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Abstract 
Asymptotic stability of linear systems is closely related to Hurwitz stability of the system matrices. 
For uncertain linear systems we consider stability problem through common quadratic Lyapunov 
functions (CQLF) and problem of stabilization by linear feedback. 
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1. Introduction 
Let linear uncertain system 

{ }1 2,     conv , , , Nx Ax A A A A= ∈ 
                           (1) 

be given where ( ) nx x t= ∈ , iA  ( )1, 2, ,i N=   are n n×  real matrices. Consider the following matrix in-
equalities 

( )T 0    1, 2, ,i iA P PA i N+ < =                             (2) 

where 0P >  and the symbol “ > ” stands for positive definiteness. The matrix P is called a common solution to 
(2). 

If the system (2) has a common 0P >  solution, then this system is uniformly asymptotically stable [1]. 
The problem of existence of common positive definite solution P of (2) has been studied in a lot of works (see 

[1]-[7] and references therein). Numerical solution for common P via nondifferentiable convex optimization has 
been discussed in [8]. 
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In the first part of the paper we treat the problem (2) as a nonconvex optimization problem (minimization of a 
convex function under nonconvex constraints) and apply a modified gradient method. The comparison with [8] 
shows that our approach gives better result in some cases. 

In the second part we consider the stabilization problem, i.e. the following question: for the affine family 

( ){ }:A q q R∈  

where lR ⊂   is a box, is there a stable member? We consider a sufficient condition which follows from the 
Bendixson theorem [9]. 

2. Gradient Method 
According to [2], let   be the set (subspace) of ( ) ( )n N n N⋅ × ⋅  dimensional symmetric block-diagonal ma-
trices of the form R R R⊕ ⊕ ⊕  where R  is symmetric. 

Let 1 2, , , rZ Z Z  be a basis of  , ( )1 2r n n= + , 

( ) ( ) ( )T T
1 1i i i i N i i NQ Z A Z Z A A Z Z A= − ⊕ + ⊕ ⊕ +

 

( ) ( )1 2 max
1

, , ,
r

r i i
i

x x x x x Qφ φ λ
=

 
= =  

 
∑                                (3) 

Then { }1 2, , , NA A A  has CQLF ⇔  there exists rx∗ ∈  such that ( ) 0xφ ∗ < . In this case the matrix 
( )P x∗  is a common solution to (2) where 

( )

1 2

2 1 2 1

2 1

.

n

n n

n n r

x x x
x x x

P x

x x x

+ −

−

 
 
 =
 
 
 





   



 

The function ( )xφ  is positive homogenous ( ) ( )( ) for all 0x xφ α αφ α= ≥ . Therefore the vector x  can be 
restricted to the condition 1x = . The advantage of the restriction 1x =  shows the following proposition. 

Proposition 1. Let { }: 1rS x x= ∈ =  be the unit sphere, let the function : rf →   be positive homo-  

geneous ( ) ( )( ) for all 0f x f xλ λ λ= >  and be differentiable at a S∈ . Assume that ( ) 0f a > . Then , 0g a <   

where ( ) x a
g f x

=
= −∇ , ∇  denotes the gradient and ,⋅ ⋅  denotes the scalar product. 

Proof: Since f  is positive homogeneous, it increases in the direction of the vector a: for 1λ > , 

( ) ( ) ( )f a f a f aλ λ= > . 

Therefore the directional derivative of f at a in the direction of a is positive ( ) 0.aD f a >  
On the other hand 

( ) ,aD f a f a= ∇  

and 

            , 0   or   , 0   or   , 0.f a f a g a∇ > −∇ < <                          □ 

Proposition 1 shows that under its assumption the minus gradient vector at the point a is directed into the unit 
ball (Figure 1). 

Consider the following optimization problem 

( ) minimize
subject to 1.

x
x

φ →
=
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a 
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Figure 1. The direction ( )g  of the minus gradient. 

 
Since the matrix 1

r
i ii x Q

=∑  is symmetric, the function ( )xφ  (3) can be written as 

( ) T

1 1
max .

r

i iu i
x u x Q uφ

= =

 
=  

 
∑  

The gradient vector of ( )xφ  at a point a is: 

( ) ( )T T T
1 2, , , rx a

x u Q u u Q u u Q uφ
=

∇ =                             (4) 

where u  is the unit eigenvector of 1
r

i ii a Q
=∑  corresponding to the simple maximum eigenvalue [2]. 

Well-known gradient algorithm in combination with Proposition 1 gives the following. 
Algorithm 1. 
Step 1. Take an initial point 0x S= . Compute ( )0xφ . If ( )0 0xφ ≥ , find t such that the line  

( ) ( ) 0
0

x x
l t x t xφ

=
= − ⋅∇  

intersects the unit sphere S  (Figure 2). 
Step 2. Take ( ) 0

1 0
x x

x x t xφ∗ =
= − ⋅∇  where t∗  satisfies the condition ( ) 1l t∗ = . If ( )1 0xφ < , 1x  is re-  

quired point. Otherwise find t such that the line ( ) ( ) 1
1

x x
l t x t xφ

=
= − ⋅∇  intersects the unit sphere and repeat 

the procedure. 
Example 1. Consider the switched system 

{ }1 2,x A A x∈  
where 

1 2

4 1 3 8 3 1
3 2 2 ,     9 2 0

3 0 3 6 3 6
A A

− − − −   
   = − − =   
   − −   

 

are Hurwitz stable matrices. Let 

1 2 3

1 0 0 0 1 0 0 0 1
0 0 0 ,    1 0 0 ,    0 0 0 ,
0 0 0 0 0 0 1 0 0

Z Z Z
     
     = = =     
     
       
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Figure 2. Searching on the unit sphere. 

 

4 5 6

0 0 0 0 0 0 0 0 0
0 1 0 ,    0 0 1    and   0 0 0 .
0 0 0 0 1 0 0 0 1

Z Z Z
     
     = = =     
     
     

 

For 1, 2, ,6i =   

( ) ( ) ( )T T
1 1 2 2 .i i i i i iQ Z A Z Z A A Z Z A= − ⊕ + ⊕ +  

Take the initial point ( )T0 1 3 ,0,0,1 3 ,0,1 3x = , then 

( )0

1 3 0 0

0 1 3 0

0 0 1 3

P x

 
 
 =
 
 
 

 

is positive definite. Eigenvalues of the matrix 
6

0
1 2 3 4 5 6

1

1 1 10 0 0
3 3 3i i

i
x Q Q Q Q Q Q Q

=

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅∑  

are 12.507,  5.364,  4.015,  0.224,  0.577,  8.566,  1.601.− − − − − −  
Maximum eigenvalue 4.015 is simple and the corresponding unit eigenvector is 

( )T0,0,0,0,0,0, 0.317, 0.911, 0.2 .61v = − − −  

Gradient of the function φ  at 0x  is 

( ) ( )0
T3.189,6.162,0.671, 8.537, 8.049, 1.60 .7

x x
xφ

=
∇ = − − −  

The vector ( ) 0
1 0

x x
x x t xφ

=
= − ⋅∇  should be on the six dimensional unit sphere. Therefore 0.0425t =  and 

( )T1 0.7129,0.2620,0.0285,0.2143, 0.3422,0. 0 .509x = −  

After 9 steps, we get ( )9 0xφ <  where 

( )T9 0.7950,0.2183, 0.0623,0.2185, 0.1254,0.50 ,28x = − −  
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( )9

0.7950 0.2183 0.0623
0.2183 0.2185 0.1254 .
0.0623 0.1254 0.5028

P x
− 

 = − 
 − − 

 

( )9P x  is a common positive definite solution for ( ) ( )T 9 9
1 1 0A P x P x A+ <  and ( ) ( )T 9 9

2 2 0A P x P x A+ < . 
The same problem solved by the algorithm from [8] gives answer only after 70 steps. We have solved a num-

ber of examples using the above gradient algorithm and by the algorithm from [8]. These examples show that 
this algorithm is faster than the algorithm from [8] in some cases. 

As the comparison with the algorithm from [8] is concerned, the algorithm from [8] at each step uses the gra-
dient only one maximum eigenvalue function, i.e. at 1 step it uses the gradient of ( )T

max 1 1P A P PAλ→ + , at 2 
step the gradient of ( )T

max 2 2P A P PAλ→ +  and so on. This procedure delays the convergence. In our algorithm 
we use the function ( )( )T

maxmaxi i iP A P PAλ→ +  and the corresponding gradient direction decreases the 
greates maximum eigenvalue. 

On the other hand an obviously advantage of the method from [8] is the choose of the step size, which is giv-
en by an exact formula, whereas our step size is determined by the intersection of the corresponding rays with 
the unit sphere. 

3. Sufficient Condition for a Stable Member 
In this section we consider a sufficient condition for a stable member which is obtained by using Bendixson’s 
theorem. 

If a matrix is symmetric then it is stable if and only if it is negative definite. Therefore if a family consists of 
symmetric matrices then searching for stable element is equivalent to the searching for negative definite one. 

On the other hand every real n n×  matrix A can be decomposed 

( )

( )

T

T

,
1 ,
2
1 .
2

A B C

B A A

C A A

= +

= +

= +

 

where B is symmetric and C is skew-symmetric. Bendixson’s theorem gives important inequalities for the ei-
genvalues of A, B and C. 

Theorem 1. ([9], p. 40) If A is an n n×  matrix, ( )T1
2

B A A= +  and 1 2, , , nλ λ λ  ( )1 2 nλ λ λ≥ ≥ ≥ ,  

1 2 nµ µ µ≥ ≥ ≥  are the eigenvalues of A, B then 

( ) ( )1    Re 1,2, . ,n i i nµ λ µ≤ ≤ =   

Bendixson’s theorem leads to the following. 
Proposition 2. Let the family ( ){ }:A q q R∈  be given and ( )B q  is the symmetric part of ( )A q . Then 
1) If there exists q R∗ ∈  such that ( )B q∗  is Hurwitz stable then ( )A q∗  is also Hurwitz stable, 
2) If there exists q R∗ ∈  such that ( )B q∗  is positive stable (all eigenvalues lie in the open right half plane) 

then ( )A q∗  is also positive stable. 
Proposition 2 gives a sufficient condition for the existence of a stable element. 
In the case of affine family 

( ) 0 1 1 2 2 l lA q A q A q A q A= + + + +  

where ( )T
1 2, , , lq q q q R= ∈ , R  is a box or lR =  , the searching procedure for stable element in ( )B q  

can be effectively solved by powerful tools of Linear Matrix Inequalities (Matlab’s LMI Toolbox). 
In the non-affine case of the family ( )A q  the gradient algorithm for a stable element in ( )B q  is applica-

ble. 
Example 2. Consider affine family 
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( )
1 2 3 1 3 1 2 3

1 2 3 1 2 3 1 3

1 2 3 1 2 3 1 2

6 3 2 4 2 5
5 3 8 2 2 2 3 3

5 5 2 4 5 2

q q q q q q q q
A q q q q q q q q q

q q q q q q q q

− − − + − − − − − 
 = + + − − − + + − 
 + − + − − + − − 

 

[ ]10,10iq ∈ −  ( )1,2,3i = . Then 

( )
( ) ( )

( ) ( )
( ) ( )

1 2 3 1 2 3 2 3

1 2 3 1 2 3 1 2 3

2 3 1 2 3 1 2

6 3 7 2 3 5 2 3 2 2
7 2 3 5 2 8 2 2 2 3 3 5 2 2 .

3 2 2 3 3 5 2 2 2

q q q q q q q q
B q q q q q q q q q q

q q q q q q q

 − − − + + − − +
 = + + − − − + − − − 
 − + − − − − − 

 

LMI method applied to the matrix inequality problem ( ) 0B q <  gives the value within a few seconds 

( )T9.4591, 3.5180, 0.0354q∗ = − −  

and ( )B q∗ , and consequently ( )A q∗  is stable. 
LMI method applied to the inequality ( ) 0B q >  gives also 

( )T2.6549,1.3609,0.9393q = −  

so the family ( )A q  contains positive stable matrix ( )A q . 
We have investigated Example 2 by the algorithm from [10] and positive answer is obtained after about 100 

seconds. 
Example 3. Consider non-affine family 

( )
1 2 2 1 3 1 3 2 3 2 3

1 3 1 2

1 1 2

2 9 3 3 3 10
17 4 4

5 11 6

q q q q q q q q q q q
A q q q q q

q q q

+ − − + − − − + + − 
 = − − + − − − 
 + + − 

 

[ ]10,10iq ∈ −  ( )1,2,3i = . Here 

( )

( )

( )

1 2 3 31 3
1 2 2

1 3 1 2
1

1 2 3 3 1 2
2

3 1 3 5
2 13

2 2
7

13 4 .
2 2

3 1 3 5 7
6

2 2

q q q qq q
q q q

q q q qB q q

q q q q q q q

 − − + −
+ − − − 

 
 + +

= − − − − 
 

− − + − + +
− 

 

 

Consider the function 

( ) ( )( ) ( )T
max 1

max .
v

G q B q v B q vλ
=

= =  

We are looking for q  satisfying ( ) 0G q < . If for some q  the maximal eigenvalue ( )( )max B qλ  is simple 
then ( )G q  is differentiable at q  and its gradient can be easily calculated (by the analogy with (4)). 

For this example, gradient method gives solution after 7 steps: 

( ) ( )T T0 70,0,0 ,  ,  5.270, 6.252,0.959q q= = −  

(see Table 1). The step size t is chosen from the decreasing condition of the function ( )G q : t must be chosen 
such that 

( ) ( ) ( )1 .k
k k k

qG q G q t G G q+ = − ∇ <  

This example has been solved by the algorithm from [10] as well. Positive answer has been obtained only after  
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Table 1. Gradient algorithm for example 3.                                                                     

k  kq  maxλ  multiplicity kq
G∇  

0 ( )0,0,0  11.079 1 ( )0.452,0.208, 0.508− −  

1 ( )0.411, 0.189,0.462−  10.632 1 ( )0.332,0.655, 0.355− −  

2 ( )0.714, 0.785,0.786−  9.910 1 ( )0.482,0.930, 0.383− −  

3 ( )1.153, 1.632,1.135−  8.634 1 ( )0.719,1.173, 0.184− −  

4 ( )1.808, 2.700,1.303−  6.712 1 ( )1.061,1.303,0.291−  

5 ( )2.774, 3.886,1.038−  3.840 1 ( )1.391,1.360,0.060−  

6 ( )4.040, 5.123,0.983−  0.444 1 ( )1.352,1.240,0.267−  

7 ( )5.270, 6.252,0.959−  −2.404   

 
55 steps. We start with ( )0 0,0,0q =  and the algorithm from [10] gives another stabilizing point 

( )T55 3.2721, 2.3853,2.3818q = − . 

The eigenvalues of ( )55A q  are 1 27.8402λ = − , 2,3 0.004 0.2326jλ = − ± . 

4. Conclusion 
In the first part of the paper, we consider the stability problem of a matrix polytope through common quadratic 
Lyapunov functions. We suggest a modified gradient algorithm. In the second part by using Bendixson’s theo-
rem a sufficient condition for a stable member is given. 
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