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Abstract 
We show that the non-linear semi-quantum Hamiltonians which may be expressed as  

( ) ( )ˆˆ ∑
N

j j
j

pH a q p O V q
m

2

1
,

2=

= + +  (where ˆ
jO  is the set of generators of some Lie algebra and ( )q p,  

are the classical conjugated canonical variables) always close a partial semi Lie algebra under 
commutation and, because of this, it is always possible to integrate the mean values of the quan-
tum degrees of freedom of the semi-quantum non-linear system in the fashion:  

( ) ( ){ }ˆ ˆˆj jO t Tr t O= ρ  (where ρ̂  is the Maximum Entropy Principle density operator) and, so, 

these kind of Hamiltonians always have associated dynamic invariants which are expressed in 
terms of the quantum degrees of freedom’s mean values. Those invariants are useful to character-
ize the kind of dynamics (regular or irregular) the system displays given that they can be fixed by 
means of the initial conditions imposed on the semi-quantum non-linear system. 

 
Keywords 
Non-Linear Semiquantum Dynamics, Lie Algebras, Maximum Entropy Principle 

 
 

1. Introduction 
There exists certain kind of semiquantum non-linear systems which can be represented by the following Hamil-
tonian [1]-[3] 
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int
ˆ ˆ ˆ

q clH H H H= + + ,                                 (1) 

where ˆ
qH  and clH  stand for the pure quantum and pure classical parts of the system, respectively, and intĤ   

is an interaction term where a classical interacts with a quantum one in the fashion ˆ
jqO  or ˆ

jpO ; q  and p   

being the classical canonically conjugated variables of position and momentum, respectively, and ˆ
jO  is an ar- 

bitrary quantum operator. Many of the systems given by Equation (1) may be expressed as a linear superposition  
of quantum operators ˆ

jO , as follows: 

( ) ˆˆ ,j j cl
j

H a q p O H= +∑ ,                               (2) 

where the coefficients belonging to the linear superposition, ( ),ja q p , may (or may not) contain the classical 
degrees of freedom. We refer to them as non-linear systems, the non-linearity being given only by the interac-
tion between a classical and a quantum variable. The Hamiltonians (2) exhibit some advantages that make them 
easy to tackle by means of the Maximum Entropy Principle approach (MEP). Indeed, 1) as the classical degrees 
of freedom act as they were parameters in the quantum commutation operation [3], then Equation (2), for ade-
quate operators ˆ

jO , closes a partial Lie algebra under commutation with the generators of some Lie algebra, 2) 
as a consequence of the algebra’s closure, it is always possible to obtain the Maximum Entropy statistical oper-
ator ρ̂  as prescribed by Alhassid & Levine in [4], which enables us to integrate the system’s quantum degrees  
of freedom in the fashion ( )ˆ ˆˆj jO Tr Oρ= . This also allows for the integration of the mean value of the semi- 

quantum Hamiltonian given by Equation (2), ( )ˆ ˆˆH Tr Hρ= , provided that it is a linear superposition of the  

generators of some Lie algebra, 3) the mean value of the semiquantum Hamiltonian, Ĥ  is taken to coincide  

with a Hamiltonian function [2] [3] [5] [6] that, in turn, generates the temporal evolution of the classical degrees 
of freedom q  and p , 4) accordingly, since some Lie algebra has been associated to the semiquantum system, 
it will be possible to derive some dynamic invariants which, in turn, can be expressed in terms of the mean val- 
ues, ( )ˆ ˆˆj jO Tr Oρ= , of the quantum degrees of freedom, 5) these dynamic invariants are of help so as to  

study the dynamics of these systems, that generally display two kind of regimes: regular and irregular. Such re-
gimes can be differentiated by means of the values that the invariants adopt (and these values are fixed by the 
initial conditions imposed on the system). The interested reader may consult [3] and [5] to see how the inva-
riants are used to study the classical limit of a semiquantum system [5], and how the value of a special invariant, 
the uncertainty principle, may serve as an indicator of regular or irregular regime [3]. The purpose of the present 
review is to derive the invariants of the motion exhibited by a semiquantum system as a consequence of the al-
gebra’s closure, illustrating things with reference to several interesting systems. 

The paper is organized as follows: Section 2 introduces the basic tools of MEP approach. In Section 3, we 
focus attention on the specific Hamiltonian representation of semiquantum non-linear systems. In Section 4, we 
apply MEP tools to our semiquantum non-linear systems and integrate the quantum degrees of freedom. In Sec-
tion 5, we show how the general dynamics invariants emerge out of the algebra’s closure and derive the specific 
dynamic invariants associated to SU(2), Heisenberg, SO(2,1), and SU(1,1) Lie algebras. Finally, some conclu-
sions are drawn in Section 6. 

2. Maximum Entropy Principle Formalism Tools 
The description of the quantum state of a system is made by means of the density or statistical operator ρ̂  [4] 
[7] [8] while, the entropy associated to the state ρ̂  is defined as [4] [7] 

( ) ( )ˆ ˆ ˆ ˆln lnS Trρ ρ ρ ρ= − = − .                                (3) 

According to Jayne’s Information Theory [9] [10], the statistical operator ρ̂  is constructed starting from the 
knowledge of the expectation values of 1N +  operators ˆ

jO  termed as the “relevant” constraints 

( )ˆ ˆ ;     1, ,j jO Tr O j Nρ= =                                  (4) 
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where the subindex 0 refers to the normalization condition 

( )ˆ 1Tr ρ =                                        (5) 

given that the identity operator 0
ˆ ˆO I=  must be included in order to fulfill condition, Equation (5). As it was  

established by Alhassid & Levine [4], the constraints must be linearly independent but not necessarily commut-
ing ones. The statistical operator that maximizes the entropy is given by [4] 

( )0 0
1

ˆˆˆ exp
N

j j
j

t I Oρ λ λ
=

 
= − − 

 
∑                                   (6) 

which is expressed in terms of 1N +  Lagrange multipliers 0 , , , Nλ λ λ₁ . 0λ  is the one associated to the 
identity operator Î  which must be included into the relevant set in order to fulfill the normalization condition 
given in Equation (5). Thus, 0λ  is obtained as 

0
1

ˆln exp
N

j j
j

Tr Oλ λ
=

    = −   
     

∑                              (7) 

The normalized statistical operator of maximal entropy given by Equation (6) enables one to obtain the en- 
tropy ( )ˆS ρ  at the maximum as (replacing Equation (6) into Equation (3)) [4] 

( ) 0
1

ˆˆ
N

j j
j

S Oρ λ λ
=

= +∑ .                                (8) 

The statistical operator ρ̂ , its surprisal, ( )ˆln ρ , as well as any analytical function f of ρ̂  follow the same 
equation of motion [4] 

( ) ( ) ( )
ˆ 1 ˆ ˆ,

f
H t f

t i
ρ

ρ
∂  =  ∂ 

                               (9) 

where ( )Ĥ t  is the Hamiltonian of the system which may or may not explicitly depend on time. Alhassid &  
Levine in [4] prescribed a procedure to specify the statistical operator ( )ˆ tρ  of maximum entropy for any time. 
Departing from an initial state of maximum entropy at 0t t= , given by Equation (6), they determined that, in 
order for Equation (6) to be valid for all time (i.e. in order for Equation (6) be an exact solution of Equation (9)), 
there must exist a set of relevant operators (termed as the constraints) that fulfill the well-known closure condi-
tion [4] 

( ) ( )
0

ˆ ˆˆ , ;     1, ,
N

j rj r
r

H t O i g t O j N
=

  = =  ∑                           (10) 

“so that the equation of motion of the density operator has thus been converted to a set of coupled equations of 
motion for the Lagrange parameters. The number of coupled equations equals the number of constraints” [4]. 

( )
0

;     1, ,
N

j
rj r

r
g t j N

t
λ

λ
−

∂
= =

∂ ∑                              (11) 

“the boundary conditions of the equation of motion are determined by the requirement that the initial state  
( )0ˆ tρ  be the state of maximum entropy, Equation (6), subject to the constraints” [4] ( see Equations (4)). 
As a consequence of the fact that the statistical operator obeys Equation (9), the entropy (8) is a constant of 

the motion, i.e. 

( ) ( )0S t S t=                                     (12) 

for any two times t , 0t . In [11], Equation (12) has been used to derive the time evolution of the expectation 
values of the constraints generated by Equation (19), so as to obtain 

( )
0

ˆ
ˆ ;     1, ,

Nj
rj r

r

O
g t O j N

t =

∂
= − =

∂ ∑  .                        (13) 
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Equation (13) is known as the generalized Eherenfest theorem. Finally, one can obtain the mean values of the 
relevant operators for all times as [4] 

( ) ( ){ } 0ˆ ˆˆ ;     1, ,j j
j

O t Tr t O j N
λ

ρ
λ
∂

= = − =
∂

 .                     (14) 

3. Hamiltonian Representation of Physical Semiquantum Systems 
Semiquantum Hamiltonians are often found in the literature [1] [3] [5] [6] [12]-[22]. In [12], L. E. Ballentine 
defines a semi-quantum system as: 

“one composed by a quantum part coupled to a classical part. The essential structure of all these models is a 
classical part acting directly on the quantum part, with the quantum part reacting back on the classical part 
through the expectation value of some observable [...] we refer to a system as semiquantum if one part is treated 
classically and the other part quantum mechanically” [12]. 

Thus, the Hamiltonian representing a semi-quantum system may be expressed in the form given by Equation  
(1) [1]-[3] where ˆ

qH  and clH  stand for the quantum and classical parts of the system respectively and intĤ   

is an interaction term coupling quantum and classical degree of freedom. This intĤ  term makes the system (1)  

to be a non-linear one. The semiquantum Hamiltonians we are interested in are those in which the ˆ
qH  part is  

given by a linear superposition of, say, N  quantum operators, { }ˆ
jO , that are the generators of some Lie alge- 

bra. These quantum operators are the quantum degrees of freedom of the semiquantum system. The classical 
degrees of freedom are the canonical conjugate variables q  and p . The interaction term, intĤ , is generally  
cast as ˆ

jqO  so that the ˆ
qH  and intĤ  terms must be expressed as a linear superposition of the generators of  

some Lie algebra. Thus, Equation (1) (or its equivalent Equation (2)) may be re-written in the fashion [3] 

( ) ( )
2

ˆˆ ,
2j j

j

pH a q p O V q
m

= + +∑                            (15) 

where the first term includes the ˆ
qH  and intĤ  terms, the classical variables ( ),q p  are contained in the  

coefficients ( ),ja q p , and the second term ( )² 2p m V q+  is a purely classical one. Semiquantum Hamilto- 
nians are used to model some nanotechnology devices (like molecular transistors, nanotubes, quantum dots and 
SQUIDS, for instance [20]) because they can be thought of as quantum billiards in which a quantum particle of 
mass m , confined in a potential well ( )V q  (generated by a classical mass M ) undergoes elastic interactions  
[20] [23]. Accordingly, the classical part of Hamiltonian given by Equation (15) has the form ( )² 2p m V q+ ,  
where m  represents the quantum particle’s mass, p  its classical momentum and q  its classical position. 

The Maximum Entropy Principle Approach (MEP) is able to generate a semiquantum formalism to deal with 
semi-quantum non-linear Hamiltonians like Equation (15) for which a set of relevant operators is invoked so as 
to fulfill the closure condition expressed in Equation (10) (the generators of some Lie algebra). This formalism 
was developed in [1]-[3] [5] and, in the following, we are going to outline it. 

4. Maximum Entropy Approach to Semiquantum Systems 
Let us consider a mixed physical system represented by the semiquantum Hamiltonian represented by Equation 
(15) with a coupling term [1] [12] [20] [24]-[26]. As the classical degrees of freedom act like as if they were pa-
rameters, the Hamiltonian given by Equation (15) may be cast as [3] [23] 

( ) ( )
2

ˆˆ ˆ,
2j j

j

pH a q p O V q I
m

 
= + + 

 
∑ ,                            (16) 

with Î  the identity. As the Hamiltonian (16) may be expressed as a linear superposition of some Lie algebra’s 
generators, we speak of a partial Lie algebra under commutation with Ĥ  if the commutator of Ĥ  with any 
of the generators can be expressed as a linear superposition of these generators [3] [4] [23] 
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( ) ( )
0

ˆ ˆˆ , , ;     1, ,
N

j rj r
r

H t O i g q p O j N
=

  = =  ∑                          (17) 

With ( ),rjg q p  the coefficients of such linear superposition. The semiquantum closure condition defines a  
N N×  matrix ( ),G q p . The ( ),ja q p  terms in Equation (16) may involve the system’s classic degrees of  
freedom. Since the identity operator commutes with the Hamiltonian, the classical term does not appear in the 
final result of the quantum commutation operation given by Equation (17). Accordingly, it is possible to gene-
ralize the prescription given by Alhassid & Levine in [4] for the semi-quantum case, i.e., to find the sufficient 
number of required constraints of the kind given by Equation (4) so as to obtain a statistical operator of maxi-
mum entropy like in Equation (6) valid for any time t and still retain the maximum entropy statistical operators’ 
form given by Equation (6) even for the semi-quantum case. Introduce now the surprisal 

( ) ( )
0

ˆln
N

r r
r

t Oρ λ
=

− = ∑                                   (18) 

into the Equation (9) of motion. The time dependence of ( )ˆ tρ  is contained only in the Lagrange parameters. 
The quantum operators do not depend explicitly on time in Schrödinger representation [4], so  
( ) ( )0

ˆˆln N
r rrt t Oρ λ

=
∂ ∂ = − ∂ ∂∑ , and we regain Alhassid & Levine’s expression 

( ) ( )
0

ˆ ˆˆ , , ;     1, ,
N

j rj r
r

H t O i g q p O j N
=

  = =  ∑                         (19) 

where ( )Ĥ t  is the non-linear semi-quantum Hamiltonian given by Equation (16) which may or may not expli-
citly depend upon time. Equation (18) is an exact solution of Equation (9) if the set of constraints fulfill the 
semi-quantum closure condition (17) [3]. As in [4], we replace Equation (17) into Equation (19) and, as the re-
levant operators generated by Equation (17) are linearly independent, we obtain [3] 

( ) ( )
0

,
N

j
jr r

r
g q p t

t
λ

λ
=

∂
=

∂ ∑ .                              (20) 

Thus, the equation of motion for the density operator (9) has been converted into a set of coupled Equation 
(20). Nevertheless, there exist a difference with respect to the full quantum case of [4]: while the set of Equation 
(11) is a set of coupled linear equations, Equation (20) correspond to a set of non-linear coupled equations since 
the coefficients ( ),rjg q p  may contain the classical degrees of freedom q  and p . On the other side, for the 
mean values of the system's quantum degrees of freedom we obtain [3] [11] 

( )
0

ˆ
ˆ, ;     1, ,

Nj
rj r

r

O
g q p O j N

t =

∂
= − =

∂ ∑  .                      (21) 

The normalization Equation (5) enables us to obtain the 0λ  Lagrange parameter in a completely similar way 
as in the full quantum case (see Equation (7)). 0λ  defines the differentiable manifold 

( ) ( )0 0 1 , , Nt tλ λ λ λ=                                  (22) 

where the λ ’s appearing in it obeys the non-linear Equations of motion (21). 
The integration of non-linear semiquantum differential Equation (21) can be accomplished in the fashion 

( ) ( ){ }ˆ ˆˆj jO t Tr t Oρ=                                (23) 

exclusively on account of the fact it was possible to close the algebra by means of Equation (17) as we will show 
in the following [23] [27]. If we take the time derivative of Equation (23), we obtain 

( ){ } ( )
ˆd d dˆ ˆˆ ˆ ;     1, ,

d d d
j

j j

O
Tr t O Tr t O j N

t t t
ρ ρ  = = =   

 .              (24) 

Since in the Schrödinger representation the quantum operators do not depend on time explicitly, all the time  
dependence is contained in the MEP density operator ( )ˆ tρ  through the time dependence of the Lagrange pa- 
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rameters. Accordingly, from Equation (24) we obtain (see also Equation (9)) 

( ) ( ) ( )
ˆd d 1ˆ ˆˆˆ ˆ, ;     1, ,

d d
j

j j

O
Tr t O Tr H t t O j N

t t i
ρ ρ    = = =       





.           (25) 

Take now into account the invariance of the trace under commutation operation [4] [28] 

( ) ( ) ( ) ( ) ( ) ( )
ˆd 1 1 1ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ, , , ;     1, ,

d
j

j j j

O
Tr O H t t Tr t O H t Tr t H t O j N

t i i i
ρ ρ ρ          = = = − =               



  

(26) 

Finally, taking into account the semi-quantum closure condition, Equation (17), we can replace the operator  

( ) ˆˆ , jH t O 
   and then Equation (26) adopts the form 

( ) ( ) ( ) ( ){ } ( )
0 0 0

ˆd
ˆ ˆ ˆˆ ˆ, , , ;     1, ,

d

N N Nj
rj r rj r rj r

r r r

O
Tr t g q p O g q p Tr t O g q p O j N

t
ρ ρ

= = =

 = = − = − = 
 

∑ ∑ ∑    (27) 

which is the generalized Ehrenfest theorem given by Equation (21). In short, if we are able to close a semi Lie 
algebra under commutation with the semiquantum non-linear Hamiltonian (16), then we can integrate the equa-
tions of motion of the quantum degrees of freedom even though the Hamiltonian exhibits a nonlinearity via the  

( ) ˆ,j ja q p O  [23]. 
Equation (23) can also be written in the fashion [4] 

( ) 0ˆ ;     1, ,j
j

O t j N
λ
λ
∂

= − =
∂

 .                          (28) 

The density operator of maximum entropy may be used to calculate the mean value of the Hamiltonian given 
by Equation (16) 

( ) ( ) ( )
2

ˆˆ ˆˆ ,
2j j

j

pH Tr H a q p O V q
m

ρ= = + +∑                    (29) 

and the entropy at the maximum acquires the form 

( ) ( ) ( ){ } ( ) ( )0
1

ˆˆ ˆ ˆln
N

j j
j

S Tr t t t O tρ ρ ρ λ λ
=

= − = +∑                   (30) 

and is a constant of the motion [3] [4]. 
Summing up: as it is possible to close a semi Lie algebra under commutation with the non-linear semiquan-

tum Hamiltonian, Equation (16), it is also possible to obtain the maximum entropy density operator ( )ˆ tρ , Eq-
uation (6). This density operator enables us to integrate the quantum degrees of freedom in the way given by 
Equation (23). A consequence of the algebra’s closure is that the semiquantum Hamiltonian exhibits certain 
kinds of motion invariants closely related to the Lie algebra associated to the system through Equation (17). 
These motion invariants always may be expressed in terms of the quantum degrees of freedom's mean values 
given by Equation (23). 

Concerning the system's classical degrees of freedom, the energy is taken to coincide with the quantum ex-
pectation value of the semiquantum Hamiltonian [1] [2] [6] [17] [21] given by Equation (29) and the temporal 
evolution of the classical variables is given by [2] [3] 

ˆd
d

Hq
t p

∂
=

∂
,                                 (31) 

ˆd
d d

Hp
t q

∂
= − .                                (32) 

Thus, the semiquantum non-linear dynamics displayed by Hamiltonians of the type given by Equation (16) 
may be represented in a semiquantum phase space 
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( ) ( ){ }1 1
ˆ ˆspan , , , ,Sq NV O t O t q p=                                (33) 

whose dimension is 2N +  with N  quantum variables that are linearly independent plus 2 classical ones. In 
this semiquantum phase space, the quantum mean values span the quantum manifold of the system  

( ) ( ){ }1
ˆ ˆspan , , NQM O t O t=   whose dimension is N  and, the classical variables span the classical ma- 

nifold of the system { }span ,CM q p=  whose dimension is 2. One has SqV QM CM= ⊕  [3]. 

5. Lie Algebras and Motion Invariants 
Non-linear dynamics of semiquantum Hamiltonians of the type given by Equation (16), exhibits two kinds of 
invariants: 1) general dynamic invariants [29] which are independent on the specific Lie algebra invoked to 
close the algebra. These invariants appear only as a consequence of just having closed the algebra, 2) the second 
kind of dynamic invariants does depend upon the Lie algebra associated to the Hamiltonian given by Equation 
(16) once we have closed the algebra by means of Equation (17). 

5.1. General Dynamic Invariants: The Second Order Centered Invariant 

The density operator ( )ˆ tρ and its surprisal ( )ˆln tρ    obey the Liouville Equation (9) of motion [4]. Moreover,  

they obey a special case of Equation (9) which is 

( ) ( ) ( )
ˆln 1 ˆ , ln

n
nH t

t i
ρ

ρ
∂  =  ∂ 

                              (34) 

and holds for any positive integer n . In [29], it has been demonstrated that, from Equation (34) it is possible to 
obtain the following dynamic invariant 

( ) ( ) ( )ˆ ˆln ln
nnnI ρ ρ= − .                               (35) 

Taking into account that 

( ) ( )
0

ˆˆln
N

r r
r

t t Oρ λ
=

− = ∑                                  (36) 

the invariant given by Equation (35) may be expressed as 

( ) ( ) ( )
0 0

ˆ ˆ
nnN N

n
r r r r

r r
I t O t Oλ λ

= =

  = − − −  
   
∑ ∑                        (37) 

where the ˆ
rO ’s are the generators of some Lie algebra obtained through the Equation (17) (whose mean values 

obey the evolution non-linear Equation (21)) and the rλ ’s are their associated Lagrange multipliers (which 
evolve according to the non-linear Equations (20)). 

We are interested in the particular form which the former invariant acquires for the case 2n =  

( ) ( ) ( ) ( )2

1 1

N N

i j ij
i j

I t t K tλ λ
= =

= ∑∑                                (38) 

in terms of the so-called quantum correlation coefficients ( )ijK t  [30] belonging to a set of non-commuting  
quantum operators 

( ) 1 ˆ ˆ ˆ ˆ,
2ij i j i jK t O O O O

+
 = −  .                            (39) 

Equation (21) enables us to obtain the non-linear evolution equation for the quantum correlation coefficients 

( )
( ) ( ) ( ) ( )

1 1

d
, ,

d

N Nij
rj ir ri jr

r r

K t
g q p K t g q p K t

t = =

   = − −∑ ∑ .                  (40) 
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The motion invariant given by Equation (38) is the so-called second order centered invariant of [29] [31] and 
its value can be fixed through the initial conditions imposed on the system by means of Equations (20) and (21). 
Our interest in the particular case given by Equation (38) lies in the fact that it is possible to demonstrate that 
Equation (38) represents a positive definite quadratic form [32]. Accordingly, the quantum correlation matrix  

( )K t  (whose elements ( )ijK t  are defined through Equation (39)) is a positive definite matrix and it can be  
associated to an inner product (see [31] for more details). 

Any non-linear semiquantum Hamiltonian of the type given by Equation (16) which fulfills the closure condi- 
tion (17) with the generators of some Lie algebra exhibits the second order centered invariant (38) ( )2I  as a  
dynamic invariant. This is of importance because, from it, it is possible to recover the generalized uncertainty 
principle [3] [33] that must be obeyed by the system's quantum degrees of freedom. This uncertainty relation is 
obtained as the summation over the principal minors of order 2 belonging to the correlation matrix. In fact, for 
any pair of non-commuting operators belonging to the relevant set and generated by Equation (17), the uncer-
tainty relation always holds [30] 

( ) ( )
2 22 2 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,

2 4j k j k j k j k j kO O O O O O O O O O   ∆ ∆ − + − ≥ −    
               (41) 

The left hand side of Equation (41) is a principal minor of order 2 belonging to the correlation matrix ( )K t ,  

where ( )2 22ˆ ˆ ˆ–j j jO O O∆ = . Keeping in mind that through Equation (17) we are able to find a finite set of  

non-commuting operators, we can define the following expression, which is obtained as the summation over the  
principal minors of order 2 belonging to the metric matrix ( )K t  [33]-[35] 

( ) ( )
2 22 2

1 1 1 1

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,
2 4

N N N N
H

j k j k k j j k j k
j k j k

j k j k

I O O O O O O O O O O
= = = =

< <

   = ∆ ∆ − + − ≥ −    
∑∑ ∑∑      (42) 

We call Equation (42) the generalized uncertainty principle [33], valid for a set of non-commuting operators. 
Equation (42) is a direct consequence of the algebra's closure given by Equation (10). Through it one generates a 
set of non-commuting operators termed “the relevant set of operators” [4] which, in turn, are the generators of 
some Lie algebra. 

The uncertainty principle given by Equation (42) imposes strong constraints on the system and avoids the 
making of wrong choices for the initial conditions in their semiquantum non-linear equations of motion. 

5.2. Invariants Associated to the Anti-Symmetry of Matrix G 

The semiquantum closure condition (17) defines a N N×  matrix ( ),G q p  whose elements are the coefficients  

( ),rjg q p . When this matrix is an anti-symmetric one, the semiquantum system given by Equation (16) exhibits  
a particular kind of dynamic invariants that we will enumerate in the following. 

Let { }1 2
ˆ ˆ ˆ, , , NO O O  be the set of relevant quantum operators which arises from the semiquantum closure  

Equation (17) (i.e. the generators of some Lie algebra). We define the operator ( )( )ˆ ˆ ˆ ˆˆ 1 2ij i j j iL O O O O= +  where  

ˆ
jO  and ˆ

jO  are two operators belonging to the relevant set. It is easy to see that ˆ ˆ
ij jiL L=  and ( )2ˆˆ

ii iL O= .  

On the other side, the closure Equation (17) enables us to obtain the following commutation relations [34] 

( )2

1

ˆ ˆ, 2 ,
N

j rj rj
r

H O i g q p L
=

  =  ∑                                (43) 

( ) ( )
1

ˆ ˆ ˆ ˆ, , ,
N

ij rj ir ri jr
r

H L i g q p L g q p L
=

   = +   ∑                           (44) 

where the ( ),rjg q p  are the coefficients of matrix ( ),G q p . Making use of Equations (21) and taking into ac-
count Equations (43) and (44), we obtain the temporal evolution equations [3] [33] 
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( )
2

1

ˆd
ˆ2 ,

d

Nj
rj jr

r

O
g q p L

t =

= − ∑ ,                             (45) 

( ) ( )
1

ˆd
, ,

d

Njk
rk rj rj rk

r

L
g q p L g q p L

t =

= − +  ∑                       (46) 

( )
2

1

d ˆ ˆ2 ,
d

Nj
rj j r

r

O
g q p O O

t =

= − ∑                            (47) 

Equations (45) and (46) and (43) and (47) have terms that couple quantum and classical degrees of freedom. 
With the help of these equations it is possible to demonstrate that the anti-symmetry of matrix ( ),G q p  is a 
sufficient condition for the existence of the following dynamic invariants [3] [34] 
• The I∆  invariant [5] [34] 

22 2

1 1

1 ˆ ˆ
2

N N

j i ij
i j

I O O L∆
= =

 = −  ∑∑                         (48) 

• The Bloch “hypersphere” invariant [34] 

( )
2

1

ˆ
N

j
j

B t O
=

= ∑                                   (49) 

• The ( )C t  invariant [34] 

( ) 2

1

ˆ
N

j
j

C t O
=

= ∑ ,                                  (50) 

• The IΛ  invariant [34] 

( ) ( ) 2

1

N

j
j

I t tλΛ
=

 =  ∑                                  (51) 

• The summation over the principal minors of order r N≤  belonging to the correlation matrix [34]: 
The summation over the principal minors of order r N≤  belonging to the correlation matrix ( )K t  gives  

the coefficients of the secular equation of the correlation matrix [3] [35] 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2
1 2

0
det 1 1

N r NN r N N N
N N r N

r
P t K t I r S t S t S t S tµ µ µ µ µ µ− − −

×
=

= − = = − = − + + + −   ∑  (52) 

where ( )0 1S t ≡ . For the sake of clarity we will illustrate things for the case 3N =  (i.e. if we have a relevant  
set composed only by 3N =  non-commuting operators) 

1) case 1r =  [34] 

( ) ( ) ( ) ( )
3 3 3 222

1
1 1 1

ˆ ˆ ˆ
ii j

j j j
S t K t O O O Tr K t

= = =

 = = − = ∆ =     ∑ ∑ ∑                 (53) 

2) case 2r =  [34] 

( ) ( ) ( )
2

2 2

2
1 1

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2

N N

j k j k k j j k
j k

j k

S t O O O O O O O O
= =

<

   = ∆ ∆ − + −     
∑∑               (54) 

3) case 3r =  [34] 

( ) ( )
3 3 3 3 3 3 3 3 3

2 2 2
3

1 1 1 1 1 1 1 1 1

1 2 1
3! 3! 3!ii jj kk ij ik jk ii jk jj ik kk ij

i j k i j k i j k
S t K K K K K K K K K K K K

= = = = = = = = =

= + − − + +∑∑∑ ∑∑∑ ∑∑∑  (55) 

With i j k≠ ≠ . 
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The methodology to demonstrate that the expressions given by Equations (53) to (55) are invariants is the 
same for all of them. We restrict ourselves to the case of invariant ( )2S t  related to the generalized uncertainty 
principle (GUP) of [3] [33] (see Equation (42) (the interested readers can find those demonstrations on [34]). If 
we take time derivative on Equation (54), we obtain [23] [33] 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

22 22

, 1 , 1

2 2

, 1 1 , 1 1

d ˆ ˆ ˆ ˆˆ, , , ,
d

ˆ ˆ ˆ ˆˆ               , , , ,

            

N N

jj kk j k jj kk jk j k
j k j k
j k j k

N N N N

jk kj jk r jk kj j k r
j k r j k r
j k j k

S t
g q p g q p O O g q p g q p L O O

t

g q p g q p L O g q p g q p O O O

= =
< <

= = = =
< <

    = + ∆ ∆ + + −     

   − + ∆ − +   

∑ ∑

∑ ∑ ∑ ∑

( ) ( ) ( ) ( )
, 1 1 , 1 1

ˆ ˆ ˆ ˆ ˆ ˆ   , , , , .
N N N N

jk kj j r rj rk jk kj rj rk
j k r j k r
j k j k

g q p g q p O O L L g q p g q p L L
= = = =

< <

    − + + + +    ∑ ∑ ∑ ∑

 

(56) 
From Equation (56) it can be seen that if ( ),G q p  matrix is an anti-symmetric one, then the quantity ( )2S t  

is an invariant of the motion and this invariant turns out to be the generalized uncertainty principle (see Equation 
(42)). 

5.3. The SU(2) Lie Algebra Invariants 

It is well-known that { }ˆ ˆ ˆ, ,x y zσ σ σ  is a basis of the SU(2) algebra. The operators fulfill the following commuta- 

tion rules [36]. 
3

1
ˆ ˆ ˆ ˆ, 2 2l

j k jkl jkl l
l

i iσ σ ε σ ε σ
=

  = =  ∑ ,                            (57) 

where jσ  are the generators of SU(2). When the SU(2) Lie algebra is associated to the Hamiltonian given by 
Equation (16), it adopts the form 

( ) ( )
2

ˆ ˆˆ,
2j j

j

pH a q p V q I
m

σ
 

= + + 
 

∑ ,                           (58) 

Proposition 1: If a set of operators, which fulfills the commutation relation, Equation (57), closes a commu-
tation algebra with a Hamiltonian of the type given by Equation (58), then the semiquantum matrix ( ),G q p  of 
the system, defined by means of the closure condition, Equation (17), is an anti-symmetric one [34]. 

Every Hamiltonian that closes an algebra with the SU(2) generators is accompanied by the invariants given by 
Equations (48) to (55). Some examples of these Hamiltonians (58) are: 
• Spin 1/2 particle interacting with the classical harmonic oscillator [3] [14] 

2 2
2

1
ˆ ˆˆ ˆ

2 2x z
p mH B Cq q I
m

ωσ σ
 

= − + + + 
 

                          (59) 

q  and p  are the classical canonically conjugated variables, ˆiσ  are spin operators, B  is the external mag-
netic field’s frequency, ω  is the classical harmonic oscillator’s frequency and m  its mass. The non-linear 
term is ˆ zCqσ  where C  is the coupling constant between classical and quantum degrees of freedom. Equation 
(17) yields to the following anti-symmetric matrix ( )1G q  

( )1

0 2 0
2 0 2

0 2 0

qC
G q qC B

B

− 
 =  
 − 

                               (60) 

• Spin 1/2 particle interacting with a biquadratic oscillator [12] [37] 
2 4

2
ˆ ˆˆ ˆ

2 4z x
p qH B Cq I
m

σ σ
 

= + + + 
 

                               (61) 
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q  and p  are the classical canonically conjugated variables, ˆiσ  are spin operators, B  is the external mag- 
netic field's frequency, m  the classical mass. The non-linear term is ˆ xCqσ  where C  is the coupling con- 
stant between classical and quantum degrees of freedom. Equation (17) yields to the following anti-symmetric  
matrix ( )2G q  

( )2

0 2 0
2 0 2
0 2 0

B
G q B qC

qC

− 
 =  
 − 

                                 (62) 

• Spin 1/2 particle interacting with the double well [26] 
2 4 2

3
ˆ ˆˆ ˆ

2 4 2z x
p q qH B Cq I
m

σ σ
 

= + + + − 
 

.                           (63) 

Equation (17) yields to the following anti-symmetric matrix ( )3G q  

( )3

0 2 0
2 0 2
0 2 0

B
G q B qC

qC

− 
 = − 
 
 

                              .(64) 

Note that Equations (59), (61) and (63) give rise to anti-symmetric ( )G q  matrices given by Equations (60), 
(62) and (64), they all exhibit the dynamic invariants given by Equations (48) to (55). Particularly, the dynamic 
invariants given by Equations (53), (54) and (55) adopts the forms respectively [3] [34] 

( ) ( ) 2
1 ˆ3S t Tr K t σ= = −   ,                             (65) 

( ) 22 2 2
2 ˆ ˆ ˆ ˆ3 3 2x y zS t σ σ σ σ = − + + = −  

,                     (66) 

( ) ( ) 2
3 ˆdet 1S t K t σ= = −                               (67) 

with 
222 2ˆ ˆ ˆ ˆx y zσ σ σ σ= + + . The invariant given by Equation (66) is the left hand side the uncertainty  

principle (42), so ( ) ( )
2

, 12 ˆ1 4 ,N
j k j k
j k

S t σ σ=
<

 ≥ −  ∑ and 2ˆ 1σ < , i.e., the uncertainty principle for the SU(2)  

Lie algebra, that can be expressed in the guise 
22 2ˆ ˆ ˆ0 1x y zσ σ σ< + + <                              (68) 

defining the celebrated Bloch sphere of the system. The quantum degrees of freedom’s mean values can be ob-
tained from the density operator [38] 

( )0

tanh1 ˆˆ ˆ ˆ ˆ ˆexp
2x x y y z z I

α
ρ λ λ σ λ σ λ σ α σ

α
 

= − − − − = + •  
 

                (69) 

with 
222 2ˆ ˆ ˆ ˆx y zσ σ σ σ= + + , ( ), ,x y zα λ λ λ= , 2 2 2

x y zα λ λ λ= + + and  

( ){ }2 2 2
0 ln 2cosh x y zλ λ λ λ = + + √  (see [3] for more details). The quantum degrees of freedom are integrated  

by means of ( ) 0ˆˆ ˆi i iTrσ ρσ λ λ= = −∂ ∂ , and we obtain [33] 

tanh
ˆ x x

α
σ λ

α
= − ,                                  (70) 

tanh
ˆ y y

α
σ λ

α
= − ,                                  (71) 
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tanh
ˆ z z

α
σ λ

α
= − .                                     (72) 

In virtue of Equations (70)-(72), we can obtain the relationship [33] 

( )222 2 2 2 2 2ˆ ˆ ˆ ˆ tanhx y z x y zσ σ σ σ λ λ λ= + + = + +                      (73) 

corresponding to the IΛ  invariant (see Equation (51)) and the invariant given by Equation (49). 

5.4. The Heisenberg Group Invariants 

The Heisenberg group { }ˆ ˆ,x p  closes a partial Lie algebra with Hamiltonians of the form [34] 

ˆ ˆˆ ˆH x p Lα β γ= + +                                       (74) 

i.e. Hamiltonians that are quadratic in x̂  and p̂ , where ( )( )ˆ ˆˆ ˆ ˆ1 2L xp px= + . The 2 2 G×  matrix which arises  
from Equation (17) has the following form [34] 

2
2

G
γ β
α γ

− 
=  − 

.                                     (75) 

The correlation matrix's characteristic polynomial has two coefficients: 

( ) ( ) ( ) ( )2 2
1 ˆ ˆS t Tr K t x p= = ∆ + ∆   ,                               (76) 

( ) ( ) ( ) ( )
2

2 2
2

1ˆ ˆ ˆˆ ˆ ˆ ˆ ˆdet
2

S t K t x p xp px x p = = ∆ ∆ − + −     
,                  (77) 

but only ( )2S t  is an invariant of the motion as we will see below. There exists non-linear semiquantum Ha- 

miltonians of the type given by Equation (74) which close a partial Lie algebra with { }ˆ ˆ,x p : 
• The Hamiltonian representing the production of charged meson pairs [5] [18] 

22 2
2

4
ˆˆ ˆ

2 2 2
A

q cl

Pp mH q
m M

ω
= + +                                   (78) 

With A , AP  are canonically conjugated classical while q  and p  are quantum operators of position and  
momentum respectively and 2 2 2 2eq Aω ω= + , while e  is a constant. The Hamiltonian of Equation (78) is refe- 
renced in literature as representative of the zeroth mode contribution of an strong external field to the production 
of charged meson pairs [18] [39] [40]. The Hamiltonian given by Equation (78) may be cast in the following fa-
shion 

222
2 2 2 2

4
ˆˆ ˆ ˆe

2 2 2 2
q qA

q cl

m mPpH q A q
m M

ω
= + + +                            (79) 

where 2 2A clP M  is a pure classical term and ( )2 2 2e 2qm A q  is a nonlinear interaction term given that a clas- 

sical variable A  and a quantum one 2q  are coupled. The corresponding ( )G q  matrix is 

( )2 2 2

4

0 e

1 0

q q

q

m A
G

m

ω +
 

=  
− 
 

                               (80) 

• The generalized harmonic oscillator [41] 
Let us consider the following generalized harmonic oscillator Hamiltonian [42] 

2 2
2

5
ˆˆ ˆˆ

2 2
p mH x L
m

ω γ= + +                                 (81) 
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where ( )1ˆ ˆˆ ˆ ˆ
2

L xp px= + . If γ  is a function of canonically conjugated classical variables clP  or clQ  (i.e.  

( )clQγ γ=  or ( )clPγ γ= , the system given in Equation (81) turns out to be a semi-quantum one and its cor- 
responding G  matrix is 

( )

( )

2

5

,
1 ,

q p m
G

q p
m

γ ω

γ

 −
 =  − 
 

.                               (82) 

Proposition 2: Let us have 2N =  generators { }1 2
ˆ ˆ,O O  which close a partial Lie algebra under commuta- 

tion with a semiquantum Hamiltonian Ĥ . If the closure condition, Equation (17), gives rise to a ( )2 2 ,G q p×   

matrix such that ( ), 0Tr G q p =   , then the correlation matrix’s determinant is an invariant of the motion. 

Proof: The correlation matrix’s determinant is 

( ) ( ) ( )
2

2 22
11 22 12 1 2 1 2 2 1 1 2

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆdet
2

K t K K K O O O O O O O O = − = ∆ ∆ − + −     
.         (83) 

If we take time derivative in Equation (83) and use Equation (40), we obtain 

( )( )
( ) ( ){ } ( ) ( ) ( )11 22

d det
2 , , det 2 , det

d

K t
g q p g q p K t Tr G q p K t

t

   = − + = −                 (84) 

As ( )det 0K t >    since the correlation matrix ( )K t  is a definite positive one, it is easy to see that if  

( ), 0Tr G q p =    then ( )det K t    is a dynamic invariant of the system. 

As matrices 4G  and 5G  have null traces, then the non-linear semiquantum Hamiltonians 4Ĥ  (see Equa-
tion (79)) and 5Ĥ  (see Equation (81)) share the following dynamic invariant: the uncertainty relation 

( ) ( ) ( ) ( )
2

2 2
2

1ˆ ˆ ˆˆ ˆ ˆ ˆ ˆdet
2

S t K t x p xp px x p = = ∆ ∆ − + −     
.                  (85) 

The quantum degrees of freedom's mean values were integrated as ( ) 0
ˆ ˆ –j j jO Tr O λ λ= = ∂ ∂ , were the  

density operator is [23] [42] 

2 2 2 2 2 2ˆ 2sinh e exp e
2 q qA Aβρ ω β ω  = + + 

  





† † 1
2

b b  +  
 

              (86) 

where: † †cosh e sinh e ei i ib r a r aφ θ γ− − Ψ= + +  and †a , a  are the creation and annihilation operators respec- 
tively (see [23] [42] and references therein for more details) and 

2
2 2 2 2 2 2 2

0 e ln 2sinh e
2 2

A
q q

cl

PA A
M

βλ β γ ω β ω  = + − − +  
  



 .               (87) 

5.5. The SO(2,1) Lie Algebra Invariants 
We revisit now the Hamiltonian given by Equation (79) and the generators of the SO(2,1) Lie algebra,  

{ }1 2 3
ˆ ˆ ˆ, ,T T T , given by the commutation relations [43] [44] 

1 2 3
ˆ ˆ ˆ,T T iT  = −  ,                                     (88) 

2 3 1
ˆ ˆ ˆ,T T iT  =  ,                                     (89) 
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3 1 2
ˆ ˆ ˆ,T T iT  =  .                                      (90) 

Let us define 

1

ˆˆ
2
LT =


                                          (91) 

2
2 2 2 2

2 2 2 2

ˆ1ˆ ˆe
4 e

q

q

pT m A q
m A

ω
ω

 
 = + −
 + 


                           (92) 

2
2 2 2 2

3 2 2 2

ˆ1ˆ ˆe
4 e

q

q

pT m A q
m A

ω
ω

 
 = + +
 + 


                           (93) 

such that ( )1ˆ ˆˆ ˆ ˆ
2

L qp pq= +  and 

( )2
3 12 2 2

2 ˆ ˆˆ
eq

q T T
m Aω

= +
+

                                   (94) 

( )2 2 2 2
3 1
ˆ ˆˆ 2 eqp m A T Tω= + − .                                (95) 

Accordingly, the Hamiltonian from Equation (79) may be recast as 
2

2 2 2
3

ˆ ˆ2 e
2

A
q

cl

PH m A T
M

ω= + +                                 (96) 

so that the commutation relations 
2 2 2

1 2
ˆ ˆ ˆ, 2 eqH T i m A Tω  = +   ,                                (97) 

2 2 2
2 1

ˆ ˆ ˆ, 2 eqH T i m A Tω  = − +   ,                               (98) 

3
ˆ ˆ, 0H T  =                                         (99) 

lead to the following antisymmetric semi-quantum matrix 

2 2 2

2 2 2
6

0 2 e 0

2 e 0 0

0 0 0

q

q

A

G A

ω

ω

 − +
 
 = + 
 
 
 

                            (100) 

which enables us to obtain the semi-quantum non-linear equations of motion 

1 2 2 2
2

ˆd
ˆ2 e

d q

T
A T

t
ω= +                                  (101) 

2 2 2 2
1

ˆd
ˆ2 e

d q

T
A T

t
ω= − +                                  (102) 

3̂d
0

d

T

t
= .                                      (103) 

Taking into account Equations (99) and/or Equation (103), we can easily see that 
2

2 2 2 2
3 2 2 2

ˆ1ˆ ˆe
4 e

q

q

p
T m A q

m A
ω

ω

 
 = + +
 + 


                        (104) 
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is an invariant of the motion when the Hamiltonian (79) is associated to the SO(2,1) Lie algebra. Further, as the 
matrix ( )6G A  given by Equation (100) is an antisymmetric one, we can ensure the invariance of the principal 
minors of order 1r = , 2 and 3, belonging to the covariant metric tensor ( )K t  which, respectively, read 

( ) ( ) ( ) ( )2 2 2

1 2 3
ˆ ˆ ˆTr K t T T T= ∆ + ∆ + ∆   ,                         (105) 

( ) ( ) ( ) ( )

( ) ( )

2 2
2 2 2 2

1 2 1 2 2 1 1 2 1 3 1 3 3 1 1 3

2
2 2

2 3 2 3 3 2 2 3

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2 2

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ        .
2

HI T T T T T T T T T T T T T T T T

T T T T T T T T

   = ∆ ∆ − + − + ∆ ∆ − + −      

 + ∆ ∆ − + −  

, (106) 

( ) 2 2 2
11 22 33 12 13 23 11 23 22 13 33 12det 2K t K K K K K K K K K K K K= + − − −   ,             (107) 

With ( )2 22ˆ ˆ ˆ
ii i i iK T T T= ∆ = −  and ( )( )ˆ ˆ ˆ ˆ1 2ij i j j iK TT T T= + . Notice that the invariant (106) is the left  

hand side of the generalized uncertainty principle, Equation (42) which, for this particular case, remains as a 
constant of the motion. 

5.6. The SU(1,1) Lie Algebra Invariants 
Let’s consider again the Hamiltonian [5] [18] 

22 2
2

4
ˆˆ ˆ

2 2 2
A

q cl

Pp mH q
m M

ω
= + +                              (108) 

With A , AP  are canonically conjugated classical while q̂  and p̂  are quantum operators of position and  
momentum respectively and 2 2 2 2eq Aω ω= + , while e  is a constant. The Hamiltonian given by Equation (108)  
is referenced in literature as representative of the zeroth mode contribution of an strong external field to the 
production of charged meson pairs [18] [39] [40]. The Hamiltonian given by Equation (108) may be recast as 

222
2 2 2 2

4
ˆˆ ˆ ˆe

2 2 2 2
q qA

q cl

m mPpH q A q
m M

ω
= + + +                        (109) 

where 2 2A clP M  is a pure classical term and, ( )2 2 2e 2qm A q , is a nonlinear interaction term given that the  

classical position variable A  and a quantum one 2q̂  are coupled. It is known [42] the harmonic oscillator  
closes a partial Lie algebra either with the Heisenberg group { }ˆ ˆ,q p  or with the SU(1,1)  

( )2 2 1ˆˆ ˆ ˆ ˆ ˆ ˆ, ,
2

q p L qp pq = + 
 

 one. Thus, as it was done in [42], we select the operators belonging to these algebras  

as relevant operators ( )2 2 1ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , ,
2

q p q p L qp pq = + 
 

.From the semi-quantum closure condition, Equation (17),  

we obtain the following semi-quantum matrix [23] 

( )

( )

( )

( )

2 2 2

2 2 2

2 2 2

0 e 0 0 0

1 0 0 0 0

0 0 0 0 e

10 0 0 0

20 0 2 e 0

q q

q

q q

q q
q

m A

m

m AG A

m

m A
m

ω

ω

ω

 +
 
 
− 
 
 +=  
 
 −
 
 

− +  
 

         (110) 
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which is a block diagonal one, i.e. we see how the subspaces corresponding to the Heisenberg and SU(1.1) alge-
bras are independent one from each other. 

Making use of Equations (20), (21), (31) and (32) we obtain the equations of motion for the quantum (mean 
values and λ′ s) and classical degrees of freedom [5] 

ˆ ˆd
d q

q p
t m

= ,                                     (111) 

( )2 2 2ˆd
ˆe

d q q

p
m A q

t
ω= − + ,                              (112) 

2ˆd 2 ˆ
d q

q
L

t m
= ,                                   (113) 

( )
2

2 2 2
ˆd ˆ2 e

d q q

p
m A L

t
ω= − + ,                             (114) 

( )
2

2 2 2 2
ˆd ˆ

ˆe
d q q

q

L p
m A q

t m
ω= − + + ,                           (115) 

d
d

A

cl

PA
t M
= ,                                     (116) 

2 2d ˆe
d

A
q

P m q A
t
= − ,                                 (117) 

Information Theory tells us that the statistical operator is [42] 

( )2 2
2 2

0
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆexp q p Lq p
I q p q p L Hρ λ λ λ λ λ λ β= − − − − − − − .                 (118) 

The inclusion of the Hamiltonian into the relevant set does not modify the dynamics of the system but trans-
forms it in a thermodynamic one (see [42] and [45] for more details). In order to achieve the required diagonali-
zation of the statistical operator, we express the relevant set in terms of the creation and annihilation operators  
a  and †a }, with †, 1a a  =   [28]. One writes 

( )†
1q̂ a aγ= + ,                                   (119) 

( )†
2p̂ i a aγ= − ,                                   (120) 

2 2
1q̂ γ= ( )† † † †a a a a aa aa+ + + ,                            (121) 

2 2
2p̂ γ= ( )† † † †a a a a aa aa− + + − ,                            (122) 

( )† †
1 2L̂ i a a aaγ γ= − ,                                 (123) 

2 2 2ˆ eqH Aω= +

2
† † 1

2 2
A

cl

Pa a
M

 + + 
 

,                          (124) 

with 
2 2 2

2 2
1 22 2 2

e
    

22 e
q q

q q

m A

m A

ω
γ γ

ω

+
= =

+



 .                       (125) 

If we replace Equations (119)-(124) into Equation (118) (the reader may find in [23] [42] the details of the 
diagonalization of the density operator), one finds 
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2
2 2 2 2 2 2 2

0
ˆˆ exp e e

2
A

q q
cl

PI A A
M

ρ λ β γ ω β β ω= − + + − − + 

† † 1
2

b b + 
 

 

2 2 2 2 2 22sinh e exp e
2 q qA Aβ ω β ω  = + + 

  





† † 1 .
2

b b  +  
 

           (126) 

with 
2

2 2 2 2 2 2 2
0 e ln 2sinh e

2 2
A

q q
cl

PA A
M

βλ β γ ω β ω  = + − − +  
  



                 (127) 

and 
† †cosh e sinh e ei i ib r a r aφ θ γ− − Ψ= + +                          (128) 

with †, 1b b  =  . In virtue of Equation (126), it is possible to integrate the quantum degrees of freedom of the  

system and write [23] [42] 

( ) ( ){ }1ˆ 2 sinh cos cosh cosq r rγ γ θ ϕ= Ψ − − Ψ + ,                   (129) 

( ) ( ){ }2ˆ 2 sinh sin cosh sinp r rγ γ θ ϕ= Ψ − − Ψ + ,                   (130) 

2
22 2 2 2

2 2 2

2ˆ ˆ1 coth e
22 e

qp
qq q

q A q
mm A

βλ ω
ω

   ′= + + +      +  

 

,           (131) 

22 2 2 2 2 2 2 2
2 2 2

2
ˆ ˆe 1 coth e

2 2e
q q

q q
q

m m
p A q A p

A
βω λ ω

ω

   ′= + + + +    +   



 ,         (132) 

2 2 2
2 22 2 2 2 2 2

ˆ coth e
2 ee e

q p
L q L

qq q

L A
AA A

λ λβλ ω λ
ωω ω

  ′ ′  ′ ′= − + + −   + + + 

            (133) 

With λ λ β′ = . As the matrix ( )G A  given by Equation (110) is a block diagonal one, we can consider the  

sub-matrix associated to the Heisenberg group { }ˆ ˆ,q p  

( )
( )2 2 2

Heis

0 e

1 0

q q

q

m A
G A

m

ω +
 

=  
− 
 

                           (134) 

which is the same as that given by Equation (75) (a null trace one), so, the the dynamic invariant  

( ) ( ) ( ) ( ) ( ) 22 2
2 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆdet 1 2S t K t q p qp pq q p= = ∆ ∆ −  + −       

reappears here (see Equation (85)). Notice that  

this invariant was used in [5] to analyze the classical limit of the system given by Equation (108). Concerning 
the second block matrix 

( ) ( )

( )

( )

2 2 2

SU 1,1

2 2 2

0 0 e

10 0

2 e 0

q q

q

q q
q

m A

G A
m

m A
m

ω

ω

 
 + 
 
 = −
 
 
 − + 
 

                   (135) 

we are going to see that it corresponds to the SU(1,1) Lie algebra. In fact, lets consider first the quantum opera- 
tors [46] 0̂k , k̂+ , k̂− which fulfill the following SU(1,1) commutation relation 
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0̂
ˆ ˆ,k k k+ +

  =  ,                                     (136) 

0̂
ˆ ˆ,k k k− −

  = −  ,                                    (137) 

0
ˆ ˆ ˆ, 2k k k− +

  =  ,                                    (138) 

As in [46], if we introduce the vector operator ( )1 2 3
ˆ ˆ ˆ ˆ, ,k k k k=  components 

1 2 3 0

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ,     ,     

2 2
k k k kk k k k

i
+ − + −+ −

= = = ,                          (139) 

one has 

1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ,     k k ik k k ik+ −= + = − .                              (140) 

On the other side, remembering that 
2 2ˆ ˆ ˆ, 2L p i p  =   ,                                   (141) 

2 2ˆ ˆ ˆ, 2L q i q  = −   ,                                  (142) 

2 2 ˆˆ ˆ, 4q p i L  =   ,                                   (143) 

we can make the identification ( )0
1ˆ ˆ ˆ ˆ ˆ ˆ
2

k L qp pq= = + , 2ˆ ˆk p+ = , 2ˆ ˆk q− =  so that the set  

( )2 2 1ˆˆ ˆ ˆ ˆ ˆ ˆ, ,
2

q p L qp pq = + 
 

 is that of the generators of the SU(1,1) Lie algebra. Thus, the Casimir operator cor- 

responding to the SU(1,1) Lie algebra [46] 

( ) ( )2 2 2 2
0 3 1 2

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ
2

C k k k k k k k k+ − − += − + = − +                          (144) 

may be expressed in terms of 2q̂ , 2p̂ , and L̂  operators as 

( )2 2 2 2 21ˆ ˆ ˆ ˆ ˆ ˆ
2

C L q p p q= − + .                               (145) 

It is easy to see that the Casimir operator given by Equation (145) commutes with the semiquantum Hamilto-
nian given by Equation (108). Accordingly, this Hamiltonian exhibits an SU(1,1) structure and the following 
dynamic invariant 

( )2 2 2 2 21ˆ ˆ ˆ ˆ ˆ ˆ
2

C L q p p q= − + .                             (146) 

It is also possible to demonstrate the invariance of Equation (146), making use of Equations (21) and (17) 
(within the MEP context). 

6. Conclusion 
We have discussed properties of non-linear semi-quantum Hamiltonians of the form  

( ) ( )
2

1

ˆˆ ,
2

N

j j
j

pH a q p O V q
m=

= + +∑  are, { }ˆ
jO  are the generators of some Lie algebra. and ( );q p  are classical  

conjugated canonical variables. We saw that this Hamiltonian always closes a partial Lie algebra under commu-
tation with the ˆ

jO . As a consequence, we were able to integrate the mean values of the quantum degrees of 
freedom of our systems in the fashion; using ρ̂  as the Maximum Entropy Principle’s density operator. It was  
seen that these Hamiltonians are always associated to dynamic invariants, which are expressed in terms of  
the quantum degrees of freedom’s mean values ( )ˆ ˆˆj jO Tr Oρ= . These invariants were shown to be useful to  



C. M. Sarris, A. Plastino 
 

 
3295 

characterize the kind of dynamics that the system displays, as several examples have amply illustrated. 
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