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Abstract

Mond-Weir type duality for control problem with support functions is investigated under general-
ized convexity conditions. Special cases are derived. A relationship between our results and those
of nonlinear programming problem containing support functions is outlined.
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1. Introduction and Preliminaries

Consider the following control problem containing support functions introduced by Husain et al. [1]

Mir(1xi‘lrjr)1ize jl.( f(t,x(t),u(t))+S (u (t)| K))dt

subject to
x(a)=0=x(b) 1)
g’ (tx(t),u(t))+S(x(1)Cl)<0, tel, j=12,--,m )
X(t)=h(t,x(t),u(t)), tel ©)
where

1) x:1 > R" is a differentiable state vector function with its derivative x and u:l — R™ is a smooth
control vector function.
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2) R" denotes an n-dimensional Euclidean space and | =[a,b] is a real interval.
3) f:IxR"xR" >R, g:I1xR"xR" >R and h:I1xR"xR™ - R" are continuously differentiable.
4) s(x(t)| K) and s(x(t)|C’) , 1=12,---,m are the support function of the compact set K and
C'(j=12,--,m) respectively.
Denote the partial derivatives of f where by f, f, and f;,
of of of of of of of
fo= fo=| o | fu = | o e
ot oxt ox ox" ou' éu ou
where superscript denote the vector components. Similarly we have hy, h,, h, and g, g4, 9y- X is the space of con-
tinuously differentiable state functions x:1 —R". Such that x(a)=0 and x(b)=0 and are equipped with
the norm ||x| =|x|, +||D,], . and U, the space of piecewise continuous control vector functions u:l — R"

having the uniform norm ||| . The differential Equation (2) with initial conditions expressed as
b
x(t)= x(a)+jh(s,x(s), y(s))dstel maybewrittenas H =H(x,y), where

H:XxU —>C(I,R" ,C(I,R” , being the space of continuous function from I to R" defined as
H(x y)(t)=h(t x(t ,y(t)). In the derivation of these optimality condition, some constraint qualification to
make the equality constraint locally solvable [2] and hence the Fréchét derivative of Dx—H (x,u)=Q(x,u)
(say) with respectto (x,u), namely Q'=Q’(x,u)= [Dx— H, (x,u),—H, (x,u)] are required to be surjective.
In [1], Husain et al. derived the following Fritz john type necessary optimality for the existence of optimal solu-
tion of (CP).

Proposition 1. (Fritz John Condition): If (X,T) is an optimal solution of (CP) and the Fréchét derivative
Q' is surjective, then there exist Langrange multipliers « € R and piecewise smooth A:1 - R™, u:l ->R",
z:1 >R™ and @':1 —>R" such that for all t,

af, (t,7,U)+JZ}1" (t)(9) (t.X,0)+ @ (t))+u(t) h (tXT)+ (1) =0, tel
af, (t,%,0)+A7 (1) g, (tX,T)+x(t) h (4,X,0)=0tel

iw‘ (O)(9) (LX) +X (t)e! (1)) =0, te

x(t)o! (t)=s(x(t)|C’), j=L12,--,m
2(t)eK, o' (t)eC’, j=1,2,--,m
(a,2())20,tel

(a,A(t),u(t))=0,tel

As in [3], Husain et al. [1] pointed out if the optimal solution for (CP) is normal, then the Fritz john type op-
timal conditions reduce to the following Karush-Kuhn-Tucker optimal conditions.

Proposition 2. If (X,T) is an optimal solution and is normal and Q' is surjective, there exist piecewise
smooth A:1 —R"™ with A" =(4,4,,-+4,), u:l >R", z:1 >R" and @ :1 >R", j=12,---,m such

that
£ (t,i,U)+ilj (0)(9) (X T)+ 0 (8))+ (1) b, (tX,T) = (1) @)
f,(6X,0)+2+2(t) g, (t%,0)+u(t) h (4,X,0)=0tel ®)
> 2 (1)(g) (LX) +x" (Do (t))=0, tel ®)
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u(t)" z(t)=s(x(t)|K) (7)

x(t)' @ (t)=s(x(t)|C’), j=12,m ®)
AN(t)=20,tel,j=12,m )
z2(t)eK,0'(t)eCl,j=1,2,-,m (10)

Using the Karush-Kuhn-Tucker type optimality condition given in Proposition 2, Husain et al. [1] presented
the following Wolfe type dual to the control problem (CP) and proved usual duality theorem under the pseudo-

convexity of Hf(t,.,.)+(.)z(t)+izr_nl:ﬂi(t)(gi(t,.,.)+(.)Ta)i(t)+y(t)T(t,.,.)+>‘<(.))}dt forall z(t)eK, and
o'(t)eC', i=1,2,---,m.
(WCD): Maximize

j{f (t,x,u)+p(t) z(t)éf (0)(9’ (txu)+x(t) o’ (t))+y(t)T(h(t,x,u)—x(t))}dt

|
subject to

fx(t,x,u)+]§;/ii (1)(9’ (t.x,u)+ @ (t))+ (1) h (tx,u)+4(t)=0,tel
f, (t,x,u)+ 27 (t)g(t,xu)+u(t) h (t,xu)=0,tel
A'(t)20,tel,i=12-m
2(t)eK, @' (t)eC’, j=12,---,m

We review some well known facts about a support function for easy reference. Let I" be a compact convex
setin R". Then the support function of T" denoted by s(x(t)|F) is defined as

S(X(t)|F)= max{x(t)T u(t):u(t)el", te I}

A support function, being convex and everywhere finite, has a subdifferential in the sense of convex analysis,
that is, there exists z:1 —R" such that s(y(t)|l)=s(x(t)T)+ z(t)" (y(t)-x(t)) for all x. The subdif-
ferential of s(x(t)|F) is given by S(X(t)|F)={Z(t)eF:Z(t)T x(t)=S(x(t)|F)}. Let N (x(t)) benormal
cone at a point x(t)eT. Then y(t)e N.(x) ifand only if s(y(t)|F)= x(t)T y(t) or, equivalently, x(t)
is in the subdifferential of sat y(t).

In order to relax the pseudoconvexity in [1], Mond-Weir type dual to (CP) is constructed and various duality

theorems are derived. Particular cases are deduced and it is also indicated that our results can be considered as
the dynamic generalization of the duality results for nonlinear programming problem with support functions.

2. Mond-Weir Type Duality

We propose the following Mond-Weir type dual (M-WCD) to the control problem (CP):
Dual (M-WCD): Maximize j{f (t,x,u)+uT(t)z(t)}dt
|

subject to
x(a)=0=x(b) (11)

f(t, x,u)+glj ()02 (t. %)+ x(8) @ (1)) + (t)"h, (t,x,0) = (1), te | (12)

)
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f, (tx,U)+z+A'g, (tx,u)+p(t) h, (txu)=4a(t), tel (13)
il‘j{gj(t,x,u)+x(t)Ta)j}dt20 (14)

[u(t)" (h(t,x,u)-x)dt =0 (15)

A(t)=20 tel,j=12,-m (16)

z(t)eK 17

o' (t)eCl, j=1,2,--,m (18)

Theorem 1. (Weak Duality): Assume that
(Ay): (Xx,U) Iis feasible for (CP),
(A2): (XU, 2%+, A", 1,2,00',--, 0" ) is feasible for the problem (M-WCD),

(Ag): [{f(t)+()z(t)}dt, for z(t)eK is pseudoconvex, and

(As): i.[/li(t)(gj(t,~,~)+(~)Tw1(t))dt for all @ (t)eCl,j=12,~m and [ u"(t)(h(t,.")-x("))dt

j=1
are quasiconvex at (x,u).
Then

inf (CP) >sup(CD)

Proof: Since A'(t)>0, j=12,--,m;, tel, g'(t,X )+s(x(t)|Cj),h(t,Y,U)—Y(t)zo,tel, we have

ﬂgﬂ (t)(g‘ (t%,0)+X(t) o' (t))}dt <0
and

[ ()" (h(t.x,T)-X)dt<0

Combining these inequalities with (14) and (15) respectively, we have

][{%/Ij(t)(gi(t,i,ﬁ) X(t) o )}dt{[{z/l’ )(9o' txu)+x(t)Ta)"(t))}dt
and
J’ (1) (h(t,x,0)=X)dt < [ 2(t)" (h(t,X,T)-X)dt

These, because of the hypothesis (A,) yields

[0 E (a0 0) (-0 2, (xu) <0 @)

j{(Y—x)T ()", (txu)+ 4o (1) + (X -0) ()", (t,x,u)}dtSO (20)
Combining (19) and (20) and then using (12) and (13), we have

I{(Y—x)T(fX (t,x,u)+(T-u)’ Z)}ZO
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This, due to the pseudoconvexity of j(f(t)+()T z)dt for z(t)e K implies
|

j(f (t,Y,U)+UTz)dt2JI'(f (t,x,u)+uTz)dt

Since T(t)" z(t)<S(X(t)|K), the above inequality gives
Ij{f(t,Y,U)+s(U(t)|K)}2]f{f(t,x,u)+u(t)Tz(t)}dt

yielding
inf (CP) >sup(CD)

Theorem 2. (Strong Duality): If (X,T) is an optimal solution of (CP) and is normal, then there exist

piecewise smooth A:1 - R™ with A=(A4,4,,---.4,), z:1 = R" and such that

X, U,A-, A" 7, @, &°%,---,@") is feasible for (M-WCD) and the corresponding values of (CP) and
(M-WCD) are equal. If also, the hypotheses of Theorem 1 hold, then (Y oAt A" 7, 51,57)2,-~,6”‘) is op-
timal solution of the problem (M-WCD).

Proof: Since (X,T) is an optimal solution of (CP) and is normal, it follows by Proposition 2 that there exist
piecewise smooth A':1 -R"™, j=12,---,m, u:1>R", z:l>R" and @':1>R"(j=12,-,m).
satisfying for all tel, the conditions (4)-(10) are satisfied. The conditions (4)-(6) together with (9) and (10)
imply that (X,0,2%,--,2",2,@",@" -, @"; Ji) is feasible for (M-WCD). Using X(t)' z(t)=s(x(t)|K), we
obtain,

Ij( f(t,X,0)+T +S(7(t)|K)):_I[(f (LX) +X (1) (1))t

The equality of the objective functionals of the problems (CP) and (M-WCD) follows. This along with the
hypotheses of Theorem 1, the optimality of (7 oAt A7, &, 52,~--,5T>m) for (M-WCD) follows.

The following gives the Mangasarian type strict converse duality theorem:

Theorem 3. (Strict Converse Duality): Assume that

(A1): (X,U) isan optimality solution of (CP) and is normal;

(Ay): ()?,G,/il,--~,/im,ﬁ, 2,(?)1,---,03”‘) is an optimal solution of (M-WCD),

(As): I{f (t)+()T z(t)} dt in strictly is pseudoconvex for all z(t)e K, and
|

(A): Zm:.[(gj(t,-,-)Jr(-)ij(t))dt for all '(t)eC’,j=12,-m and jlyT(t)(h(t,-,-)—x)dt are

=t
quasi convex. L

Then (X,T)=(%,0), ie. (X.0) isanoptimal solution of (CP).

Proof: Assume that (X,T)=(X,d) and exhibit a contradiction. Since (X,T) is an optimality solution of
(CP). By Theorem 2 there exist (1,%,Z,&",-,&" ) with 1 =(2%4%--,A") such that
(x,a, 2%, A",7,@",-,@") is an optimal solution of (M-WCD).

Thus

J{F (Ex0)+T() Z(0)fdt=[{F (t20)+a()2(0)}t (21)

and
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These, because of the hypothesis (A4) imply the merged inequality
j{(y_f()T (2,1 (t)(9) (t.%,0)+a' (t))+(,&(t)T h(t, i,a)—ﬁ(t))j
+(T-a)" (Zi(t)T g (6%, 0)+ A(t)h, (4%, G)J}dt <0

This, by using the equality constraints (12) and (13) of (M-WCD) gives

Ij[(x_x)T f (L R,0)+(@-0) (1, (L%,0)+2(1))[de=0
By the hypothesis (Ay), this implies
Ij(f (t,Y,U)+ﬁT2(t))dt>][(f (t,)”(,t])+ﬁ(t)2(t))dt:_|[(f (6%,0)+ 7 (t)" 2(1))dt
(using (21)). Consequently, we have
fo(t) 2(t)dt>jU (1) z(t)dt

Since T(t)z(t)=S(T(t)|K) for f(t)eK and T(t)' z(t s(T(t)
j ( t))dt>j (t)|K )t

This cannot happen. Hence (X,T)=(X,0).

(t)|K) for 2(t)eK, thisyields,

3. Converse Duality

The problem (M-WCD) can be written as the follows:
Maximize: yx(x,y,z,/ll,--«,/lm,a)l,m,wm)
subject to

x(a)=0.x(b)=0
0 (tx(t)u(t), 2 (1), A" (1), 4 (1), @ (1), 0" (1), @ (1)) =0, te |
0 (1x(0)u (1), 2(t) 2 (1) 27 (1), (1), (1), 0 (1), " (1)) =0, te

m

[22 ()0’ (t-xu)+x(1) @ (1))dt =0

1 j=1

()" (h(t,x,u)-x(t))dt=0

Z(t)e K, tel
o' (t)eCl tel, j=12,,m

A(t)zo, tel,j=12,---,m
where

0 =6 (t,x,u,2,4, 1) = f, +i:l/11 (t)(9) + @ (t))+ u(t)" h + (1)

6> =6*(t,xu,z,4,u)=f, +z+A7g, +u'h,
Consider 6" (.,x(.),u(.), ()@ (), a"(.),u()) and 6% (t,x(.),u(),2().z(-)u(.)) as defining a map-
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pings Q" : X xux AxW!xW?x---xW™"xV — B' and Q*: X xuxZxAxV — B? respectively where A is
the space of piecewise smooth 4,V is space of piececewise smooth , W' is the space of piecewise of smooth
W), j=12,--,m, B'and B are Banach spaces. 6" =(x,u,4,u,0"0",,0") and 6°=(xU,4,4,2) with
A= (/11,--~,ﬂ’“ . Here some restrictions are required on the equality constraints. For this, it suffices that if the
Fre'che't derivatives QY = (ai( ):6:().6,().6.( ),9;1 ( ),--~,9j}m ( )) and
Q” =(6’f(),¢9§(),1912(),195(),1951 ()05 ( )) have weak * closed range.

Theorem 4. (Converse Duality): Assume that

(Ay): f,g and h are twice continuously differentiable.

(A2): (XU,4,14,2,0",+,0") isan optimal solution of (CP).

(Ag): Q' and Q? have weak * closed ranges.

(A): ja(t)T Ac(t)dt=0=0c(t)=0, tel forsome o(t)eR", and

|

[ et 2T (D)9 +u(t)

A fo AT (1) 9y + 1 (1)

hXX
fux +AT (t)gux +:u(t)T hux fuu +1T (t)guu +:u(t)T huu
(As): 1) The gradient vectors iﬂ,‘ (t)(g'X +ao' (t)) and /I(t)T are linearly independent, or
i=1

2) The gradient vectors ,u(t)T h, +4(t) and ,u(t)t h, are linearly independent.
(Ae): ,u(a) =0= ,U(b)
Proof: Since (x,u,/il,~--,/1m,y,z,a)l,~--,a)m is an optimal solution of (M-WCD), by Proposition 1 there
exists ¢, €R, yeR, and BeR, and piecewise smooth functions ¢':1 - R", #°:1 >R", & :1 >R,
i=12,---,m, such that

oyt + () (Fot 2(0) G+ 2(8) g )+ 02 (O Fo (1) g+ 22(1) )

mo . (22)
+)/[;/1'(t)(g'x+a)'(t))j+ﬁ(y(t) h — (1)) =0, tel
ao(fu+z)+¢1(t)(fxu+/1T(t)gxu+yT(t)hxu)+¢2(t)(fxu+AT(t)gxu+,uT(t)hxu)
(23)
#7((20) 0.)+Bu(®)n))=0. e
¢ (0)(9k+a' (1) +4° (), +7(0 +x(1) @ (1)) + ' (1) =0, te (24)
(=4 (t)+4° (1), + (h—%) =0 (25)
a0 (t)+¢*(t)e—Ny (2), tel (26)
$A (1) + 74 ()X () e-N (@'), i=12-,m, tel (27)
P[(ZA (0 +x(0) @' (1))t =0 (28)
Bl u(t)" (h-%)dt=0 (29)
s(t) 2(t)=0,tel (30)
(ag.7.8,5(t))=0 (31)
(a0, 4 (1), 8°(1),7.8,5(1)) =0, tel (32)

@)



I. Husain et al.

Multiplying (24) by A'(t),tel,i=12,--,m and summing over i and then integrating using (28), we have

II{aﬁl(t)T@w(t)(gim())j+¢ () ( ) g )}dt 0 tel

which can be written as,

(33)

(¢ (tf){g(” (g +o (t)))}n 0
! 2(0)" g,

Multiplying (25) by 4(t) and then integrating and using (29), we have

[(# (O @) 0+ (O (O, )dt-u(t)¢ (0] +_[,u H(t)dt=0

This implies
!(vf (O (1(®) b= () + ¢ (©) ((0) 1))t =0

or

J(¢l(t)T:¢2 (t)T){ﬂ(t)T hx+/'1(t)]dt:0 (34)

i ,u(t)T h,
Using the equality constraints (12) and (13) of the problem (M-WCD) in (22) and (23), we have
(r=a0) 22 ()0 +0' ) +(-a0) (1) 0+ (1)
(f +2(8) G+ (1) g )+ 82 (O Fu+ A1) 0+ 22(1) ) =0
(r- ao)( (6) 9,)+(B-o)(1(t) 1, )+ (1) + A1) G+ ()" )
#0210 fu + 2(0) g + ()"0, ) =0
Combining (35) and (36), we have
= ﬂi t ;( [I)i T .
(r-a) le g+ +(ﬁ—ao){#(t) hXTW(t)J
/l(t)T a, u(t) h,

{fXXm(t)Tgxxw(t) fuxw(t)gux+u<t>Thux][¢l<t>]dt:o

fo + 47 (1) g, +u(t) fo+27(t)g,, +u(t)T h

(35)

(36)

Xu uu

h
This by premultiplying by (¢1 (), ¢ (t)T), and then integrating, we have

A(t) g, A(t) h,
g g )| et AT O e e A AT (g +u() R ) ())
J|.(¢ QAY )( fut A (D)0 +u(t) hy  f,+27(1)gy, +u(t) huu][f(t)}jt_o

Using (33) and (34), we have

@)
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jlo @7 () ot ﬂTT(t)T 0y + ,u(tZT h, fux+ﬁi (t)gux+u(t): hUXJ(gbl(t)Jdt:O
| fu+A4 (1)g, +u(t) hy f,+A7(t)g, +u(t) hy
This because of hypothesis (A,) implies
¢ (t)=0=¢(t), tel
Using ¢'(t)=0=¢°(t),tel, gives
(7= e0) 22" ()01 + 0 (1) + (8- ) (1O, + (1) =0, t e
This, because of hypothesis (As) implies
(7_0‘0):0’ (B-ay)=0
Assume a, =0, (37)gives y=0=p. from (24)itfollows &§(t)=0,tel. Consequently we have
(a0, 8" (1), 47 (1),7.8.5(1)) =0, tel,
contradicting (32). Hence o, >0, >0 and g >0. The relations (26) and (27) gives
U(t)e-Ny(z) and X(t)e-N (@'),i=12m

yielding @(t)" z(t)=s(T(t)K) and x(t)" &' (t)=S(X(t)[C'),i=12,--,m.

From (24), we have

g' +X(t) @' (t)<0,i=12--,m tel
and
iw (O)(g' +x(1) ol (1)) =0
From (25), we have
h-x=0,tel
and
a(t) (h-x)=0tel

The feasibility of (x,a) for (CP) follows from (38) and (40).
Consider

x|

_!'[f (t,%,T)+u(t) z+i€zlozi (O)(9' (L xu)+x(1) @' (1) +7(1) (h(tX.T)- ')]dt
:!(f (t,Y,U)+S(u(t)|K))dt

(by using LT(t)T z(t)= s(LT(t)| K) along (39) and (41)).

(37)

(38)

(39)

(40)

(41)

This along with the generalized convexity hypotheses implies that (X,U,Z,Zl,--~,1m,ﬁ, a_)l,---,a_)m) is an

optimal solution of (M-WCD).

4. Special Cases

Letfor tel, B(t) and D’(t),(j=L2---,m) be positive semidefinite matrices and continuous on I. Then

(u(' B(t)u(t))% =s(u(t)K)

where

K={B(O)z(V)[z(1) B(t)z(t) <L tel|

@)
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and

(x(®)" Di(t)x(t))%:s(x(t)|ci), j=12-,m
where
c'={p(t)e' (t)e' (1) D (H)e' ()<L telf

Replacing the support function by their corresponding square root of a quadratic form, we have:

Primal (CPg): Minimize I[f ('[,x,u)+(x('[)T B(t)x(t))szt
subject to

x(a)=0=x(b)

g’ (txu)+(x() D) (x()] <0, tel, j=12,m
x(t)=h(t,x,u), tel
(M-WCDy): Maximize I(f (t,x,u)+u(t)T B(t)z(t))dt

subject to

x(a)=0=x(b)
(txu)i o) (txu)+ D' (t)o' (t))+u(t) h, (t,x,u)=4a(t), tel

iljw( (txu)+x(t) D (t)o! (1))t =0
()" (h(t,x,u)-x(t))dt=0

|
A(t)=0
z(t) B(t)z(t) <L tel
o (1) DI (o' (t)<Ltel, j=1,2,-,m
The above pair of nondifferentiable dual control problem has not been explicitly reported in the literature but
the duality amongst (CP,) and (M-WCDy) readily follows on the lines of the analysis of the preceding section.
5. Related Nonlinear Programming Problems

If the time dependency of the problem (CP) and (M-WCD) is removed, then these problems reduce to the fol-
lowing problem (NP), its Mond-Weir dual (M-WND):

Primal (NPo): Minimize f (x,u)+$ (u|K)
subject to

g’ (xu)+S(xD’')<0, j=12,--,m
h(x,u)=0

Dual (M-WNDy): Maximize f(x,u)+u'z
subject to
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f, (x,u)+§’1/1j (gxJ (x,u)+x @’ (x,u))+yThx(x,u):0
=
fo(x,u)+z+47g, (x,u)+x'h,(x,u)=0
iﬂj(gj (x,u)+S(x|Di))2O
=
uh(x,u)=0
2120, j=12-m

zeK, ' eC!, j=12,-,m

The above nonlinear programming problems with support functions do not appear in the literature. However,
if f(xu) and S(u|K) are replaced by f(x) and S(x|K) respectively in (NPo), then problems reduced
to following studied by Hussain et al. [4].

(P1): Minimize f (x)+S(x|K)
subject to

g'(x)+S(x]C)<0,i=12,m

(M-WCD): Maximize f (x)+x(t)T z
subject to

fx(x)+z+§ﬂ,‘(gix(x)+a)i)+yThx(x)=0

21>0,i=12,---,m

zeK, @ eC',i=12,---,m

6. Conclusion

Mond-Weir type duality for a control problem having support functions is studied under generalized convexity
assumptions. Special cases are deduced. The linkage between the results of this research and those of nonlinear
programming problem with support functions is indicated. The problem of this research can be revisited in mul-
tiobjective setting.
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