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Abstract 
An accelerated singular value thresholding (SVT) algorithm was introduced for matrix completion 
in a recent paper [1], which applies an adaptive line search scheme and improves the convergence 
rate from O(1/N) for SVT to O(1/N2), where N is the number of iterations. In this paper, we show 
that it is the same as the Nemirovski’s approach, and then modify it to obtain an accelerate Nemi-
rovski’s technique and prove the convergence. Our preliminary computational results are very 
favorable. 

 
Keywords 
Matrix Completion, Singular Value Thresholding, Nemirovski’s Line Search Scheme, Adaptive Line 
Search 

 
 

1. Introduction 
In many practical problems of interest, such as recommender system [2]-[4], one would like to recover a matrix 
from a small sampling of its entries. These problems can be formulated as the following matrix completion 
problem: 

( )
( )

min rank

. . ,  ,
X

ij ij

X

s t X M i j




= ∈Ω
                                (1) 

where m nM ×∈  is the given incomplete data matrix, Ω is the set of locations corresponding to the observed 
entries. The problem (1) is NP-hard because the rank function is non-convex and discontinuous. However, it is 
known that the rank of a matrix is equal to the number of nonvanishing singular values, and the nuclear norm 
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∗
⋅  stand for the sum of the singular values. Thus, the rank minimization problem (1) can be relaxed as fol-

lowing convex program problem: 

( )
min

. . ,  ,
X

ij ij

X

s t X M i j
∗




= ∈Ω
                               (2) 

and Candès and Recht [5] proved that under suitable conditions, the program (1) and (2) are formally equivalent 
in the sense that they have exactly the same unique solution. 

Now, there are many algorithms for solving the model (2), such as singular value thresholding (SVT) algo-
rithm [6], accelerated proximal gradient (APG) algorithm [7] and so on. The singular value thresholding (SVT) 
algorithm solves the following problem: 

( ) ( )

21min
2

. .

FX
X X

s t P X P M

τ
∗

Ω Ω

 +

 =

                                (3) 

where PΩ denotes the orthogonal projector onto the span of matrices vanishing outside of Ω so that the ( ),i j th 
component of ( )P XΩ  is equal to ijX  if ( ),i j ∈Ω  and zero otherwise. In [6], Cai et al. showed that the op-
timal solution to the problem (3) converges to that of (2) as τ → ∞ . 

However, SVT has only a global convergence rate of ( )1O N , where N is the number of iterations. Then Liu 
Jun et al. [1] proposed an accelerated SVT algorithm by considering the Lagrange dual problem of (1.3) as fol-
lows: 

( )min
m nY

h Y
×∈

                                     (4) 

where ( ) ( )( ) ( )( ) ( )( )( )21 ,
2 F

h Y D P Y D P Y Y P M D P Yτ τ ττ Ω Ω Ω Ω∗
= − − − − , Dτ  is the soft-thresholding op-  

erator [1], and ( )h Y  is convex and continuously differentiable with Lipschitz continuous gradient. 
In the accelerated SVT algorithm, an adaptive line search scheme was adopted based on Nemirovski’s tech-

nique [8]. For reference purpose, in the following we list the related key steps of the algorithm in [1]: 
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Step 8: if ( ) ( ) ( ) 2
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Step 9: go to step 14; 
Step 10: else; 
Step 11: 2k kL L= ; 
Step 12: end if; 
Step 13: end while; 
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( ) ( )

( )
1

22 k k
k

k F

h S h Y
L

h S
ω +−
=

′
, ( )1k kL h Lω+ = , ( )

1,          1 5,
0.8,       5.

h
ω

ω
ω
≤ ≤

=  >
 

Comparing with Nemirovski’s scheme for updating Lk, i.e. 1k kL L+ =  in step 14, Liu Jun et al. [1] [9] used a 
more flexible scheme, in which Lk is not required to monotonically increase. As Lk is decreased, the step size 
1 kL  is increased, it is expected that the number of iterations may be reduced. The idea is really attractive. 
However, it is found that the approach is just the same as the Nemirovski’s algorithm in the following section. 

2. Main Procedure 
First, we declare that the value of ω (in step 14) is always not bigger than 2, this means that it is just the same as 
Nemirovski’s line search scheme. 

Since ( )h Y  is convex and continuously differentiable with Lipschitz continuous gradient, we have 

( ) ( ) ( )1 1,k k k kh Y h V h S Y S+ +′≥ + −                               (5) 
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( ) ( ) ( ) 2
1 1 1,

2k k k k k k k F

Lh Y h S h S Y S Y S+ + +′≤ + − + −                        (6) 

where L is the Lipschitz gradient constant [10]. 

Define function ( ) ( ) ( ) 2,
2k k k k k F

LY h S h S Y S Y Sφ ′= + − + − , then we have 

( ) ( ) ( ) 2
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which along with ( )1
1

k k k
k

Y S h S
L+ ′= −  gives 
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Y h S h S
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From (5), (6) and (7), we have 
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It follows that 
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Combining (8), (9), 
( ) ( )
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1
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                               (10) 

Then, we make a few improvement based on the original algorithm to obtain a revised algorithm. The overall 
steps can be organized as follows: 

Algorithm 1 The Modified ASVT Algorithm 
Step 1: Input: ( )1 1 0 1 0,  0,  1,  0,  0,1L t t Y Y η− = = = = ∈ ; 
Step 2: Output: ( )( )1 1 1,  N N NY X D P Yτ+ + Ω += ; 
Step 3: for 1, 2, ,k N=   do; 

Step 4: compute 2

1

1k
k

k

t
t

β −

−

−
= ; 

Step 5: compute ( )1k k k k kS Y Y Yβ −= + − ; 
Step 6: while 1 do; 

Step 7: compute ( )1
1

k k k
k

Y S h S
L+ ′= − ; 

Step 8: if ( ) ( ) ( ) 2
1

1
2k k k F

k

h Y h S h S
L+ ′≤ −  then; 

Step 9: 1k kL Lη+ = , go to step 3; 
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Step 10: else; 
Step 11: 1 2k kL L+ = ; 
Step 12: end if; 
Step 13: end while; 

Step 14: set 
2

11 1 4
2

k
k

t
t −+ +
= ; 

Step 15: end for. 
The convergence of algorithm 1 is given by the following theorem. And in this algorithm, the upper bounds of 

the order of convergence have nothing to do with the initial value L1, which means that the modified scheme 
improved and accelerated the Nemirovski’s technique. 

Theorem 1 For large enough k, the approximate solution Yk obtained by the modified algorithm satisfies 

( )
( )

2

1 2

4
1

h
k

LR
h Y h
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where Rh is the distance from the starting point to the optimal solution set. 
Proof. According to the convergence of Nemirovski’s algorithm ([8] Theorem 10.2.2), it has 
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( )
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where { }1 1
ˆ max 2 ,kL L L L+ ≤ = . In the following we declare that 1 2kL L+ ≤  for large enough k in our modified 

algorithm. 
Suppose that there exists a positive integer k such that 1 2kL L+ > . Obviously, 1k kL Lη+ =  or 1 2l

k kL Lη+ = × , 
where l denotes the number of implementing step 11 in kth iteration. Since the test condition in step 8 is satisfied 
when kL L≥ , it easily follows that 2 2l

kL L< . Therefore, we have 

1 2k kL L Lη+ = >  

and then 

2 2k
LL L
η

> >  

So we have a recurrence relation of the form 1
1

k kL L
η += , then by recurrence, we obtain 

1 2 1
1 1 12

k k

kL L L L
η η η+

   
= = = > ×   

   
  

Obviously, as k →∞ , we can obtain 1L →∞ , which is impossible by finiteness of the initial value L1. Thus, 
when k is large enough, we have 1 2kL L+ ≤ . This completes the proof. 

3. Computational Results 
In this section, numerical experiments with MATLAB were performed to compare the performance of the Ne-
mirovski’s technique algorithm and further to gain an insight into the behavior of our approach on synthetic 
dataset. 

Code Ne-SVT and M-ASVT, based on the Nemirovski’s technique SVT method and our modified algorithm, 
respectively. Specific problems as follows: similar to the paper [1], we generate m × n matrices M of rank r by 
randomly selecting two matrices of ML and MR, with the dimension of m × r and r × n, respectively. Each hav-
ing independent identically distributed Gaussian entries, and setting L RM M M= . Suppose MΩ is the observed 
part of M, and the set of observed indices ( ){ },i jΩ =  is sampled uniformly at random. Let p be the ratio, that 
is zp n mn= , where nz is the number of the observed entries. Then different algorithms will be used to recover 
the missing entries from the partially observed information by solving the optimization problem (3) with a given 
parameter τ . In our tests, τ  was set to t mn  on the basis of Cai et al. [6], where 2 5t≤ ≤ . We adopt the 
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relative reconstruction error defined by following: 

error F

F

X M
M
−

=                                    (11) 

where X is the computed solution of an algorithm, then there is using the “error” to evaluate the quality of the 
algorithm. In addition, we set 1 1L = , 0.8η =  for all test problems. Compiled using MATLAB2010, both 
Ne-SVT and M-ASVT were run under a Windows XP system on a AMD Fusion APU E-450 1.65 Ghz personal 
computer with 1.98 GB of memory and about 16 digits of precision. 

Firstly, we compare the relative error between Ne-SVT and M-ASVT for solving the randomly generated low 
rank matrix problem. The initial parameters as follows: m = 100, n = 50, r = 5, p = 0.9, so meaning that 90% en-
tries are observed. We will recover the other 10% entries by running Ne-SVT and M-ASVT separately. Table 1 
reports the relative reconstruction error of different methods after 30, 60, 90 and 120 iterations. We can observe 
that the convergence rate of M-ASVT is really faster than that of the other, which is consistent with our analysis, 
and the further shows we can see Figure 1. 

Then we can still test these algorithms with different settings on the following different low rank matrix com-
pletion problems: 1) Fix the matrix size ( ),m n , the rank r and the ratio of the observed entries p. Then test the 
performance with respect to different choices of the parameter τ. We fix m = 100, n = 50, r = 3, p = 0.9, and let τ 
change from 2 mn  to 5 mn ; 2) Fix some number remains the same, and only let p change from 0.5 to 0.9; 3) 
Fix some number remains the same, let rank r change from 3 to 15; 4) Fix some number remains the same, only 
change the size of M. 

Finally, Table 2 shows the comparative results of randomly generated matrix completion problems, in which 
we choose error < 10−6 as the stop condition. Clearly, we can know that the more smaller τ, the more bigger p,  
 
Table 1. Relative error comparison between Ne-SVT and M-ASVT. 

Iterations 30 60 90 120 

Ne-SVT 1.69e−04 7.48e−06 3.98e−07 1.09e−07 

M-ASVT 3.80e−05 2.78e−07 2.95e−08 2.95e−08 

 

 
Figure 1. Convergence rate of Ne-SVT and M-ASVT on synthetic data. 
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Table 2. Comparisons between Ne-SVT and M-ASVT on the synthetic dataset with different settings. 

 
Settings Iterations CPU time (s) 

m n r p τ Ne-SVT M-ASVT Ne-SVT M-ASVT 

τ 

100 50 3 0.9 5 mn  158 114 3.02 2.65 

100 50 3 0.9 4 mn  119 87 2.31 2.00 

100 50 3 0.9 3 mn  89 74 1.78 1.67 

100 50 3 0.9 2 mn  66 46 1.32 1.02 

p 

100 50 3 0.5 2 mn  200 122 4.02 2.87 

100 50 3 0.6 2 mn  200 112 3.88 2.60 

100 50 3 0.7 2 mn  147 96 2.89 2.24 

100 50 3 0.8 2 mn  94 61 1.85 1.38 

r 

100 50 5 0.9 2 mn  86 56 1.70 1.22 

100 50 8 0.9 2 mn  97 75 1.91 1.73 

100 50 10 0.9 2 mn  130 97 2.58 2.26 

100 50 15 0.9 2 mn  197 145 3.98 3.41 

m, n 

80 40 3 0.9 2 mn  69 51 0.81 0.70 

160 80 3 0.9 2 mn  65 45 3.61 2.85 

200 100 3 0.9 2 mn  56 39 5.45 4.32 

300 150 3 0.9 2 mn  52 38 13.37 10.84 

1000 500 3 0.9 2 mn  44 33 57.15 49.76 

 
the more smaller rank r and the more bigger the size, then the more smaller the error and the more better effi-
ciently. And we can observe that the M-ASVT performance surpasses Ne-SVT in all cases. 

4. Conclusion 
In this paper, we point out that the ASVT algorithm [1] is essentially the same as the Nemirovski’s approach, 
then modify it to obtain the accelerate Nemirovski’s approach and prove the convergence. We also give the 
comparative results of the convergence rate of Ne-SVT and M-ASVT. The preliminary computational results 
show that our approach is really more efficient. We empirically choose 0.8η =  ( )0 1η< <  in our test, and 
then we plan to study the better choice of η  and develop the adaptive line search scheme to further improve 
the algorithm. 
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