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Abstract 
In this paper we propose two original iterated maps to numerically approximate the nth root of a 
real number. Comparisons between the new maps and the famous Newton-Raphson method are 
carried out, including fixed point determination, stability analysis and measure of the mean con-
vergence time, which is confirmed by our analytical convergence time model. Stability of solutions 
is confirmed by measuring the Lyapunov exponent over the parameter space of each map. A gene-
ralization of the second map is proposed, giving rise to a family of new maps to address the same 
problem. This work is developed within the language of discrete dynamical systems. 

 
Keywords 
Iterated Map, Nth Root of a Real Number, Numerical Method, Newton-Raphson Method, Dynamical 
System 

 
 

1. Introduction 
Recent applications of iterated maps in numerical analysis have been found in literature, using and extending the 
techniques of dynamical systems to the study of numerical algorithms and number theory [1]-[3]. Application in 
technology and hardware devices are also frequent nowadays [4]-[7]. 

We propose and study in this work two new methods for numerical root approximations, both of which based 
on iterated maps. In the following sections we present a detailed study of each map, their fixed points and stabil-
ity, the occurrence of bifurcations and chaotic behavior. 

Some common tools of nonlinear dynamics [8] [9] are used to the study of the orbits, i.e., the numerical time 
series obtained for each map are investigated. The numerical approximations , 0,1, 2,ix i =   to solve the gen-
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eral equation nx k= , where n∈  and k ∈+  are obtained, but the validity of the results can be extended 
to n∈+ . 

In Section 2 we present a new map proposed by one of us (C. C. Dias), named as First Dias Map (FDM), 
showing the existence of a fixed point for roots in the range [ ]1,4n∈ , and that this fixed point corresponds ex-
actly to n k .  

In Section 3, we generalize the FDM by adding a new parameter for studying the stability of its fixed point by 
defining a new class of maps called Weighted Average Map (WAM). For this class of maps, we investigate the 
dependence of the fixed point corresponding to the nth root of k  over the parameter space ( ),n p . 

Finally, in Section 4, we measure and compare the Mean Convergence Time (MCT) for all the studied maps, 
for 2n =  and 3n = , varying k  over an uniform grid of initial conditions and computing the average amount 
of iterations to converge to the root n k  within the standard numerical double precision. An analytical model is 
proposed and used to confirm the numerical results of MCT with the analytical convergence time (ACT) for the 
WAM. 

2. The First Dias Map (FDM) 
The map which we will study now was created by Charles C. Dias to extract real roots of numbers numbers, by 
solving the equation nx k= . The proposed map is one-dimensional and is defined as  

1 1

1 .
2i i n

i

kx x
x+ −

 
= + 

 
                                 (1.1) 

Comparing this with the Newton-Raphson Method (NRM) equation and Babylonian Method (BABM) [10] 
noticed that this statement is a mixture of both, and the FDM is an arithmetic average between the linear and 
nonlinear terms in Equation (1.1), and can be used to approximate the nth root of 0k >  for ( )0,4n∈ , as we 
shall see. Outside this interval of n , this map presents chaotic dynamics through after entering a bifurcation 
cascade, whose roots having no longer relationship to the nth root of k . 

The base function that appears in the iterated map defined by Equation (1.1) can be derived dividing nx k=  
by 1nx − , for 0x ≠ , leading to  

1 ,n

kx
x −=                                      (1.2) 

and adding x  at both sides, and dividing it by 2, we recover functional form of Equation (1.1).  

2.1. Geometrical Construction 
To construct geometrically the FDM time series, the first step is to find the auxiliary equations of the lines iA B  
(see Figure 1), writing their slopes i i im y x= ∆ ∆ . From this figure, ( )i iy f x k∆ = +  and i ix x∆ = , and the 
slopes  

( )
, 0,1, 2,3,i

i
i

f x k
m i

x
+

= =                             (1.3) 

that for ( ) nf x x k= −  are 1n
i im x −= .  

Knowing that their linear coefficients are all k− , then all the auxiliary lines pass through the point ( )0,B k− , 
we obtain the working lines ( ) 1n

iy x x x k−= −  and the auxiliary points is , the intersections points of the work-
ing lines with the X -axis, are  

1 , 0,1, 2,3, ,i n
i

ks i
x −= =                                (1.4) 

and taking the arithmetic mean between the auxiliary points is  and the ix  points we recover the original 
FDM equation (Equation (1.1)). 

Figure 2(a) shows the cobweb for the FDM time series for 2n =  and 2k = , and Table 1 (top) shows time 
series used in this figure. In this example, the convergence to the root is achieved after only five steps, consider-
ing the standard double precision, and is exactly the same time series of NRM for these parameters. Figure 2(b)  
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Figure 1. The FDM schematic geometrical path construction.      

 

 
(a)                                                 (b) 

Figure 2. The FDM cobwebs for 2k = : (a) 2n = ; (b) 3n = .                                           
 
shows a numerical development of the FDM series for the parameters 3n =  and 2k = , based on the time se-
ries shown in Table 1 (bottom), where the convergence to the root occurs after 27 steps. Some intermediary time 
steps are omitted in this table.  

2.2. Fixed Point and Stability Analysis 
Solving ( )f x x∗ ∗=  we find the FDM fixed point to be nx k∗ = . Applying the stability criterion [11], to the  
map function ( ) ( )1 2nf x x k x −= + , whose derivative is ( ) ( )( )1 1 2nf x k n x′ = − −  we obtain 1 2 1n− < ,  

and solving the last equation we have the range of parameter [ ]0,4n∈  where the fixed point of the map is sta-
ble. 

2.3. Numerical Results 
The FDM time series have different dynamics depending on the parameters ( ),k n , presenting a fixed point, pe-
riodicity or chaos, as occurs to the logistic map [12]. 

To measure the rate of divergent orbits, i.e., the sensitive dependence on initial conditions, we can use is cha-
racteristic Lyapunov exponent ( ),k nλ . From Figure 3(a) we see that, at 4n = , FDM enters a bifurcation 
cascade, therefore its fixed point is no longer stable. In the white to gray regions the exponent is negative indi-
cating that for this region of parameters the FDM not is chaotic, and at the black stripes the Lyapunov exponent  
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Table 1. FDM time series for 2k =  for 2n =  (top) and 3n =  (bottom).                          

i  ix  is  2n =  i  ix  is  

0 3.00000000 0.66666667  4 1.41421378 1.41421334 

1 1.83333333 1.09090909  5 1.41421356 1.41421356 

2 1.46212121 1.36787565  6 1.41421356 1.41421356 

3 1.41499842 1.41342913  7 1.41421356 1.41421356 

i  ix  is  3n =  i  ix  is  

0 3.00000000 0.22222222  20 1.25992076 1.25992163 

1 1.61111111 0.77051130  25 1.25992106 1.25992103 

2 1.19081120 1.41040608  27 1.25992105 1.25992105 

3 1.30060864 1.18232460  28 1.25992105 1.25992105 

 
goes to zero signing the period bifurcations. The yellow to red regions indicate the a positive Lyapunov expo-
nents, the signature of chaos. 

The FDM bifurcation diagram, discarded a transient of 103 iterations and plotted the next 500 values of x , is 
depicted in Figure 3(b). The values of n  studied are uniformly distributed in a grid of 600 points in the 
interval [ ]1,10 . Also plotted over the bifurcation diagram is the exact root n k , the fixed point of the map, 
plotted in black. 

We also study numerically the FDM return diagrams for different values of the parameter n , for 2k =  and 
0 5x = , as seen in Figure 3(c) and Figure 3(d), respectively. 

3. The Weighted Average Map (WAM) 
Instead of adding x , if a more general term px  is added in Equation (1.2), we get a new map (WAM) that 
depends on parameters n , k  and p . The new parameter p  is a positive real number and corresponds to the 
weight of the linear term of the map. This term is directly linked to the parameter n , since for each value of n  
there is a minimum value of p  for the fixed point to be stable, as we shall see. 

Adding px  to both sides of Equation (1.2) we gain  

1n

kpx x px
x −+ = +                                   (1.5) 

and after collecting x  and dividing by ( )1p +  it leads to the new map (WAM),  

1

1 ,
1 n

kx px
p x −

 = + +  
                                (1.6) 

and solving its fixed point equation 1i ix x x∗+ = =  we obtain the expected value nx k∗ = . 

3.1. Fixed Point and Stability Analysis 

Applying the stability criterion [11], i.e., ( ) 1f x∗′ < , to the map function ( ) ( )( )11 1 nf x p px k x −= + +  

whose derivative is ( ) ( )( ) ( )1 1nf x p k n x p′ = − − +  and solving this inequality we obtain 2 1p n> −  to  

guarantee fixed point stability, and Figure 4 shows the line corresponding to this condition, below which the 
fixed point is unstable. As n  is increased the value of p  should also be increased to avoid the unstable region, 
where the time series do not converges to the fixed point.  

3.2. WAM Subclasses and Hierarchy 
A special subclass of WAM is FDM, when 1p = , so that the fixed point on the map according to Figure 4, is sta-
ble in the range [1,4]  for n , thus in accordance with the stability analysis the fixed point n k  loses stability 
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.  
(a)                                                 (b) 

 
(c)                                                 (d) 

Figure 3. (a) FDM Lyapunov exponent over the parameter space ( ),k n ; (b) the bifurcation diagram showing 

the stable fixed point for ( )0,4n∈ ; return diagrams for 0 5x =  and 2k = : (c) 2n = ; (d) 3n = .            
 

  
(a)                                                 (b) 

Figure 4. For 2k = , (a) the numerical results of WAM MCT (n, p) and (b) the analytical model for WAM 
ACT (n, p).                                                                                  



C. C. Dias et al. 
 

 
2979 

at 4n = . Other very important subclass is NRM, for ( )1p n= − , so that the weight p  is chosen within the 
stable region.  

For NRM, the derivative of the mapping function at the fixed point is null, satisfying the stability criterion 
and resulting in the most efficient rate of convergence of the time series near the fixed point. When the starting 
point 0x  is chosen far away from the fixed point, we observe numerically that the initial rate of convergence is 
greater for FDM, in general. Finally, there is a third subclass of WAM, the Babylonian square root method 
(BABM), for 1p =  and 2n = , the oldest and perhaps the most efficient known method to solve the equation 

2x k= . At this parameters, WAM reduces itself to BABM, therefore the same occurs with FDM and NRM. The 
hierarchy of WAM subclasses are shown in Figure 5. 

From the definition of the Lyapunov characteristic exponent for a unidimensional map we conclude that the 
derivative of the mapping function at the fixed point ( )f x∗′  defines the rate of convergence of its time series, 
discarded the transient. For WAM, it is easy to show that ( ) ( ) ( )1 1f x p n p∗′ = + − + , so that this derivative 
assumes the value 1 2n−  when 1p =  (FDM) and is zero only if 1p n= −  (NRM or BABM, if 2n = ). In 
Figure 3(c) we observe that ( ) 0f x∗′ = , for 2n =  FDM reduces to NRM, and in Figure 3(d), we observe 
that ( ) 1 2f x∗′ = − . 

4. Mean Convergence Time (MCT) 
This section reports the numerical results for the mean convergence time (MCT) for NRM, FDM and WAM, 
based on the average number of iterates to converge within different precisions ε , from single ( )810−  to 
double ( )1610− . For this, we varied k  on a uniform grid with 103 points in the interval ],10[10 21− , varying 
the initial condition 0x  on a second uniform grid with 310  points, whose limits are given by a maximum 
relative difference of 25% around the exact value of the root of k  at each point. Using this schema, the MCT is 
computed for cubic roots ( )3n = , and for WAM we set 3p = . Figures 6(a)-(c) show the numerical results.  

In Figure 6(a) we see that the NRM MCT is close to 4, which means that after 4 iterations, on average, there 
has been convergence to the root. From this figure, we conclude that FDM is around 10 times slower than NRM, 
and WAM is around has twice the speed of FDM. In this test, the most efficient is NRM, with the lowest MCT. 

Both NRM and FDM belong to the same WAM family, as discussed in Section 3, and the stability of the fixed 
point n k  of WAM depends on the parameters n  and p . Changing the parameter p  of WAM we get a new 
map subclass, for example, for 2n =  have the FDM. From these fact, we tried to detect numerically the 
 

 

Figure 5. Hierarchy of the WAM subclasses.     
 

 
(a)                                  (b)                                  (c) 

Figure 6. Numerical results of MCT for cubic roots ( )3n =  calculation with different precisions ε  from 810−  to 1610−  

for (a) NRM; (b) FDM and (c) WAM with 3p = .                                                              
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optimal value of the parameter p , to minimize the ACT over the whole WAM family. For this we used a 
FORTRAN program to measure extensively the WAM MCT varying parameters ( ),n p  on a uniform grid of 
500 500×  points, for a radicand k . The result for 2k =  is shown in Figure 4(a). The region in gray 
corresponds to unstable fixed point n k  map WAM, as found in Section 1.3. The other colors seen in the graph 
are the regions of stability of the fixed point. For best visualization the MCT scale of this figure is truncated at a 
maximum value of 20, and higher values as inked light gray. 

We can see in Figure 4(a) that, as we approach the line that corresponds to the weighting term, NRM shows 
the minimum MCT over this line and therefore the most efficient of all studied maps is the NRM. 

Summarizing the key information about NRM, FDM and WAM, with the numerical results for the MCT 
within double precision for these maps, for the parameters 3n =  and 1 210 ,10k − ∈   , as shown in Table 2.  

Analytical Convergence Time Model 
The Lyapunov characteristic exponent for a unidimensional map ( )1i ix f x+ =  usually defined by  

( ) ( ) ( )1
0 0

1lim lnN
N iix f x

N
λ −

→∞ =
′= ∑  

can be approximate by ( )ln f xλ∗ ∗′≈  since the derivative of the mapping function at the fixed point ( )f x∗′  
defines the rate of convergence of its time series, after discarded the transient. 

For WAM, it is easy to show that ( ) ( )1 1f x n p∗′ = − + , so that this derivative assumes the value 1 2n−  
when 1p =  (FDM) and is zero only if 1p n= −  (NRM or BABM, if 2n = ). In Figure 3(c) we observe that 

( ) 0f x∗′ = , for 2n =  FDM reduces to NRM, and in Figure 3(d), ( ) 1 2f x∗′ = − . 
Using the original Lyapunov’s idea, the characteristic exponent λ  measures the average rate of convergence 

between two solutions separated by an initial distance 0ε , that is the case of time series dominated by a fixed 
point. For this orbits, the distance after i  iterates is 0 ei

i
λε ε=  so that, if we assume that one orbit is initialized 

at 0x x∗=  and other at 0 1x x∗= + , i.e., the initial distance is unitary between orbits, we can use last equation 
to measure the error found in the second orbit, the root to be approximated. Within the standard double precision, 
the maximum error is of order 10 D− , where D  is the number of decimal significants, typically 15 16D = ∼  
places. 

Applying the natural logarithm to both sides of the above equation we have 
( )ln ii
ε
λ

=  for the number of  

iterations needed to reduces the error in the second orbit to ε . In the same manner we defined MCT, we define 
now the analytical convergence time (ACT), estimated by  

( )
ln10 ,

ln
DACT
f x∗

−
≈

′
                                   (1.7) 

valid for any fixed point of a unidimensional map, where the approximated λ∗  was used. 
Applying this model to our more general map (WAM), we have  

( )
( )

ln10,
ln 1 1

DACT n p
n p

−
≈

− +
                              (1.8) 

of the parameters n  and p . To double precision this approximated model function is plotted in Figure 4(b), 
that is remarkably very close to the numerical version plotted in Figure 4(a). Both figures uses the same color 
palette and truncated maximum, for better comparisons. 
 

Table 2. MCT numerical results for NRM, FDM and WAM maps.      

Map Estability MCT (n = 3) 

NRM k∀ , n∀  ≈4.6 

FDM ( )0,4n∈  ≈52 

WAM 2 1p n> −  ≈26, for 3p =  
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5. Conclusions 
In the study of iterated maps to extract the real root of real numbers we have applied some common tools from 
nonlinear dynamics that allowed us to predict the fixed point of the studied maps associated with the nth root of 
k , and their stabilities could be analyzed in details. 

We conclude, through the geometric argument used to recover the original analytical form of FDM, that both 
NRM and FDM can be reduced to averages between two terms, one linear and other nonlinear. From this 
observation, we generalize the original FDM idea to a new family of maps on which we add a new parameter 
p , whose value defines the stability of the map, the WAM. We show that FDM and NRM belong to this family 

of maps, being FDM recover when 1p =  and NRM when 1p n= − . 
The mean convergence time (MCT) numerical results indicate that NRM is the most efficient subclass of the 

more general weighted average map (WAM) proposed in this work, as pointed out in Figure 4(a), over the line 
1p n= − . The analytical model for ACT is in complete agreement with the numerical results for WAM, the most 

general class of map studied. The model presented in Equation 1.7 is general, and can be adapted to any 
unidimensional map to study its fixed point attractor. 

The main results of this work are obtained for x∈ , but their generalization is straightforward over the 
complex set  . 
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