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Abstract

We propose and analyze an epidemiological model to evaluate the effectiveness of bed nets as a
prophylactic measure in malaria-endemic areas. The main purpose in this work is the modeling of
the aggressiveness of anopheles mosquitoes relative to the way humans use to protect themselves
against bites of mosquitoes. This model is a system of several differential equations: the number of
equations depends on the particular assumptions of the model. We compute the basic re-
production number R, and show that if R, <1, the disease free equilibrium (DFE) is globally

asymptotically stable on the non-negative orthant. If R, > 1, the system admits a unique endemic
equilibrium (EE) that is globally and asymptotically stable. Numerical simulations are presented

corresponding to scenarios typical of malaria-endemic areas, based on data collected in the
literature. Finally, we discuss the relative effectiveness of different kinds of bed nets.
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1. Introduction

Malaria is a vector-borne infectious disease that is widespread in tropical regions, including parts of America,
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Asia and much of Africa. Humans contract malaria following effective bites of infected Anopheles female mos-
quitoes during blood feeding. Plasmodium falciparum is the most common cause of malaria mortality in Africa,
and the chain of transmission can be broken through the use of insecticide-treated bed nets and anti-malarial
drugs, as well as other control strategies.

Malaria accounts for more than 207 million infections and results in over 627,000 deaths globally in 2012 [1].
About 90% of these fatalities occur in Sub-Saharan Africa [1] [2]. Despite intensive social and medical research
and numerous programs to combat malaria, the incidence of malaria across the African continent remains high.

In the field of mathematical epidemiology, numerous models have been proposed with the purpose of under-
standing various aspects of the disease. The foundation model of Sir Ronald Ross, originally proposed in 1911
[3] and extended by MacDonald in 1957 [4], serves as the basis for many mathematical investigations into the
epidemiology of malaria. A prominent example is the model of Ngwa and Shu [5], which introduces susceptible
(S), exposed (E), and infectious (1) classes for both humans and mosquitoes, plus an additional Immune class (R)
for humans. This model is extended in the Ph.D. theses of Chitnis [6] and Zongo [7] (these two theses also pro-
vide comprehensive reviews on the state of the art). Chitnis introduces immigration into the host population,
which is a significant effect since hosts migrating from a naive region to a region with high endemicity are espe-
cially susceptible to infection. Zongo further extends the model by dividing the human population into non-
immune and semi-immune sub-populations, which are modeled using (SEIS) and (SEIRS) model types, respec-
tively.

In his thesis, Chitnis espoused the use of insecticide-treated bed nets, coupled with rapid medical treatment of
new cases of infection, as the best strategy to combat malaria transmission. In this paper we make further exten-
sions to the model to include the effects of bed-net use on malaria transmission. In particular, we divide the hu-
man population into groups that are characterized by the methods they use to protect themselves against the
mosquito bites. These assumptions are consistent with the observable situation in many endemic areas, parti-
cularly in poor countries. We believe that the current study represents the first systematic model-based analysis
of the impact of bed nets on the dynamics of malaria transmission.

Malaria is highly seasonal [8] [9]: the highest endemicity typically occurs during rainy seasons, when mos-
quito density is high due to high humidity and the presence of standing water where mosquitoes can breed. Dur-
ing this period, even people with immune predisposition to malaria infection are at risk of attaining the critical
level of malaria parasites in their bloodstream that could make them fall sick. In our model, we consider condi-
tions characteristic of a rainy season in a region of high malaria endemicity: typically, such conditions last for a
period between three to six months. Because of the brevity of the period being considered, we neglect the effects
of death, birth and migration of hosts. We also omit exposed and recovered classes for hosts: due to the high
density of anopheles mosquitoes during such periods, exposed individuals rapidly become infectious, and the
partial immunity of hosts following recovery has negligible effect. Results for more sophisticated models that
include exposed and/or recovered state(s) are reserved for forthcoming papers.

The paper is organized as follows. Section 2 describes our model and gives the corresponding system of dif-
ferential equations. Section 3 establishes the well-posedness of the model by demonstrating invariance of the set
of non-negative states, as well as boundedness properties of the solution. The equilibriums of the system are
calculated, and a threshold condition for the stability of the disease free equilibrium (DFE) is calculated, which
is based on the basic reproduction number 7R, . The method used to derive the basic reproduction number is
different for the method of the next generation operator of VVan Den Driesshe and Watmough [10] currently used
in literature. Section 4 analyzes the stability of equilibriums. We prove in Section 4.1 the global asymptotic sta-
bility (GAS) of the disease free equilibrium (DFE) when R, <1; in Section 4.2 we prove the GAS of the en-
demic equilibrium (EE) when 7R, >1. Section 5 provides graphs of trajectories corresponding to various para-
meter sets computed based on data obtained from the literature. Section 6 discusses the significance of our re-
sults. Finally, the Appendix contains detailed proofs and computations required by the analysis.

2. Model Description and Mathematical Specification

The model assumes an area populated by H human hosts and M female mosquitoes (disease vectors) under
conditions of higher endemicity of malaria. The human and mosquito populations are homogeneously mixed. In
the following subsections, we provide a detailed description of the population structure and dynamics of hosts

and vectors.
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2.1. Host Population Structure and Dynamics

The human population is divided into n+1 groups. One of these groups consists of humans who do not use
bed nets, while the other n groups correspond to the various types of bed nets used as protection against mos-
quito bites. Some nets are untreated; others are treated with repellent; others are treated with insecticides, with
varying degrees of toxicity (toxicity typically decreases with use). We let b (i =1 n) denote the proportion

n
of the human population that is in the i" protected group, and b, zl—Zbi is the proportion of humans that
i=1
use no protection.
The dynamics of the i™ host population (i = 0,~--,n) is described by a SIS-based compartment model as
shown in Figure 1. As explained in the Introduction, we omit exposed and recovered classes, as well as the ef-

|
fects of birth, death, and migration. The incidence of infection for humans in the i group is given by am, ﬁq ,

where a is the average number of bites per mosquito per unit time (the entomological inoculation rate); 1, is
the number of infectious mosquitoes; H is the human population; and m, is the infectivity of the mosquito
within the contact with human of the i™ group, that is the probability that the bites of an infected mosquito on

a susceptible human of the i" group will transfer infection to the bitten human.

2.2. Mosquito Population Structure and Dynamics

The population of disease vectors (adult female anopheles mosquitoes) is characterized by several classes, where
each mosquito’s class membership is determined by its own history of past activity. Newly-emerged adult mos-
quitoes initially enter the susceptible class: the rate of entry (that is, the recruitment rate) is IT". Also included
within the susceptible class are all uninfected mosquitoes: this includes mosquitoes that have never fed, as well
as those that have fed but have never become infected. This is a reasonable approximation, since all such mos-
quitoes are in the same state with respect to progress of the infection. The natural death rate for mosquitoes
(apart from mortality due to being killed while feeding) is 1 .

Adult mosquitoes alternate between two activities: questing (that is, seeking a host to bite for its blood meal)
and resting (to lay down eggs, or to digest a blood meal). In the current model we assume that all susceptible
mosquitoes are in the questing state: the presence of susceptible resting mosquitoes can be approximately ac-
commodated by reducing I' to account for recruited mosquitoes that are resting and not questing. We are cur-
rently working on an improved model that explicitly includes the class of susceptible resting mosquitoes.

Questing mosquitoes are equally likely to feed on any human, regardless of his/her protection method. Thus
for any given blood meal, the probability that the human host belongs to the i" group is b, . During a blood meal
on a human in the i" group, the mosquito is Killed with probability k;, survives with probability k; =1-k;,
and succeeds in feeding with probability k; f,. Letting a denote the average number of bites per mosquito per
unit time (the entomological inoculation rate) it follows that the incidence rate of successful blood meals is

@ =Y ab f,k, , while the additive death rate caused by the questing activity of mosquitoes is d => abk; . If
i=0

i=0
we let I, and I, denote respectively the number of infected humans in group i and the probability that the

bite of a mosquito on humans in group i will infect the mosquito, then the incidence rate for mosquitoes be-
- . n =1
coming infected is ¢ =>ac; fk, ﬁl
i=0

Susceptible mosquitoes that become infected enter the first exposed resting class Eﬁl)z‘. Following initial
infection, the mosquito must remain alive for a certain period before becoming infectious. This period is known
in biological and medical literature as extrinsic incubation period [11]. During this period, the mosquito expe-
riences a certain number of periods of questing and resting. In our model, we suppose that a mosquito becomes

am2
IH I

- A i

i

S,

Figure 1. Dynamics of the i™ human group.
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infectious after a fixed number | of resting/questing cycles following initial infection. These successive resting/

questing cycles are modeled as a sequence of 2l exposed states, and are denoted by Egl), Efz), Eé'), Ef'”).
If a mosquito survives through all of these state, it then enters the infectious class, which is further divided into
questing and resting sub-classes (1, and I, respectively). Once a mosquito enters the infectious class, it re-
mains there for the rest of its life, alternating between questing and resting states.

The overall dynamics of the mosquito population is depicted in the multi compartment diagram in Figure 2:
The fundamental model parameters are summarized in Table 1, while derived parameters are summarized in

Table 2.

ll_'
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Figure 2. Mosquito population dynamics.

Table 1. Fundamental model parameters.

Param. Description
a Biting rate of the vectors.
b Proportion of i"™ host group.
C Infectivity coefficient of vector due to bite of i host group.
f, Probability that a vector which bites the i host group and survives obtains a blood meal.
k. Probability that a vector attempting to bite i" host group is killed.
m, Infectivity coefficient of hosts in i"™ group due to bite of infectious vector.
0 Rate at which resting vectors move to the questing state.
7 Transition rate from infectious to susceptible states for hosts in the i group.
H Natural death rate of vectors.

Table 2. Derived model parameters.

Param. Formula Description
d > abk, Death rate of vectors due to questing activity.
i=0
f g i itoes.
. e Frequency for questing mosquitoes
) . .
f, Frequency for resting mosquitoes.
u+o
K 1-k, Survival probability of vectors attempting to bite i" host group.
i pu+d Death rate of questing vectors.
. =1 . . . . .
[ ac; fk; ﬁl Incidence rate of infection for questing susceptible vectors.
i=0
12 ac, fkb, Maximum incidence rate of infection for questing susceptible vectors.
i=0
@ ab, fk, Incidence rate of successful blood meal for questing vectors.
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2.3. Model Equations

The system of ordinary differential equations that characterize the model are given as follows:

S, =I—(i+9)s,

EY = ¢S, —(u+5)EY

EV =6EY ~(a+@)EY i=12,1

ESM) :wEéj) —(,u+§)ESj+1) j=12,---1 1)
. [

Ii=amiﬁq(Hbl—li)—;/ili i=0,1---,n

i, =0E" ~(a+ @)1, +51,

I =a@l,—(u+5)l,

The system (1) together with initial conditions completely specifies the evolution of the multi-compartment
system shown in Figure 1 and Figure 2. Note that system (1) also determines S, (susceptible hosts of the "
hosts group, since each host sub population is closed and S, = Hb, -1, .

3. Well-Posedness, Dissipativity and Equilibria of the System

In this section we demonstrate well-posedness of the model by demonstrating invariance of the set of non-
negative states, as well as boundedness properties of the solution. We also calculate the equilibriums of the
system, whose stability properties will be examined in the following section.

3.1. Positive Invariance of the Non-Negative Cone in State Space

The system (1) can be rewritten in matrix form as

. i . . ry r
S, =—(a2+9)S, +F<:> S, =—(,u+¢7)(8q —Zj—(pz

)'(:A(x)x+b(x)<:>{).(I _ A (X)%, )

X, =A (X)X

Equation (2) is defined for values of the state variable x = (Sq;xI ) lying in the non-negative cone of R"
(u=n+2l+4), which we denote as R! .Here x, =S, represents the naive vector component, and

(B )

represents the non-naive components of the state of the system. This notation is consistent with the notation of
reference ([12]), and we use results from this reference in our analysis.
The matrix A, (x) may be written in block form as

AI(X):[A.EM A..,E<x>]

Ae, (%) A (%)

where the four matrices blocks may be described as follows:

The (2I+1)><(2I+1) matrix A, (x) expresses the interaction between non-infected components of the
system. It is a 2-banded matrix whose diagonal and sub-diagonal elements are given by the vectors d, and d_,
respectively, defined by

©)

d, = —<u+5>.—(ﬁ+w>.---,—(u+6),—(ﬁ+w>,—(ﬂ+6)} d[MJ @

2l components 2l components

The (21+1)x(n+3) matrix A _(x) gives the dependence of the exposed components (Eﬁ”,Eé”) on
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the infected components (Ii (i :O,-~-,n), I, Iq). The only nonzero entries in this matrix are the first n+1

terms of the first row, which are given by ac, f .k Fq i=0,---,n: these terms characterize the transition of
vectors from the susceptible to the first exposed state, which depends on infectious the host components. The

(n+3)x(21+1) matrix A_ (x) gives the dependence of infectious components on exposed components. All
entries are zero except the (n+2,2| +1) entry, which is equal to & reflecting the transition rate of vectors

fromstate E!"? tostate I, .

A (x) A
The (n+3)x(n+3) matrix A (x) may be written in block formas A, (x):{ " v )] with

0 A (x
b,am, 0
. | —(p+@ ) o0
A, (x):dlag{—amiﬁq—yiJ AL (x):[ ( - ) —(,u+5)j; A, = :
0<i<n bna.mr| O

Remark 3.1. The second matrix form given in (2) can also be written in the form

{Xs = As(x)(xs _X;>+As,|x|

5
X, =A (X)X, ©

where Aj(X)=-ia-¢, A, =%%(0,0,...,0, f,Coko, ) fncnkn,0,0j, and x; :% is the component of
the DFE (see Proposition 3.5 below) in the disease free sub-variety For such a system, Kamgang et al. in [12]
gives a threshold condition for the stability of the DFE and an analysis of global asymptotic stability that we
may apply to the current system.

Foragiven xeR!Y,the matrices A(X), Aj(x) and A (x) are Metzler matrices.

The following proposition establishes that system (2) is epidemiologically well posed.

Proposition 3.1. The non-negative cone RY is positively invariant for the system (2).

Proof. For any xeR, the matrix A(x) is a Metzler matrix (see Appendix); and it is well-known that
systems determined by Metzler matrices preserve invariance of the non-negative cone. o

2l+1 entries

3.2. Boundedness and Dissipativity of the Trajectories

We have the following proposition.
Proposition 3.2. The simplex

Q:{XeRﬂ

(qu%j/\(liSHbi,OSiSn)/\[MlSégj} Q)

| . . n —
where M, = Z(Eé” + Ef’))+ Eﬁ'”) +1,+1, and ¢= ay cb fk; is a compact forward-invariant and absorb-
j=1 i=0
ing set for the system (1).
Note that M, is the overall population of non-naive mosquitoes; while ¢ is the maximum incidence rate of
infection for questing susceptible mosquitoes. )
Proof. From (1) we have S, =T'—uS, —¢S, as dynamic of susceptible mosquitoes; thus S, <T"— 48, . It

. |
follows that limsupS, (t):g. From (1) we also have I, <am —(Hb—1;), i=0,---,n, so similarly
U H

i
t—+o0

limsup I, (t) < Hb;. Finally, by adding together the equations for exposed and infectious vector populations in

t—+o0

L . 4 =1 4 =H;, _
system (1) we obtain M, < @S, —uM, ; and since S, SE and p=a) c fk; ﬁ'g ay ¢ fik WI:(D we ob-
Y2, i=0 i=0
tain M < ;Bg—yM . It follows that limsupM, (t) 322, which completes the proof. a)
/«l t—o+oo ILI ,Ll
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As a result of Proposition 2, we may limit our study to the simplex specified in (6).

3.3. Computation of the Threshold Condition

Several techniques exist for computing the basic reproduction number and threshold conditions for the local
asymptotic stability of the disease free equilibrium of epidemiological models represented by systems of ordi-
nary differential equations. In [10] the maximum eigenvalue of next generation operator is proposed. In many
other papers in the literature, either the technique in [10], or the Routh-Hurwitz criterion are used [13]-[15].
Unfortunately, these are not suitable for large-scale systems that may possess many equations. Instead, we use
the technique in [12] to compute the threshold condition for the system under consideration, which also enables
the evaluation of the basic reproduction number. Specifically, we have:

A B
Proposition 3.3 ([12]). Let M be a Metzler matrix with block decomposition M = [C Dj where A and

D are square matrices. Then M is Metzler stable if and only if Aand D-CA™B (or D and A-BD™C)
are Metzler stable.
We refer the reader to reference [12] for the proof of the proposition. This result enables the reduction of the
large-scale matrix M to a number of smaller-scale matrices, to which more classical methods may be applied.
Proposition 3.4. The basic reproduction number for the system (1) is

) (fq fr )I+l
“a(l-f,1,)

Ia’> & be fkm
e (B 7
in "

=0 Vi

where f, == and f, =
H+@ H+O

The proof of the above proposition is postponed to Appendix B.

are respectively the questing and the resting frequencies of mosquitoes.

3.4. System Equilibria

Steady states of the system are specified by the following proposition.
Proposition 3.5. System (2) admits two equilibriums. The first (called the disease free equilibrium or DFE) is

given by x* eRY, where X" =(S;;x;)eR% with x; =0eR"" and S; :E. The second (called the en-
i
demic equilibrium or EE) is given by

S*_r W(l_frfq)lg I*_ w I*_wfl* E(|+1)*_wl_qur|*
Y R T R T A A S S
H ,u(qur) (1+5) q
U L B P R A L SR (1<j<l) ®)
q I+1-j 'q°* r S 1+1-j 9 !
(f.f,) fo (o)
abm 1 *
I/ =———9% _H, (0<i<n).
H;/i+abimilq*
1+1
ol () .
where lg €10, ——"— is the finite root of the equation
@ 1-f,f,

a2 u blmelz _ ﬁw(l_ frfq)

SHyramx (1) T (11,1, )x

©)

The proof of Proposition 3.5 is postponed to Appendix C.
Remark 3.2. Equation (9) shows that the dynamics of the mosquito population (expressed in the parameters
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f., f,, and I) as well as the protection means used by the population (expressed in the parameter @ )
strongly influence the location of the EE. This justifies our assertion that mosquito dynamics and host protection
means are important practical factors in determining the prevalence of infection.

4. Stability of System Equilibria

In this section we analyze the stability of the system equilibriums given in Proposition 3.5.

4.1. Global Asymptotic Stability of the Disease Free Equilibrium (DFE)

We have the following result for the global asymptotic stability of the disease free equilibrium:

Theorem 4.1. When R, <1, then the DFE for system (2) is GAS in R, .

Proof. Our proof is based on Theorem 4.3 of [12], which establishes global asymptotic stability for epidemi-
ological systems that can be expressed in the matrix form (5). This theorem is restated as Theorem A.1 in the
Appendix: for the proof, the reader may consult [12]. To complete the proof, we need only establish for the sys-
tem (2) that the five conditions (h1)-(h5) required in Theorem A.1 are satisfied when R, <1.

(h1) This condition is satisfied for the system (2) as a result of Proposition 2.

(h2) We note first that ny =1, and the canonical projectionof Q on R, is I= {02} the system (2) re-
U

duced to this sub variety is Sq =T -4uS
S, el;
(h3) We consider firstthe case 1=1 and n=1. In this case, the matrix A, (x) in the system (2) is

q» Which is obviously GAS at S; on R, and thus on I since

—(u+8) 0 0 %co fokoS, %clflﬁsq 0 0
s —(a+m) 0 0 0 0 0
0 @ —(u+9) 0 0 0 0
A= o 0 0 y, 0 amyb, 0
0 0 0 0 -7 amb, 0
0 0 s 0 0  —(i+@) S
0 0 0 0 0 @ —(,u+5)

In this case, the two properties required for condition (h3) follow immediately: off-diagonal terms of the ma-
trix A (x) are non-positive; and Figure 3 shows the associated direct graph G(AI (x)) which is evidently
connected, thus establishing irreducibility. For general |1 and n the proof of (hs) is similar.

(h4) Defining A =A (x'), we have A (x)<A VxeQ, and x e(R,x{0})nQ; thus the upper
bound of 2 is attained at the DFE which is a point on the boundary of Q, and condition (h,) is satisfied.

(h5) We first observe that A, is the block matrix of the Jacobian matrix of the system (1) corresponding to
the infected sub-manifold, taken at the DFE. As has been pointed in [12], the condition a(ﬂ, <1, which is
equivalent to the condition that A, is a stable Metzler matrix, is also equivalent to the condition R, <1. This
fact is developed in the proof of Proposition 3.4 (see Appendix) where we compute the value of R, by ex-
pressing the stability of the Metzler matrix A, .

7
Figure 3. Graph associated to the matrix A (x).
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Since the five conditions for Theorem 4.3 of [12] are satisfied, the theorem follows. o

4.2. Stability Analysis of Endemic Equilibrium (EE)

In this section we address the analysis of the behavior of the system when the condition R, >1 holds. It is
obvious that in this case the DFE is not a stable steady state of the system (1); and as stated in Proposition 3.5,
the system (1) admits a unique nontrivial biologically feasible equilibrium (the EE). In the remainder of this
subsection, we establish the global asymptotic stability of the EE.

Theorem 4.2. When R, >1,the EE x* of the system (1) defined in Equation (8) is GASon (R._, )u .

Remark 4.1. The above theorem implies the GAS of the EE in the non-negative cone R", since the positive
cone (R, )u is absorbing for the system (1).

Proof. Considering the system (1) when R, >1, there is a unique EE x* with respective components given
as in (8). As it is usual in the study of the stability of EE of epidemiological system in the literature [16]-[28], let
V,, be the function defined on (R_,)" as follows:

Vee(x):<sq_Sq*lnsq)J“:Z::ﬁ(E(i InE' )+IZ;: )

ﬁ(fl(l ~1Inl, )+ (|,—|:|n|,)j+§uj(|j—|;|n|j).

where the coefficients, v; for j=0,1---,n, are positive constants to be determined such that the derivative of

V,, along the trajectories of the system (1) is non-positive. The technique adopted in the determination of the
v; is that of Guo et al. [16] [17] using graph-theoretic approach to determine the global Lyapunov function for
the global asymptotic stability of the EE in models involving multi-group. In their models and examples, the
dynamic in divers sub-group were describe in the same shape. here is a case where it appears that this technique
works also when the shape or sub-group involved in the dynamic can be different.

With these positive constants, V,, is C* positive definite function on (R_,)"; its derivative along the

trajectories of the system (1) is:

(x(1) o o8 TR e
dVee X t S* A Erl* 5 (1) | r f E *
SN P P

( ) Eg”*lnEg”)

(10)

r-q

+zu (1—I—Ij(ambl 2, 7ilij.

Substituting the value of T",i.e. T'= [zs; +¢*S;, after some algebraic manipulations, the above becomes:

dav t S* S g* (@) (1)«
legs*{z_s_q__q}Lgo*s*[l_S_q}_(ps*_¢3EEr +£

dt q . S(; q q q q 51) .I:r
| 5E£]+1) . Eq-J) E£]+1)* +|széJ)* . Eéj-)* Er(J)
Gy e e e e

3 5E£I+1) £+w(l_frfq)( < )+ ol; [2 g 1,1 |:]
q
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Using relations between values of components of the state of the model at the EE given in Equation (8) (see
Proposition 3.5) specifically

SEY _ SEP __oEM™  e(-ff)l o oE™  eE

() () () f(fn) (1)
and after few algebraic arrangements, the above becomes:

dv. t S* S = - (s I, 1*
ee(x( )):ﬁs*(z__q__ij wS (08 Ef(l) LI[Z__qI_i_—il—rj
S S BV (f1,) R P P

q
dt q q r

* (i) j+1)* ()* f . N
+9"S, 2|+3—S_q_'z B E BT ED ) BTN,
q S, = Egl)* ESJ+1) ESJ) EEJ)* gD+ | |-

¢'Sq =

r q q
+Zu +aml; | b U + A 2———£
7/| i 7/| i H I* I* | H J I* Ii :
. fek Sq o n X . :
Taking v, :aAF; with this values of o, we have ZUi?’i . =@S] ; exploiting for i=0,1,---,n
Vi i-0

. . 1"
identities 1" =am;1; [bi _H;j , the above becomes

dVe, (x(1))

dt

~ S* S * |* | * n | I_*
='uSq*[Z_J_%]+L|[2__ql_i__il_r]+iquuimili*[ __I*_;J
Sq Sq f,.(fr fq) Iq Ir Iq Ir H i=0 Ii |i

) e (11)
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The terms A, B, foreach i, C, and D, are non-positives by the Corollary A.1 of the Lemma A.1 (of
arithmetic-geometric means inequality). A is null whenever S, =S holds; for each i, C; is null

. 1 . .
whenever I, =1 holds; B isnull on the subset of x e(R_,)" where —~=-C;foreach i, D; isnull on

q r
the on the subset of x (R_,)" where equalities given in (12) below hold.
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Using the fact that A is null whenever S—‘l =1 (or what should have been the same each C, is null when-
q

ever :—‘*:1) and scanning equalities given in (12), we have obviously that the subset of (RR_, )” on which
dVee H *
T(x(t))zo is reduced to {x }
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It comes out that V,, is a strict Lyapunov function for the system (1) on (R>O)“ . By LaSalle invariance
principle, we conclude to the GAS of the EE x* of the system (1) [29]-[32]. o

5. Numerical Simulation

To illustrate results in this work, the system (1) is simulated using parameters value/range in the following
Table 3 and Table 4. We assume in all our simulations the initial ratio of fifty vectors for one human, since the
model assume an episode of high endemicity of the disease (i.e. M (0) =50xH ). We also assume the birth rate
of the vectors slightly higher than the death rate (i.e. the hatching rate of the mosquitoes is T' = (,u+ d ) M ); this
establish how the consideration in the model can enforce saturation in exponential growth of the population of
vectors. Certain coefficients have been assumed (i.e. for the i" host sub-population: f, probability of “feed
and survive”, k. probability of “being killed during their questing activities” for mosquitoes). The remaining
parameters are collected in the literature. The number of questing/resting steps before the infectious class of
mosquitoes (i.e. the 1 =6) comes from entomological literature [11] where there are well coined number of
days for the extrinsic incubation period for vectors depending on the temperature. We have used some data
always estimated from [6] [7]; references relative to data can be found in there. The coefficient of the infectivity
of mosquitoes relative to people of the i™ group (i.e. m,) depends on the protecting strategy used in the group
(i.e. m =mxg(fi) since f, are coefficients modeling the protection strategy in the i" group g is an
increasing function). We assume that m, =mxe"™. With this function values of m, are in the interval of
proposed data for m, . This assumption is only for simulation purpose, since we have not found data to evaluate
this parameter.

Table 3. Parameter values for vector population dynamics.

Param. Description ST
value/ranges
M Size of vector population 50x H
r Recruitment rate in the vector population (vectors/day) 178,010
a Biting rate of vectors (bites/year/vector) 150 - 200
H Natural death rate of vectors (deaths/vector/day) 3—10
0 Transition rate from any resting state to a questing state Computed
| Number of questing/resting cycles before infectivity 6",8,9
C Probability that blood meal on i host group results in vector infection 0.010-0.27
k Probability of being killed during a blood meal on i"" host group Variable
f, Probability of successful blood meal on i™ host group Variable
Note. Source of the estimation: (1) : [11].
Table 4. Parameter values for host population dynamics.
Param. Description V;?;W:;Z‘ls
H Size of the host population 1000
m, infectivity coefficient of bites on i"™ host group 0.072-0.64
b Proportion of i" host group Variable
7i Transition rate from | — S forthe "™ —host group (transitions/human/day) 0.0014 - 0.017




J. C. Kamgang et al.

We also assume different values of coefficients », and c, depend on the protecting strategy. Their values
in simulations are taken in the range given in the Table 3 and Table 4 respecting the assumption that less people
are bitten, less longer they stay infectious, and less they contribute to the infection of vectors.

We use for simulation Non-standard Finite Difference Scheme (NFDS) instead of classical ordinary differen-
tial packages that can be found in various scientific programming environment. The NFDS used is given in the
Appendix D. As a matter of fact, the technique involved is designed by R. Anguelov et al. [33] as a numerical
companion of [12], that is well designed for system as ours (i.e. large scale system). Simulation using ode pack-
ages takes much time and solutions obtained, compared to those computed using NFDS are really less accurate.

5.1. Figures of Trajectories of Significatives Components of the States

Below, are plots of trajectories of significant components (when the t