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Abstract 
The aim of this present paper is to establish some new integrodifferential inequalities of Gronwall 
type involving functions of one independent variable which provide explicit bounds on unknown 
functions. The inequalities given here can be used in the analysis of a class of differential equa-
tions as handy tools. 

 
Keywords 
Integral Inequalities, Two Independent Variables, Nondecreasing, Nonincreasing 

 
 

1. Introduction 
The differential and integral inequalities occupy a very privileged position in the theory of differential and 
integral equations. In recent years, these inequalities have been greatly enriched by the recognition of their po-
tential and intrinsic worth in many applications of the applied sciences. The integrodifferential inequalities re-
cently established by Gronwall and others [1]-[12] have attracted considerable attention in the theory of diffe-
rential and integral equations. This fact encourages us to find the explicit bounds on some fundamental integro-
differential inequalities which can be applied fairly well to achieve a diversity of desired goals. In [3], Pachpatte 
(1977) gave the following useful integrodifferential inequality: 

Let ( )u t , ( )u t  and ( )b t  be nonnegative continuous functions defined on R+  and 0a >  is constant. If 

( ) ( ) ( ) ( ) ( )( )
0

d
t

u t a u s u s u s u s s≤ + +∫                             (1.1) 

for t R+∈  and ( )E t  is defined by 

( ) ( ) ( )
0

1 0 e d
t

E t a u bα σ σ= − +   ∫  
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then  

( ) ( ) ( ) ( )( ) 1

0

exp 0 e d
t

su t a a u b s E s s
− 

≤ +   
 

∫  

for [ )0,t β∈  where 

( ){ }sup : 0t R E tβ += ∈ > . 

Our goal in this paper is to establish new explicit bounds on some basic integrodifferential inequalities of one 
independent variable which will be equally important in handling the inequality (1.1). Given application in this 
paper also illustrates the usefulness of our result. 

2. Main Results 
Theorem 2.1: Let ( )u t , ( )u t  and ( )k t  be nonnegative continuous functions defined on [ )0,I = ∞  for 
which the inequality  

( ) ( ) ( ) ( )( )2

0

( ) d ,   
t

pu t c k s u s u s u s s t I≤ + + ∈∫                         (2.1) 

holds, where c  is positive constant and 1p ≥ . If 

( ) ( ) ( ) ( ) ( )2 2 1
2 12 2

0

1 2 1 0 0 e d 0,   
tp

p sp pp p c u u k s s t I
−

− − − + + > ∈  ∫                 (2.2) 

and 

( ) ( )( ) ( )2 2 2
1

0 0

1 0 2 exp 2 d d 0,   
t sp

pc u p k s p p Q r r s t I
  − + − > ∈    

∫ ∫                 (2.3) 

then 

( ) ( ) ( )1
0

exp d
t

u t c k s R s s
 

≤  
 
∫ ,                              (2.4) 

t I∀ ∈ , and 

 ( )
( ) ( )

( ) ( )( ) ( )

1

2
1

0
1 1

2 2
1

0 0

0 exp 2 d

1 0 2 exp 2 d d

t p
p

t s ppp

c u p Q s s
R t

c u p k s p p Q r r s

 
 +   

 =
  

 − + −      

∫

∫ ∫

                (2.5) 

also  

( )
( ) ( )

( ) ( ) ( ) ( ) ( )

2

2

2

1 1
2 12 1

2 12 2

0

0 0 e

1 2 1 0 0 e d

p p t

y pp
pp p

c u u
Q t

p p c u u k s s
−−

−

 + + =
  − − + +   

∫

                (2.6) 

Proof: Define a function ( )m t  by the right-hand side of (2.1). Then  

( ) ( ) ( ) ( ) ( )( )2

0

d
t

pm t c k s u s u s u s s= + +∫                           (2.7) 

where 

( )0m c=                                       (2.8) 
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Then from (2.1) and (2.7), we have 

 
( ) ( )u t m t≤                                      (2.9)

 Integrating both sides of (2.9) from 0 to t, we observe that 

( ) ( ) ( )
0

0 d
t

u t u m s s≤ + ∫                                (2.10) 

Differentiating both sides of (2.7) with respect to t  and using (2.9) and (2.10), we get 

( ) ( ) ( ) ( ) ( ) ( )
2

0

0 d
t

pm t k t m t m t u m s s
  
 ≤ + + 
   

∫                       (2.11) 

Define a function ( )n t  by the right-hand side of (2.11), then  

( ) ( ) ( ) ( )
2

0

0 d
t

pn t m t u m s s
 

= + + 
 

∫                           (2.12) 

where 

( ) ( )20 0pn c u= +                                  (2.13) 

It is clear that  

( ) ( )m t n t≤                                    (2.14) 

By using (2.12) in (2.11), we have 

( ) ( ) ( ) ( )m t k t m t n t≤                                 (2.15) 

Differentiating both sides of (2.12) with respect to t , we get 

( ) ( ) ( ) ( ) ( ) ( )1

0

2 0 d
t

pn t pm t m t u m s s m t−  
= + + 

 
∫   

By using (2.14) and (2.15) in the above equation, we observe that  

( ) ( ) ( ) ( ) ( ) ( ) ( )1

0

2 2 0 d
t

p pn t n t pk t n t n t u n s s+  
≤ − + + +    

 
∫                 (2.16) 

Let  

( ) ( ) ( ) ( )
0

0 d
t

pz t n t u n s s= + + ∫                          (2.17) 

where 

( ) ( ) ( ) ( ) ( )20 0 0 0 0
pp pz n u c u u = + = + +                        (2.18) 

and 

( ) ( )n t z t≤                                    (2.19) 

Using (2.17) in (2.16), we get 

( ) ( ) ( ) ( ) ( )1 2 2pn t n t pk t n t z t+≤ − +                            (2.20) 

Differentiating both sides of (2.17) with respect to t , we get 

( ) ( ) ( ) ( )1pz t pn t n t n t−= +                             (2.21) 

Inequality (2.21) by using (2.19) and (2.20), and since ( ) ( )1 2p pz t z t+ ≤  if 1p ≥  takes the form  
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( ) ( ) ( ) ( )2 2 1 2p pz t z t z t p k t− − +− ≤                            (2.22) 

Let  

( ) ( )2 1pr t z t− +=                                   (2.23) 

where 

( ) ( ) ( ) ( )
2 1

2 1 20 0 0 0
ppp pr z c u u

− +
− +   = = + +   

                      (2.24) 

Differentiating both sides of (2.23) with respect to t , we get 

( ) ( ) ( ) ( )22 1 pr t p z t z t−= − +                               (2.25) 

Inequality (2.22) by using (2.23) and (2.25), takes the form 

( ) ( ) ( ) ( ) ( )22 1 2 1r t p r t p p k t+ − ≥ − −                          (2.26) 

Multiplying both sides of (2.26) by ( )2 1p te −  and integrating the resulting inequality from 0 to t , and using 
(2.24), we have 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )2 2 1

2 1 2 1 2 12 2

0

0 0 e 2 1 e e d
tp

p t p t p sp pr t c u u p p k s s
− −

− − − − − ≥ + + − −  ∫  

By using (2.23) in the above inequality, it can be seen that  

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2

2

1
2 1 2 12 12

1
2 1 2 1

2 1 2 12 2

0

0 0 e

         1 2 1 e 0 0 e d .

p pp tp p

tp p
p t pp p

z t c u u

p p c u u k s s

−− − −− −

−
− −

− − −

  ≤ + +   

  × − − + +   
∫

 

which can be rewritten as 

( )
( ) ( )

( ) ( ) ( ) ( ) ( )

( )
2

2

2

11
2 1 2 1

2 12 2

0

0 0 e

1 2 1 0 0 e d

p p t

tp p
p sp p

c u u
z t Q t

p p c u u s s
− −

−

 + + ≤ =
  − − + +   

∫

          (2.27) 

Using (2.27) in (2.20), we observe that 
( ) ( ) ( ) ( ) ( ) ( )1

12 2p pn t n t Q t n t pk t− + −− ≤ −                         (2.28) 

Let 

( ) ( )ph t n t−=                                   (2.29) 

where 

( ) ( ) ( )20 0 0
pp ph n c u

−−  = = +                            (2.30) 

 
Differentiating both sides of (2.29) with respect to t , we get 

( ) ( ) ( )1ph t pn t h t− −= −                                (2.31) 

Inequality (2.28) by using (2.29) and (2.31), takes the form 

( ) ( ) ( ) ( )2
12 2h t pQ t h t p k t p + ≥ − − 

                         (2.32) 
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Multiplying both sides of (2.32) by ( )
0

exp 2 d
t

p Q T T
 
 
 

∫  and integrating the resulting inequality from 0 to t , 
and using (2.29) and (2.30), we have 

( ) ( ) ( ) ( ) ( )( ) ( )2 2
1 1 1

0 0 0 0

0 exp 2 d exp 2 d 2 exp 2 d d
t t t spp pn t c u p Q s s p Q s s p k s p p Q tα α

−−      
 ≥ + − − − × −      

     
∫ ∫ ∫ ∫   

which can be rewritten as  

( )
( ) ( )

( ) ( ) ( )( )
( )

1

2

0
11

2 2

0

0 exp 2 d

1 0 2 exp 2 d d

t p
p

t ppp

c u p Q s s
n t R t

c u p k s p p Q tα α

 
 +   

 ≤ =
 

   − + −    
 

∫

∫ ∫

           (2.33) 

From (2.15) and (2.33), we get 

( )
( ) ( ) ( )1

m t
k t R t

m t
≤



 

Integrating both sides of the above inequality from 0 to t , and from (2.8), we observe that 

( ) ( ) ( )1
0

exp d
t

m t c k s R s s
 

≤  
 
∫                              (2.34) 

From (2.9) and (2.34), we have 

( ) ( ) ( )1
0

exp d
t

u t c k s R s s
 

≤  
 
∫

 
Application: As an application we obtain the bound on the solution of the differential equation of the formu-

lation of the form 

 
( ) ( ) ( )2, ,px t x t f t x x=  

 

                              (2.35) 

with the given initial conditions 

 
( ) ( )0 ,      0x a x c= =                                 (2.36) 

where :f I R R R× × →  is a continuous function and ,a c  are real constants. [ )0 ,I t= ∞ , 0 0t ≥ . Here we as-
sume that the solution ( )x t  of (2.35) and (2.36) exists on R+  Assume that the function in (2.35) satisfies the 
condition  

( ) ( )2 2, , ,    pf t x x k t x x t I ≤ + ∀ ∈                             (2.37) 

where ( )k t  is a real valued nonnegative continuous function defined on I . If 

( ) ( ) ( )2 2 1
2 12 2

0

1 2 1 e d 0,   
tp

p sp pp p a c c k s s t I
−

− − − + + > ∈  ∫  

and 

( )( ) ( )2 2 2
1

0 0

1 2 exp 2 d d 0,    
t sp

pa c p k s p p Q r r s t I
  − + − > ∈    

∫ ∫  

then the bounds on the solution (2.35) takes the form 

( ) ( ) ( )
0

exp d
t

x t a k s R s s
 

≤  
 
∫                              (2.38) 

t I∀ ∈ , where, 1p ≥ , and  



Z. A. Khan 
 

 
2973 

( )
( )

( )( ) ( )

1

2
1

0
1

2 2
1

0 0

exp 2 d

1 2 exp 2 d d

t p
p

t s ppp

a c p Q s s
R t

a c p k s p p Q r r s

 
 +   

 =
  

 − + −      

∫

∫ ∫
 

Also 

 ( )

( ) ( ) ( )

2

2

2

1 1
2 12 1

2 12 2

0

e

1 2 1 e d

p p t

y pp
pp p

a c c
Q t

p p a c c k s s
−−

−

 + + =
  − − + +   

∫

 

Proof: Integrating both sides of (2.35) from 0 to t , and using (2.36), we observe that 

( ) ( ) ( ) ( )( )2

0

 , , d
t

px t a x s f s x s x s s= + ∫    

Taking absolute values of both sides of the above equation and using (2.37), we get 

( ) ( ) ( ) ( ) ( )2

0

d
t

px t a k s x s x s x s s ≤ + + ∫                          (2.39) 

The remaining proof is the same as Theorem 2.1 by following the same steps from (2.7)-(2.35) in (2.39) with 
suitable modifications, we get the required bound of (2.35). 

We note that many generalizations, extensions, variants and applications of the inequality given in this paper 
are possible and we hope that the result given here will assure greater importance in near future. 
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