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Abstract 
Microscopy imaging of mouse growth plates is extensively used in biology to understand the effect 
of specific molecules on various stages of normal bone development and on bone disease. Until 
now, such image analysis has been conducted by manual detection. In fact, when existing auto-
mated detection techniques were applied, morphological variations across the growth plate and 
heterogeneity of image background color, including the faint presence of cells (chondrocytes) lo-
cated deeper in tissue away from the image’s plane of focus, and lack of cell-specific features, in-
terfered with identification of cells. We propose the first method of automated detection and 
morphometry applicable to images of cells in the growth plate of long bone. Through ad hoc se-
quential application of the Retinex method, anisotropic diffusion and thresholding, our new cell 
detection algorithm (CDA) addresses these challenges on bright-field microscopy images of mouse 
growth plates. Five parameters, chosen by the user in respect of image characteristics, regulate 
our CDA. Our results demonstrate effectiveness of the proposed numerical method relative to 
manual methods. Our CDA confirms previously established results regarding chondrocytes’ num-
ber, area, orientation, height and shape of normal growth plates. Our CDA also confirms differenc-
es previously found between the genetic mutated mouse Smad1/5CKO and its control mouse on flu-
orescence images. The CDA aims to aid biomedical research by increasing efficiency and consis-
tency of data collection regarding arrangement and characteristics of chondrocytes. Our results 
suggest that automated extraction of data from microscopy imaging of growth plates can assist in 
unlocking information on normal and pathological development, key to the underlying biological 
mechanisms of bone growth. 
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1. Introduction 
Microscopy imaging of mouse growth plates is extensively used to assess development and potential pathology. 
Such imaging confounds current automated methods for cell detection. Indeed, application to microscopy im-
ages of growth plates of each of the classic methods of image segmentation and processing (e.g. Canny segmen-
tation [1], cartoon-texture decomposition [2], k-means clustering [3]) does not take into account that: 1) the col-
or intensity of each stain used to visualize a specific biological component can vary throughout the growth plate; 
2) the characteristics (e.g. size, shape, orientation) of cells (chondrocytes) vary greatly within healthy, normal 
growth plate; and 3) the shades of colors within cells are present outside cells. Moreover, the cells (chondrocytes) 
positioned beneath the plane of focus of the image appear faintly, yielding a highly non-homogeneous back-
ground to the cells on the plane of focus. Current cell detection algorithms apply to simpler images that show 
either a more homogeneous background or the presence of a cell-specific characteristic (e.g. intensity or nucleus) 
usable as a starting point for cell detection [4]-[9]. 

Analysis of chondrocytes’ number, size, orientation, height and shape offer insights on the developmental ef-
fects of repressing various genes, the lack of which can lead to bone growth disorders (e.g. [10] [11]). Longitu-
dinal growth of bones is the result of a process involving cell division, migration, and then ossification that occurs 
in growth plates located at both the proximal and distal ends of the long bone. In healthy growth plates, the chon-
drocytes sequentially differentiate into four sub-types, including resting, proliferating, prehypertrophic and hyper-
trophic chondrocytes, stratified from each end of the bone towards its center (for reviews, [12] [13]). Throughout 
the growth plate, only some nuclei are visible with appropriate stain. The resting zone contains relatively quies-
cent small, round, densely packed cells. Upon entry in the proliferating zone, cells elongate medial-laterally and 
undergo division by mitosis. At each division, the newly produced daughter cell remains closely situated with re-
spect to the mother cell but may be far apart from other cells. The cells begin to form stacks. In pre-hypertrophic 
and hypertrophic zones, chondrocytes become arranged in columns. Such cells begin to enlarge and express In-
dian Hedgehog while the expression of Sox9 is reduced [14]. In the hypertrophic zone, the terminal enlarged 
chondrocytes are larger than that in the rest of the growth plate, either round or elongated in the longitudinal di-
rection, and packed closely to one another. The bottom of this region is marked by ossification [15], [16]. Corre-
lations exist among height of hypertrophic chondrocytes, growth plate length, and limb length [17]. 

In this paper, we propose a method of automated multi-step image processing. These steps prepare an image 
for automated measurement of the characteristics of the chondrocytes located on the plane of focus of the origi-
nal growth plate specimen. Rather than manually determining cell profiles, automated cell detection, and subse-
quent automated morphometry would aid biological research by increasing efficiency of measurements. 

2. Methods 
2.1. Microscopy 
The ideal image should be of a specimen whose preparation involves a stain that maximizes the contrast be-
tween cell cytoplasm and background, and in focus throughout. We visualized chondrocytes in the growth plate 
of mice ex vivo with a BX60 microscope (Olympus America) set to bright-field. The animal protocol was ap-
proved by UCLA’s Animal Research Committee. Male mice on mixed background, predominantly 129/SvJ 
crossed with C57Bl6/J (WT for wild type), were sacrificed at perinatal 0, two weeks, four months. After isola-
tion of hind limbs, we stained coronal sections of femora and tibiae to visualize cartilage (with Alcian blue or 
Safranin O), cell cytoplasm (Fast Green) and nucleus (Hematoxylin) [18] [19]. We took TIFF images of sections 
at 60× and 100× magnification. 

2.2. Image Preparation 
We imported the TIFF images of growth plates into software XaraX version 1.1 (XaraX Group). The Shape Edi-
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tor, Combine Shapes and Intersect Shapes allow tracing of the region of interest (ROI), cropping along the traced 
line to eliminate the image of the tissue surrounding the growth plate and possibly select a region of the growth 
plate, and replacement with a white background (Figure 1). This step is necessary to avoid interference of colors 
that do not belong to the ROI during algorithm application. We then exported the cropped image as TIFF image 
with same resolution as the original image. 

2.3. Cell Detection Algorithm (CDA) 
Our CDA is written with and runs on MATLAB version R2012a (Math Works), and is available for download as 
file CDAlg.m together with three of the full resolution images on which the CDA was run to prepare some of the 
figures in this paper, from https://sites.google.com/site/bthsca/automated-cell-detection-1. The input for the CDA 
consists of a TIFF image (Figure 1). The output is a black and white (i.e. binary) image of the size of the input 
image, with white pixels representing cells on a black background. The CDA consists of 5 steps: 

Step 1: We assign similar intensity values to cells in focus while we render the background, defined as cells out 
of focus and extracellular matrix, more homogeneous. We use the color blending method of Retinex, originally 
developed to simulate the visual cortex blending of colors [20] [21], and then widely applied to imaging [22] [23]. 
We use the formalization of Retinex in terms of a Poisson equation [24]. Given an initial image, f, we seek a re-
constructed image u with 

, ,i j i ju F−∆ =                                        (1) 

where 

, 1, 1, , 1 , 1 ,4i j i j i j i j i j i ju u u u u u+ − + −∆ = + + + −                          (2) 

is the discrete Laplacian at pixel, (i, j) and 

( ) ( ) ( ) ( ), , 1, , 1, , , 1 , , 1i j i j i j i j i j i j i j i j i jF T f f T f f T f f T f f+ − + −= − + − + − + −              (3) 

where 

( ) ( )0  if      and      if  .T x x T x x xτ τ= ≤ = >                       (4) 
 

 
Figure 1. Image of two-week old WT growth plate viewed with 
bright-field microscopy after excluding surrounding tissue 
(inset). Cytoplasm is stained gray-green with Fast Green; nuclei 
are black with Hematoxylin; cartilage, mucin and mast cell 
granules are pink-red with Safranin O; and bone is blue with 
Fast Green.                                             

https://sites.google.com/site/bthsca/automated-cell-detection-1
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is the hard thresholding function and τ the thresholding parameter. Thus, if a small gradient (of magnitude smaller 
than τ) is present at a pixel, it is replaced with zero. The Poisson equation then constructs the image whose gra-
dient most closely matches the vector field that models the difference between each pixel and its neighboring pix-
els. We use the following semi-implicit scheme that converges rapidly to the steady state for local variations: 

( )1
, 1, 1, , 1 , 1 , 4n n n n n

i j i j i j i j i j i ju u u u u F+
− + − += + + + +                        (5) 

We apply this process iteratively, NI (number of iterations) times, each time to the previous resultant image. 
Step 2: We enhance cell profiles (edges) with anisotropic diffusion. The anisotropic diffusion function needs to 

discriminate intensity changes by location: near vs. far from edges, and along vs. across edges [25]. Let f be an 
image, u the filtered image and D the diffusivity tensor. We used the numeric approximation 

( ) ( )( )( )( )52 101 exp 2.6604 1 1 9g u u k
−

∇ = − − ∇ + −                     (6) 

for single time-steps 1,2, ,10k =   (5.3 of [26]) to solve 

( )( )divu t D u u∂ ∂ = ∇ ∇                                (7) 

with g ( )u∇  and 1 set as eigenvalues of D. 

Step 3: We extract cell profile information with gradient thresholding. We use the gradient matrix generated in 
Step 2, containing values scaled between 0 and 255. The hard threshold parameter, called S for “separation”, is 
chosen to identify single cells within packed clusters, while minimizing pixel loss from cell profile. We use the 
same Equation (4) with S replacing τ. We obtain a binary representation of the image with white cell profiles on 
black background suitable for subsequent morphometric analysis. 

Step 4: We use the convex hull operation [27] to identify the smallest convex set of points that fully encloses 
the profile of each cell. This operation renders the profile connected and filled because the thresholding needed to 
obtain the binary representation at Step 3 may have caused interruptions of the cell profile. This operation is ap-
propriate because 1) cells show an elliptical and therefore convex shape [28]; and 2) the number of missing pixels 
from the profile, minimized in Step 3, is small. However, when two cells in focus are close to each other, the two 
separate cells may lump together and their profiles may form a larger concave shape. 

Step 5: We eliminate profiles that do not reflect actual cell size or shape with hard tresholding. Overly large or 
overly small or misshaped profiles are often created during convexification because of proximity of incomplete 
profiles or proximity of an incomplete profile with the boundary of the growth plate region. Alo (area lower) and 
Aup (area upper) bound in pix2 define a range out of which the profiles are excluded. Because these boundaries 
depend on image size and magnification, they need to be set by the user. Further, we use set up shape threshold-
ing in terms of isoperimetric ratio (IR) 

24πIR AP−=                                     (8) 

where A denotes area and P perimeter of the shape. The threshold was set at 0.5 because an NI greater than 0.5 
demonstrate geometriesS different from ellipses. 

The proposed CDA, implemented with MATLAB R2012a with 64-bit Windows-7, an Intel@CoreTM i3-370M 
processor (2.40 GHz) and 4 GB of RAM, takes between 53 10−×  and 57 10−×  sec/pix to create the output image 
with memory usage of 0.000149 mb/pix (Appendix 1). The computational cost O(MN) of running the CDA on an 
M × N image is at most equal to HMN for some finite constant H, as M and N approach infinity (Equation (9) of 
Appendix 2). 

2.4. Manual Cell Detection (MCD) 
MCD was conducted on 390 cells on a total of three images with XaraX software, for comparison with the 
CDA. Because chondrocytic two-dimensional profiles throughout the growth plate are best modeled as el-
lipses [28], we used Ellipse and Rotation tools to fit a white ellipse to each cell profile that appeared in focus. 
Because we traced only cells in focus, there is no issue of tracing cells that appear to overlap. By drawing a 
black background as large as the original image, we obtained a black and white image that was exported at 
the original image resolution. 
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2.5. Automated Morphometry of Images 
We conducted morphometry on images from each of CDA and MCD with MetaMorph software (Molecular De-
vices). The Color Threshold was set from 127 to 255 for each of Red, Green and Blue. We calibrated Meta-
Morph in conjunction with the magnification used to generate the image to measure lengths in real microns. The 
output parameters were cell number, area, orientation (measured with respect to the long bone axis, counter-
clockwise from −90˚ to 90˚), height, and shape in terms of isoperimetric ratio IR (see Equation (8)). 

2.6. Statistical Analysis 
The robustness of the morphometric MCD was measured in terms of inter- and intra-observer errors. The mag-
nitude of these errors was assessed for cell number, area, orientation, height and IR. To assess the magnitude of 
such errors, the cell profile of six randomly chosen cells in focus was manually drawn with XaraX and measured 
with MetaMorph forty-two times by each of two observers, twice, two months apart. Further, to detect signifi-
cant differences between CDA and MCD, and between adjacent zones of a given image, we used the t-test for 
each of the measured parameters, and the Dice index to measure similarity of cell shapes [29] [30]. Because the 
sample size is greater than 40, the possible skewness of the data distribution does not affect the robustness of the 
t-test. We consider a p-value smaller than 0.05 as statistically significant. The collected data are presented as 
mean ± standard deviation. 

3. Results 
We have developed an automated method for analysis of growth plate images. Figure 2 shows intermediate im-
ages and output image of the CDA. 

3.1. CDA 
The CDA depends on the five parameters τ, NI, S, Alo, and Aup whose values depend on the image characteris-
tics: τ (Step 1, Equation (4)) is the threshold value at which small visual differences between a given pixel and 
its neighborhood are eliminated. At small values, we obtain numerous white dots corresponding to either mis-
cellaneous background details or cell fragments. At high values, all cells are homogenized into the background 
and therefore not detected. NI, the number of iterations of Step 1, has an upper bound, beyond which the cell 
profiles become too blurry for correct detection. When NI is appropriately smaller than such upper bound, it suf-
ficiently homogenizes the background noise without blurring the cell profile. S is used to identify the cell profile 
(Step 3). S has an upper bound below which it identifies cell profiles with small pixel gradients. The use of small 
pixel gradients has the benefit of identifying the complete cell, at the expense of multiple cell aggregation. 
Higher values of S tend to identify only the high contrast between the nucleus and the stained background lead-
ing to reduced cell aggregation, but also to partial cell detection. For stains that do not provide good contrast 
between cell on plane of focus and background, a low value for S is necessary to detect the small pixel gradients 
defining the cell profiles. For stains that provide high contrast between the majority of the cells in focus and 
background, a higher value of S is suitable. Alo and Aup (Step 5) control the area of the detected shape: Alo eli-
minates leftover minute fragments and Aup eliminates oversize shapes that cannot represent cells. 

With appropriate values of the parameters, the CDA analysis confirmed known facts regarding the mouse 
growth plate in tibia and femur [16] [31]. For the WT, the mean cell area is significantly smaller in the resting 
zone than in the proliferative zone. Table 1 shows data from a femur as mean ± standard deviation. Significant 
differences are shown between adjacent zones of the growth plate with ^ for p < 0.01 The values of Alo was 
optimized for the resting zone that contains the smallest cells. The large standard deviations of cell area are due 
to proliferation that significantly increases cell size and to hypertrophy that further increases cell size. The 
significant differences in mean cell area among zones results from distributions of resting, proliferative and 
hypertrofic cell areas with tails that become significantly longer as cell size increases from resting to 
hypertrophic zone. This is also the reason why cell area from the three zones ranges shows only a small partial 
overlap, and give rise to significant differences in cell areas between adjacent zones. 

The CDA captures more cell area (per cell) in the proliferative zone because it picks up the parts of the cell 
which are stained: the CDA is far more sensitive to small gradients in color change, hence it is better able to 
pick up the color transition between the background and cytoplasm even if the stain bleeds into the cell. We  
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Figure 2. Input, intermediate steps and output of the CDA obtained with                   

7,  85,  130,  160NI S Aloτ = = = =  and 20,000Aup = . (a) Original image, detail of Figure 1; 
(b) Image resulting from reduction of visibility of cells out of focus, and of inconsistencies in 
background shading and luminosity (Step 1); (c) Cartoon-like component image resulting 
from application of low diffusion across edges and high diffusion at locations of noise and 
small features (Step 2); (d) Output image resulting from gradient thresholding to address cell 
separation (Step 3), convexification (Step 4), and size and shape thresholding (Step 5). Cell 
clustering can be reduced or eliminated by choosing zone-specific values for and S (see 
Figure 4).                                                                     

 
Table 1. Data from femoral section stained with Alcian Blue and Hematoxylin for 7τ = , NI = 85, S = 130, Alo = 80, Aup = 
20,000.                                                                                               

Zones 
Cell data 

Cell count Area (µm2) Orientation (degrees) Shape (IR, 0 to 1) 

Resting 352 516.75 ± 472.71^ 5.13 ± 45.18^ 0.79 ± 0.18 

Proliferative 1002 760.24 ± 738.05^ −4.78 ± 25.86^ 0.71 ± 0.17 

Hypertrophic 181 1492.39 ± 1840.17^ −6.05 ± 31.90^ 0.66 ± 0.17^ 

 
found that the mean cell area is significantly smaller in the proliferative zone than in the hypertrophic zone; and 
that the mean orientation differs significantly between resting and proliferative, but not between proliferative 
and hypertrophic zones. Further, the mean isoperimetric ratio IR is significantly different between resting and 
proliferative zones, and between proliferative and hypertrophic zones, indicating that the cells become less cir-
cular as they progress from the resting to proliferative, and from proliferative to hypertrophic zone. Furthermore, 
our CDA confirms the rounder shape, and the orientation off the horizontal (medial-lateral) direction, of chon-
drocytes in the Smad1/5CKO mutant in comparison with the control WT mouse (Figure 3), previously determined 
by manual detection [10]. Note that for the CDA analysis of this WT growth plate, the Retinex parameter NI was 
set to zero because these fluorescent microscopy images showed no faint cells behind the plane of focus. In fact, 
Retinex color blending on inherently high contrast fluorescent microscopy images would reduce the contrast 
between cell profile and background, making cell detection sub-optimal. 



M.-G. Ascenzi et al. 
 

 
2872 

 
Figure 3. Genetic mutation Smad1/5CKO vs. control mouse. The chondrocytes on the plane of 
focus of these fluorescent images (a, b) are detected with c) 7,  85,  85,  80NI S Aloτ = = = =  
and 20,000Aup = ; and d) with 7,  0,  125,  300NI S Aloτ = = = =  and 20,000Aup = . 
Orientations are marked in (e, f) to emphasize differences.                               

3.2. MCD 
The 390 cells were chosen on the plane of focus of a total of three images by human eyesight judgment. The 
chosen cells showed presence of the 92 to 100 range of Red, 62 to 100 of Green and 55 to 100 for Blue. The 
out-of focus cells appearedoverall darker with 86 to 100 range of Red, 49 to 97 of Green, and 45 to 100 of Blue. 
The inter- and intra-observer errors for a unique measurement were found to be smaller than 1.5%. We show the 
data of the calculation of inter- and intra-observer errors concerning the cell area from Figure 1 (Table 2). The 
minimum (min), maximum (max), mean, and standard deviation (stdev) of distributions of 42 measurements of 
6 cell areas provide data for calculation of comparison relative to observer (Obs) 1 and 2 during first (I) and 
second (II) setting, in terms of % errors (in italics) for measurements considered either paired (p) or unpaired (u) 
All % errors are smaller than 1.5%. The error of a unique measurement is at most equal to either the difference 
of the two largest measurements divided by the smallest measurement, if the measurements of the two sets are 
considered paired (comparison of two measurements of the same cell), or to the largest measurements’ 
difference divided by the smallest length, if the measurements of the two sets are considered unpaired. On the 
basis of the small magnitude of the above-analyzed morphometric errors, performance of one measurement by a 
single observer was deemed appropriate. The computation of errors on six cells per image remained smaller than 
1.5%. 

3.3. Comparison between CDA and MCD 
The best detection of the CDA in comparison to MCD occurs with a 5% difference on 390 cells detected on 
three images, a Dice similarity index of 0.88 in cell number, and no significant differences for cell position, area, 
orientation, height, shape factor in terms of isoperimetric ratio. In particular, this means that the convexification 
step in the CDA did not produce a shape with significant distortion. The aggregation of adjacent cells was 
present in all zones of the growth plate when single values were assigned to each of τ and S for the whole growth 
plate. To decrease such aggregation, the parameters τ and S need to vary across the growth plate, specified for 
each of resting, proliferative and hypertrophic zones, due to variation of relative distance among cells.  
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Table 2. Assessment of inter- and intra-observer errors.                                                         

Parameters 
Cell area (µm2) 

Obs1, I Obs1, II Obs 2, I Obs 2, II 
Min 486.00 485.60 482.80 477.60 
Max 488.00 487.60 484.00 480.80 
Mean 486.90 486.30 483.20 479.40 
Stdev 0.64 0.72 0.44 1.04 

Comparison 
between 

I and II 
by Obs 1 

I and II 
by Obs 2 

Obs 1 and 2 
for I 

Obs 1 and 2 
for II 

% error p 0.49 1.09 0.99 1.34 
% error u 0.08 1.42 0.83 0.67 

 
The hypertrophic zone presents the highest challenge to the CDA because the cells are tightly packed and their 
profiles frequently touch (Figure 4(a), Figure 4(b)). The analogy of best images for different values of τ and S. 
(Figures 4(c)-(e)) is indicative of the synergistic effect of τ and S and that the parameters’ values are not 1-to-−1. 
Within the context of the relation between hypertrophic cell height and length of growth plate, bone and limb ([4] 
[17]), we found small variations in hypertrophic cell height and growth plate length to mean hypertrophic cell 
height ratio (Figures 4(c)-(e); Table 3) for different choices of CDA parameters. In Table 3, the data are pre-
sented as mean ± standard deviation. *indicates significant difference in height with 0.05p n< , where n = 6 in 
Bonferroni’s coefficient for multiple comparisons, between pair [ ]5, 145Sτ = =  and pair [ ]7, 120Sτ = = , for 
which the best cell detection occurs (shown in italics). For all runs, NI = 85, Aup = 20,000. Figure 5 shows 
another example of CDA running with different parameters’ values that focuses on the middle of a primary ossi-
fication center (bottom) and of a secondary ossification center (top). 

4. Discussion 
We have developed a specialized algorithm, implemented in MATLAB, which performs the automated detec-
tion of cells in growth plate images. We have used the algorithm to verify known biological characteristics of 
the mouse growth plate and provide a tool for further research regarding, e.g., implications of height of hyper-
trophic chondrocytes on limb length. 

During the process of developing CDA, we considered current methods for image detection. Canny segmen-
tation, cartoon-texture decomposition (Figures 6(a)-(c); [1] [2] [32]-[34]) created false positive cell detection 
from intensity variations of stain. Intensity variations produced also inconsistent clustering of background pixels 
and cell pixels with k-means clustering (Figure 6(d); [2] [3]), which clusters data points on similarity basis. 
Current cell detection algorithms, such as Cell Profiler [4] and HT-HCS [5], do not apply to our images because 
they are based on existence of “primary objects” (such as presence of cell-specific intensity), one per cell. We 
quantitatively compared our CDA to image enhancing processor Image J [6] that includes various filtering, 
thresholding, segmentation compared our CDA to image enhancing processors Image J [6] that includes various 
filtering, thresholding, segmentation and clustering methods [7], with a recent implementation to detect single 
cells on a slide [8]. We compared each of Image J and CDA ( )7,  85,  130, 80,  20,000NI S Alo Aupτ = = = = =  
to MCD of 390 cells from three images. We obtained the best readable image with Image J, by first rendering 
the background more homogeneous with a 50% contrast enhancement. Then to obtain a black and white image, 
we used color threshold “HSB color space” to threshold black and white. Afterwards, we adjusted hue, satura-
tion and brightness to maximize individual cell detection. We found that Image J picks up background cells out 
of focus and often separates visible nuclei from cells. Therefore, Image J generates at least a 26% difference in 
cell count in comparison with the MCD results. This percentage is larger than the 5% difference generated by 
the CDA with respect to the MCD. Image J showed no significant difference with MCD for cell area, orientation 
and height while the shape factor (isoparametric ratio) differed significantly between Image J and MCD. This in 
comparison to no significant differences for cell area, orientation, height and shape factor on all three images 
obtained with the CDA. Further, any CDA output image can be processed with existent software to assess more 
complex parameters for object and pattern assessment [35]-[38]. 

Recently, Buggenthin et al. [9] developed an algorithm for detection of hematopoietic stem cell in culture on  
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Figure 4. Specification of parameters τ  and S for hypertrophic zone of tibia’s growth plate of neonatal (P0) 
WT mouse. (a) This is the original image of growth plate where the cartilage is stained with Alcian blue and 
the nuclei are stained black with Hematoxylin. Because a specific stain is not used for the cytoplasm, the blue 
of the cytoplasm is due to the Alcian blue stain. The resting zone is delimited by red and the proliferative zone 
by green. The hypertrophic zone is delimited by blue and enlarged in (b). We show CDA images obtained with 
(c) 7,  130Sτ = = ; (d) 5,  120Sτ = = ; (e) 5,  145Sτ = = . (c, d, e) yield detection of single cells within a 5% 
error of MCD. For all runs, 85,  400NI Alo= =  and 20,000Aup = .                                  

 
Table 3. Cell count and height of hypertrophic chondrocytes from Figures 4(c)-(e).                                   

Parameters 
Hypertrophic chondrocytes  

τ  S Alo Cell count Height 
 7 130 80 181 34.33 ± 22.57 
 7 120 400 136 40.16 ± 21.56* 
 5 120 400 161 37.05 ± 30.64 
 5 145 400 148 32.33 ± 16.61* 

 
a gray-scale image obtained under bright field microscopy. This algorithm uses a machine-learning based back-
ground correction method, which plays a role analogous to that of Retinex and anistropic diffusion in our CDA. 
After correction, both CDA and Buggenthin algorithm use a hard-thresholding method to identify cells. The 
Buggenthin algorithm includes a marker based water-shedding method to separate the clumped cells, while our 
CDA lacks such step. Therefore, when our CDA is applied to the image of hematopoietic stem cells, aggregation 
of cells occurs, and 5% of cells, small ones, were not detected. However, when we applied the Buggenthin algo-
rithm to our colored growth plate images, it does not perform as well as the CDA. In fact, it produces a sin-
gle-colored image of pure background because our colored growth plate images have a considerably high degree 
of background heterogeneity, and the color of many cells is not significantly different from their neighborhood 
background. 

Complexity and local variations of the images are such that the automation of the CDA does not extend to the 
choice of the values of the parameters τ, NI, S, Alo and Aup that need to be chosen by the user. In fact, the op-
timal values of these parameters can only be determined by user’s experiment and experience on the specific 
image. We note that the cells on focus need to be resolved enough on the image to be clearly visible by human 
eye against the background, for the CDA to be able to detect them. Presence or absence of stain of the nucleus 
does not interfere with appropriate cell detection with the CDA. In fact, while the black stained nucleus causes 
detection of only the cell around the nucleus, the convex hull operation fills up the space occupied by the nuc-
leus, therefore providing results similar to the results obtained for images with unstained nucleus. Also, if the  
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Figure 5. Specification of parameters τ and S for tibia growth plate of 4-month-old mouse. (a) 
This specimen image focuses on the middle of a primary ossification center (at bottom of image) 
and of a secondary ossification center (at top of image). The cytoplasm is stained gray-green with 
Fast Green, the nuclei are stained black with Hematoxylin, and cartilage is stained pink with 
Safranin O. The cartilage is pink, not red, because of over-staining with Hematoxylin. We focused 
on region (b). The CDA results are shown (c) with 80S = ; (d) 100S = ; and (e) 120S = . For 
all runs, 7τ = , 85NI = , 200Alo =  and 20,000Aup = . Image (d) provides the best result for 
detection of individual cells of correct size.                                            
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Figure 6. Results from standard segmentation and processing algorithms. (a, b) Canny segmentation (with edge function 
with Canny option in MATLAB) applied directly to an input growth plate image results in false positive cell-detection and 
incomplete edges; (c) The cartoon component of the cartoon-texture decomposition (within the Bregman Cookbook in 
MATLAB), results in false positive cell-detection from cells out of focus and changes of intensity in the background; (d) 
Results of k-means clustering (built-in function in MATLAB) show unwanted clustering of background pixels.             
 
CDA leaves a few cells lumped together, a quick analysis of the morphometry data outliers can assess whether 
such lumping affects the mean height of the distribution. Such outliers can be excluded if needed. 

5. Conclusion 
In conclusion, we have presented here an innovative algorithm that performs accurate cell detection of growth 
plate images. In particular, our CDA can provide rapid measurement of height of hypertrophic chondrocytes, for 
comparison to height of hypertrophic zone, of growth plate size and limb length, for a first-screening before in-
vestigations on phases of volume increase. This method is applicable to specific genetic mice models to investi-
gate the biological mechanism of limb lengthening. 
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Appendix 1 
Running Time and Memory Usage of CDA 

Image size (MN) NI 
running time (sec) memory usage (mb) 

Step 1 Step 2 Steps 3-5 Step 1 Step 2 Steps 3-5 

609520 
1 0.44 12.54 3.83 16.78 50.92 39.20 
85 7.41 12.98 3.49 16.78 50.92 39.02 

7747344 
1 5.07 174.91 366.46 192.94 441.53 310.96 

85 91.94 176.20 263.11 193.02 440.86 309.90 

 
We used a smaller and a larger image to compute running time and memory usage of the CDA for Steps 1 - 5, 

separately, with τ = 7, S = 130, Alo = 80, Aup = 20,000. Note that there is no difference in memory usage between 
different values for NI. Further, the increasing number of iterations increases the running time of Step 1 and re-
duces the run time of the last Steps. 

Appendix 2 
Mathematical Analysis of the CDA’s Performance 
The computational cost of running the CDA on an M × N pixel image equals 

( ) ( )4 2 2 121 40 40 23NI MN M N MN M N P MN− − + − − +                   (9) 

where P(MN) denotes a positive integer smaller or equal to MN. The contribution of each step to the computa-
tional cost is explained here. In Step 1, because we are only looking at local variations, we only consider 4 paths 
for each pixel, which are from the pixel of interests to its left, right, top and bottom pixels (2). By counting the 
paths in terms of pixels, we obtain, for NI = 1, the computational cost of 4(MN – 2M – 2(N – 2)) – 3 (2(M – 2)) 
– 3(2(N – 2)) – 2(4) = 4MN – 2M – 2N. For NI > 1, we have NI (4MN – 2M – 2N). 

Step 2 contributes with at most 10(12MN − 4M − 4N + 2(P(MN))). The function “aosiso” employs an additive 
operator splitting scheme to generate the solution of (10). Its input consists of the image matrix x (of the size M 
× N), diffusivity matrix D of size M × N (11) and time step t (constant). The following procedure is repeated ten 
times, each time with updated image matrix x and diffusivity matrix D, obtained from (11) with new λ. 

1) A zero matrix of size M × N is defined as y and a zero matrix of size M × N is defined as p, at no computa-
tional cost (variable initialization). 

2) A matrix q, of size (M − 1) × N, is constructed by adding two sub-matrices of D together. The first 
sub-matrix is of size (M − 1) × N, which contains M − 1 rows (the first row to the second to last row of D). The 
second sub-matrix is also of size (M − 1) × N, which also contains M − 1 rows (the second row to the last row of 
D). The computational cost is (M − 1)N. 

3) The first row of p is set equal to the first row of q and the last row of p is set equal to the last row of q, at 
no computational cost. 

4) The M − 2 rows of p, which are not first and last rows, are constructed by adding two sub-matrices of q 
obtained from 2). The two sub-matrices are both of size (M − 2) × N. The first one is q without the last row; the 
second one is q without the first row. The computational cost is (M − 2)N. 

5) Matrix a is constructed by multiplying p obtained from 4) by the time step t and then adding it to a matrix 
of size M × N whose entries equal 1. Matrix a will be used in the Thomas algorithm. The computational cost is 
2MN. 

6) Matrix b is constructed by multiplying q by the scalar −t. Matrix b will be used in the Thomas algorithm. 
The computational cost is (M − 1)N. 

7) The Thomas algorithm is used to solve a tridiagonal linear system for each column of the input image ma-
trix. The solution is a new matrix, y, of size M × N. For each column, the computational cost is at most M, P(M). 
Because there are N columns, the computational cost is P(MN). 

8) Repeat 1) to 7) using the transpose of D and the transpose of x. We obtain a matrix y of size N × M. The 
computational cost is the same as 2) to 7) with M and N switched. 

9) Add the y obtained from G) to the transpose of y obtained from 8). We define the result as the new matrix y 
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of size M × N. The computational cost is MN. 
10) Divide the y from 9) by 2. The computational cost is MN. 
Step 3 has a computational cost of MN because the gradient threshold compares each pixel’s color code gra-

dient to the gradient threshold. Step 4 has a computational cost of P(MN) because the number of the convex hull 
operations is at most MN. The black pixels that are inside the boundaries of each polygon generated through 
convex hull operation are then transformed into white pixels through MATLAB built-in function “poly 2 mask” 
and the computational cost is P(MN). Step 5 has also a computational cost of P(MN), since the number of poly-
gons examined for size and shape thresholds equals the number of convex hull operations. 
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