree_nodes do 

3) 

 
 

Zi = node of tree; 

4) for all Zj child of Zi do 

5) 

 
 

,i j j i jZ Z mask Z= ∗  prepare update of Zi by j-th child; 

6) ,i i i jZ Z Z= − ; 

7) end 

8) Calculate LLT decomposition of Zi; 

9) end 

 
where by maskiZj we denote a submatrix built as intersection of columns corresponding to node Zi with rows 
corresponding to node Zj. In terms of representation in the right of the Figure 1 that would mean the ij-th square. 

To calculate the Schur complement let us add to the representation in the columns and rows of matrices B, BT, 
and C to achieve full representation of matrix A as in left part of the Figure 3. As one can see, we achieve simi-
lar representation to the Figure 2 with additional rows corresponding to those of matrices B and C in Figure 3  
 

    
Figure 1. Nonzero pattern of the original matrix (left) and of the same 
matrix after reordering (right). 
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Figure 2. Dependency tree sample. 

 

      
Figure 3. Nonzero pattern of matrix A after reordering of Aloc 
(left) and its tree representation (right). 

 
(right). Note that blocks corresponding to the columns and rows of matrices BT, B, and C are sparse. After facto-
rization of the full matrix A the number of nonzero elements there increases significantly, but our experiments 
show that the blocks remain sparse and do not become dense. 

Let’s introduce the following notation: iZ  is Zi node of the tree expanded by the corresponding rows of the 
matrix BT, ZC is a node of the tree corresponding to the matrix C. Then we can modify Algorithm 2 to take into 
account the elements of matrices B, BT, and C. 
 

Algorithm 3. LLT decomposition based on the dependency tree. 

1) L = A; 

2) parallel for i = 1, number_of_tree_nodes do 

3) 

 
 

iZ  = node of tree; 

4) for all jZ  child of iZ  do 

5) 

 
 

,i j j i jZ Z mask Z= ∗    prepare update of iZ  by j-th child; 

6) ,i i i jZ Z Z= −   ; 

7) end 

8) Calculate LLT decomposition of iZ ; 

9) end 

10) for j = 1, number_of_tree_node do 

11) 

 
 

,C j j C jZ Z mask Z= ∗   prepare update of ZC by j-th child; 

12) ,C C C jZ Z Z= − ; 

13) end 

 
This algorithm produces CZ S= . In fact, the Algorithm 3 fully corresponds to the simple Algorithm 2 

without calculations of the LLT decomposition of the last submatrix. 
The approach proposed can be implemented on a parallel computers with a small modification of Algorithm 

3. 
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Algorithm 4. Parallel implementation of LLT decomposition based 
on the dependency tree.  

1) L = A; 

2) for i = 1, number_of_tree_nodes do 

3) 

 
 

iZ  = node of tree; 

4) for all jZ  child of iZ  do 

5) 

 
 

,i j j i jZ Z mask Z= ∗    prepare update of iZ  by j-th child; 

6) atomic ,i i i jZ Z Z= −   ; 

7) end 

8) Calculate LLT decomposition of iZ ; 

9) end 

10) parallel for j = 1, number_of_tree_node do 

11) 

 
 

,C j j C jZ Z mask Z= ∗   prepare update of ZC by j-th child; 

12) atomic ,C C C jZ Z Z= − ; 

13) end 

 
Approach presented in Algorithm 4 allows us to implement the Schur complement of sparse matrix in Intel® 

Math Kernel Library. 

3. Experiments 
For all experiments we used a compute node with two Intel® Xeon® processors E5-2697 v3 (35MB cache, 2.60 
GHz) with 64GB RAM, MUMPS version 4.10.0 [7], Intel MKL 11.2 Update 1 [4]. 

Figure 4 shows a cubic domain in which we apply seven-point approximation for a Laplace operator with 
mesh size 70nx ny nz= = =  to generate matrix A, and its cut-off through one of the axes as a domain for which 
we want to calculate the Schur complement (Figure 4 (left)). 

Figure 4 shows the portrait of matrix A before factorization (center) and the portrait of matrix L after factori-
zation (right). One can see that the sparsity of L in the Schur complement columns decreased versus the sparsity 
of the part of L that corresponds to matrix Aloc, though it stays sparse and overall the number of nonzero ele-
ments increases slightly. For this test, we see that the number of nonzero elements is only five percent higher in 
the case when we calculate the Schur complement (Algorithm 3) compared to the case without Schur comple-
ment calculations (straight factorization). 

In Figure 5 and Figure 6 we compare the performance of the implemented functionality with the similar 
functionality provided by the MUMPS package [7]. We compare the time needed to compute Schur complement 
matrix and return it in the dense format. The last 5000 rows and columns of the matrices presented are chosen 
for Schur complement computations. 

For Figure 5 we chose 2 matrices from Florida Matrix collection [21]: Fault_639 with about 600 K rows and 
columns and 27 M nonzero elements, and Serena with 1.3 M rows and columns and 64 M nonzero elements. On 
the x axis we plotted the number of threads on the compute node used for computation of the Schur complement. 
One can see that the time for computing Schur complement is almost the same for a small number of threads, 
but the time needed for Intel MKL PARDISO solver decreases when the number of threads increases. 

For Figure 6 we chose 2 matricesfrom Florida Matrix collection [21]: Geo_1438 with about 1.4 M rows and 
columns and 602 M nonzero elements, and Flan_1565 with 1.5 M rows and columns and 114 M nonzero ele-
ments. As before, on the x axis we plotted the number of threads on the compute node used for computation of 
the Schur complement. Notice that overall picture does not change significantly. The main difference between 
this set of matrices and the previous one is in sparsity—average number of nonzero elements per row. In the first 
set of experiments (Fault_639 and Serena) we used sparse matrices with fewer than 50 nonzero elements per  
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Figure 4. A domain with a dividing plane corresponding to Schur submatrix (left), portraits of the matrix before (center) 
and after factorization (right). 
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Figure 5. Schur complement computational time for matrices Fault 639 and Serena with Intel MKL PARDISO and 
MUMPS. 
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Figure 6. Schur complement computational time for matrices Geo 1438 and Flan 1565 with Intel® MKL PARDISO and 
MUMPS. 
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row on average, while the sparsity of Flan_1565 is about 70 nonzero elements per row and the sparsity of 
Geo_1438 is more than 400 nonzero elements per row. In both cases the time for Schur complement computa-
tions is almost the same when the number of threads is small for the Intel MKL and MUMPS, but the time 
needed for Intel MKL PARDISO solver significantly decreases when the number of threads increases. Moreover, 
comparison of Figure 5 and Figure 6 indicates that the performance of Intel MKL PARDISO becomes better if 
sparsity increases. 

4. Conclusion  
We demonstrated an approach that calculates the Schur complement for a sparse matrix implemented in Intel 
Math Kernel Library using the Intel MKL PARDISO interface. This implementation allows one to use a Schur 
complement for sparse matrices appearing in various mathematical applications, from statistical analysis to al-
gebraic solvers. The proposed approach shows good scalability in terms of computational time and better per-
formance than similar approaches proposed elsewhere. 
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