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Abstract

In this paper, we propose a method for finding the best piecewise linearization of nonlinear func-
tions. For this aim, we try to obtain the best approximation of a nonlinear function as a piecewise
linear function. Our method is based on an optimization problem. The optimal solution of this op-
timization problem is the best piecewise linear approximation of nonlinear function. Finally, we
examine our method to some examples.
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1. Introduction

The linearization of nonlinear systems is an efficient tool for finding approximate solutions and treatment analy-
sis of these systems, especially in application [1]-[3]. Some researchers have used some methods based on the
optimization problem [4]. But in many applications for nonlinear and nonsmooth functions, we are faced to
some problems. In fact, piecewise linearization is a more efficient tool for finding approximate solutions. Some
researchers have used piecewise linearization in applications [5] [6]. Also, some researchers have used piece-
wise linearization to solve ODEs and PDEs [7].

First, we consider a nonlinear function. Let F: Ac R" — R be a nonlinear function. We suppose that
X = (xl,xz,-n,xn) varies in a subset of R" as A and this subset is compact. Our aim is to approximate the
nonlinear function F by a piecewise linear function as follows:

mn°n

f(x):ZiN:l(aio+ai1x1+ai2x2+---+a. X )7@\ (x), a;eR; i=12--,N (1)
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where A is ith subset in partitioning of A as P, ={A,A,,---, A, } . As we know, this partitioning has bel-
low properties:
1) Vi, j=12,--N; AnA =0, AeR"

2) A=ULA
Also, x, (X) is a characteristic functionon {A,A,,---,A,} such that:
1, xeA
NG @

Now, let Li(A)={f A R“'A|f|dx<oo}. As we know L, (A) is a Hilbert space of A with the follow-
ing inner product:
(f,g>:IAf(x)g(x)dx, f,gelL(A) ()
and
£ =],/ flax @)
Definition 1. We define S (A) (N eN) bethesetofall f el (A) ofthe form (1).

Definition 2. If F:R" —R isanonlinear functionand f €S, (A), we define [[F - f||_~as follows:
|7~ fll, = [,JF - flox ©®)

Theorem. The subset S, (A) isdenson L (A).
Proof. Suppose that F be a nonlinear functionthat F:Ac R" > R.

ve>03N(s)eN, 3f()eS, (A)3|F-f|, <&

Definition 3. We call f*eS, (A) the best piecewise linear approximation of F if for any f €S (A)
we have

||F—f*

C<lF-1
In fact, by above definition f* is optimal solution of the following optimization problem:
Min|F - f||
. (6)
f eSS, (A)

Obviously, because 0<|F - f||L1 , the optimization problem (6) has optimal solution.

2. Approach

At first, we consider a nonlinear function F:R — R. Secondly, we explain this approach for a nonlinear func-
tion F:R? — R. Then, we explain this approach for a nonlinear function F:R" - R.
1) Let to consider the bellow optimization problem

Min ||F — f||L1
feS, (A)
where, F:Ac R —>R isanonlinear functionand A=[a,b]. Aswe know [a,b] can be replaced by [0,1].

Now, we decompose interval [0,1] to N subintervals {%ﬁ} i=12,--,N (See Figure 1).

Since, f eS,(A),we have
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Figure 1. Partitioning A to subintervals A .

Min I: dx )

F()-ZL(a +bi><)z[i;1i} (x)

N'N

Our objective function is a functional. Now, we reduce this functional to a summation as follows:
1
J

So, the optimization problem (8) is as follows:

== 3 [F (%)~ (3 +bx) ®)

F()-Zh(a +bi><)zr;ll] (x)

N'N

N
Min [ -
i=1
st ©)
-5 =F(x)-(a +bx)
0<r,s; i=12,---,N.

But, the optimization problem (9) is a nonlinear programming problem. We reduce this problem to a linear
programming problem by relation |ri _Si| =r, +s, suchthat r,-s; =0. So, our optimization problem will be as
follows:

1 N
Min=>r +5,
N3

st
h-s =F(x)—(a+bx) (10)
r-s, =0
0<r,s; 1=42,---,N.

2) Second, we consider a nonlinear function F:Ac R?> — R. So, we have the optimization problem as fol-
lows:

Min_[A‘F(x)—ziNzl(ai+bix+ciy);(A (x)‘dx (11)

where A is the ith partition in partitioning of A=[a,b]x[c,d] and dx=dxdy . Also we can replace A by
[0,1]><[0,1]. As, we explained in 1) the optimization problem (11) will be reduced to a linear programming
problem as follows:

Minirﬁrsi
i1

st
i =S :F(Xivyi)_(ai +bX; +Ciyi)
r.-s; =0 (12)
0<r, s
i=12,--,N
N =mxn.

where m and n are numbers of subintervals on axises x and Yy, respectively (See Figure 2).
3) Third, we consider a nonlinear function F: A< R" — R. So, we have the optimization problem as fol-
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Figure 2. Partitioning A to subintervals A .
lows:
. N
M'”IA‘F (X0 X X ) = 2 (B @i, + 8y Xy ++-+ 8y, X, ) Zn (x)‘dx (13)

As, we explained in sections 1) and 2) this optimization problem will be reduced to a linear programming
problem as follows:

N
Min>r +s;

i1

st

=S = F(vazv”'vxn)_(aio+ai1X1+ai2X2+"'+aian) (14)
r-s, =0
o<r,s; i=42,---,N
N =m xm,x---xm,.

where m;,m,,---,m, are numbers of subintervals on axises x;,X,,---,X, respectively.

3. Examples

In this section, we show efficiency of our approach by several examples. Also, we define the root mean squared
error by follow relation:

Z.N e’
RMSE =, [<=i=t L (15)
N
Example 1. We consider nonlinear nonsmooth function F(x):|x—.2| on interval [0,1].

As we explained in section 1), the linear programming corresponding to this function is as follows:
1 N
Min—>r +5;
N =
st

n—s =|x—.2/-(a+bx) (16)
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The optimal solution of linear programming problem (16) is the best piecewise linearization of the function
F(x)=|x—.2| on [0,1]. We let N =50 and N =100, respectively (See Figure 3, Figure 4). In this exam-
ple, we have RMSE =7.81x10 for N =100. As we can see the approximate piecewise linearization of this
function is high accurate.

Example 2. We consider nonlinear function F (x) =x* on interval [0,1]. We have obtained the piecewise
approximation of this nonlinear function using two other methods. These methods are Splines Piecewise Ap-
proximation (SPA) and Mixture of Polynomials (MOP). Then we have compared these with our method.

As we explained in section 1), the linear programming corresponding to this function is as follows:

1 N
Min=>r +5,
N5

st

n-s =% —(a+bx) 17)

0<r,s; I=12,---,N.
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Figure 3. The figure of piecewise function approximation of
nonlinear function F(x)=|x—.2| for N =50.
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Figure 4. The figure of piecewise function approximation of
nonlinear function F(x)=|x—.2| for N =100.
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The optimal solution of linear programming problem (17) is the best piecewise linearization of the function
F(x)=x* on [0,1]. We let N =100 (See Figure 5). In this example, we have RMSE =7.52x10" while
RMSE =2.26x10"> for Splines Piecewise Approximation and RMSE =5.03x10™". As we can see the approxi-
mate piecewise linearization of this function using our method is more accurate in compared with two other methods.

Example 3. We consider nonlinear non smooth function F(x,y)=|x—y| on [0,1]x[0,1].

As we explained in Section 2), the linear programming corresponding to this function is as follows:
N
Min}r +s
i=1
st

=5 :|Xi _yi|_(ai +bX, +Ciyi)

r-s =0 (18)
0<r, s

i=12,---.N

N =mxn.

The optimal solution of linear programming problem (18) is the best piecewise linearization of the function
F(x,y)=|x-y| on [0,1]. We let m=n=10 and m=n=40 (See Figure 6, Figure 7). In this example,

1
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Figure 5. The figure of piecewise function approximation of
nonlinear function F(x)=x* for N =100.

Figure 6. The figure of piecewise function approximation of
nonlinear function F(x,y)=|x—y| for m=n=10.
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Figure 7. The figure of piecewise function approximation of
nonlinear function F(x,y)=|x—y| for m=n=40.

we have RMSE =1.28x10™" and RMSE =7.97x10™", respectively. As we can see the approximate piece-
wise linearization of this function is high accurate.

4. Conclusion

Our method for piecewise linearization of nonlinear functions is extensible to R =(—o,+w) by the function
:(—o0,+0) —[0,1] . As we can see, this approximation is high accurate in comparison of other methods and this
method is very simple for achieving this optimal solution. Also, this piecewise linearization form of nonlinear
functions is useful for many applications, especially for nonlinear nonsmooth optimization, nonlinear differen-
tial equations, fuzzy ODE and PDE differential equations and so on.
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