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Abstract 
There has been a growing interest in screening programs designed to detect chronic progressive 
cancers in the asymptomatic stage, with the expectation that early detection will result in a better 
prognosis. One key element of early detection programs is a screening test. An accurate screening 
test is more effective in finding cases with early-stage diseases. Sensitivity, the conditional proba-
bility of getting a positive test result when one truly has a disease, represents one measure of ac-
curacy for a screening test. Since the true disease status is unknown, it is not straightforward to 
estimate the sensitivity directly from observed data. Furthermore, the sensitivity is associated 
with other parameters related to the disease progression. This feature introduces additional nu-
merical complexity and limitations, especially when the sensitivity depends on age. In this paper, 
we propose a new approach that, through combinatorial manipulation of probability statements, 
formulates the age-dependent sensitivity. This formulation has an exact and simple expression 
and can be estimated based on directly observable probabilities. This approach also helps eva-
luate other parameters associated with the natural history of disease more accurately. The pro-
posed method was applied to estimate the mammography sensitivity for breast cancer using the 
data from the Health Insurance Plan trial. 
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1. Introduction 
Screening of asymptomatic individuals for chronic diseases is a rapidly growing public health initiative. Early 
detection programs are aimed at detecting the disease in the stage when a disease is present without symptoms. 
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For example, in breast cancer, there had been eight randomized screening trials demonstrating that mammogra-
phy screening is beneficial in finding breast cancer at an earlier stage and consequently leads to a decrease in 
mortality among women of 50 - 65 years of age ([1]-[7]). 

One key element of these programs is a screening test. An important measure for the effectiveness of a 
screening test is sensitivity (β), the conditional probability of getting a positive screening test result given that 
one has the disease. Ideally it should be evaluated in the setting of natural history of disease model ([8]-[11]). 
Often parameters like the sojourn time distribution in early stage of disease (pre-clinical state), transition proba-
bility from no disease state to early-stage disease state are needed to estimate the sensitivity. 

These parameters are not directly observable and add to the complexity of the problem formulation and nu-
merical computation of the sensitivity. Furthermore, the sensitivity can be age-dependent. For example in breast 
cancer the mammogram sensitivity in younger women is lower than that in older women [12]. The formulation 
for estimating age-dependent sensitivity becomes complex and does not always guarantee a numerical solution. 

In this paper, we derive a formula that expresses age-dependent sensitivity in terms of probabilities that are 
directly observable in screening trials/programs and discuss the characteristics and generalization of this formula. 
We apply the formula to breast cancer screening trial (Health Insurance Plan) data to estimate the mammogra-
phy sensitivity [1]. 

2. Method: An Exact Expression for Age-Dependent Sensitivity aβ  

Consider the following health states in the natural history of disease progression: 
• 0S , the disease-free state, when the disease cannot be detected by any current early detection program; 
• pS , the pre-clinical state, when the disease is detectable by an early detection program, but no symptoms are 

shown; and 
• cS , the clinical state, when symptoms show. 

A progressive disease model assumes that the disease progresses in the direction 0 p cS S S→ →  unless it is 
interrupted by a medical intervention. In the case of chronic progressive diseases, the goal of screening program 
in detecting the disease in pS . The age is denoted by a. Let 
• aβ  be the sensitivity of the screening exam (i.e., the conditional probability that a disease is detected by the 

screening exam given disease is present) if the exam is taken at age a; 
• aw  be the transition rate from 0S  to pS  at age a; 
• ( )aq t  be the sojourn time distribution in pS  if the transition 0 pS S→  happens at age a; and 
• aP  be the probability for case being in the pre-clinical state pS  at age a, i.e. the proportion of people in pS  

at age a in absence of screening examinations. 
Note that β , w , q  and P  are functions of age a, but to simplify notations, we use a in the subscripts. 

We also do this in part because our method will give estimates of β  for discrete values of age a. 
We now introduce two important probabilities that all the subsequent derivations are based upon. Suppose 

there are no screening examinations before age a, and a series of examinations are scheduled (but not necessari-
ly taken) at times 1 20 nt t t≤ ≤ ≤ ≤  at ages 1 2, , , , na a t a t a t+ + + , with no examinations at other times. 
Consider a person of age a at time 0, taking m  examinations, at times 

1 2 mi i it t t≤ ≤ ≤ . Let 
• ( )aX t  be the probability of entering pS  before a, and still be in pS  at age a t+  if there has been no 

screening examinations; and 
• 

1 2, , , mi i iT


 be the probability for a case undetected by the first 1m −  exams and being detected in the 
pre-clinical state at the last examination at time 

mi
t . 

The importance of 
1 2, , , mi i iT



 is obvious as it is the probability that can be estimated directly from screening 
programs by taking proportions. The notion of ( )aX t  is more subtle, but it will facilitate derivations which 
will be shown later, especially when determining w  and ( )q t . 

Note that it is implied in the definition of T and X that by the time of the last examination, one would either be 
in 0S  or pS , but not cS . Thus if we were to use such definitions, we need to limit the cohort to only those 
who will still be in 0S  or pS  by the last examination taken. In fact, the last examination would be at the same 
time when multiple X ’s and T ’s appear in an equation together in all our derivations. Also note that 

( )0a aX P= . 
We derive a formula for aβ  via a recursion based on the number of examinations. Consider a cohort of age 

a  at time 0, with examinations scheduled at times 0 1 20 t t t= ≤ ≤ . We have 
i ii a t a tT P β+ +=  for 0,1, 2,3i = . n 
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0,1T , or the probability of a case undetected at examination at time 0 but at 1t , involves the probability to enter 
pS  

• before time 0 (or age a), go undetected at time 0, and stay in pS  until getting detected 1t , which is 
( )( )

11 1a a a tX t β β +− ; and 
• between time 0 and 1t , and stay in pS  until at least 1t . This can be thought of as the difference between 

probability to be in pS  at age 1a t+  if there are no exams, or 
1a tP + , and the probability to enter pS  be-

fore age a and stay in it until age 1a t+ , or ( )1aX t . To be detected at 1t , just multiply by 
1a tβ + , which 

gives ( )( )1 11a t a a tP X t β+ +− . 
Therefore, 

( )( ) ( )( )
( )
( )

1 1 1

1 1 1

1

0,1 1 1

1

1 1

1

.

a a a t a t a a t

a a a t a t a t

a a a t

T X t P X t

X t P

X t T

β β β

β β β

β β

+ + +

+ + +

+

= − + −

= − +

= − +

 

Or, 

( )
11 1 0,1.a a a tX t T Tβ β + = −                                  (1) 

Similarly, for 0,1,2T , we need three terms, involving the probability to enter pS  during the following times 
and stay in pS  until being detected at 2t : 
• before age a and go undetected at times 0 and 1t , which is ( )( )( )1 22 1 1a a a t a tX t β β β+ +− − ; 

• between ages a and 1a t+  and go undetected at age 1a t+ , which is ( ) ( )( )( )1 1 22 1 2 1a t a a t a tX t t X t β β+ + +− − − ; 
and 

• between ages 1a t+  and 2a t+ , which is ( )( )2 1 22 1a t a t a tP X t t β+ + +− − . 
Therefore, 

( )( )( )
( ) ( )( )( )

( )( )
( ) ( )
( )

1 2

1 1 2

2 1 2

2 1 2

1 1 2 2 2

0,1,2 2

2 1 2

2 1

2 2

2 1

1 1

1

.

a a a t a t

a t a a t a t

a t a t a t

a a a t a a a t a t

a t a t a t a t a t

T X t

X t t X t

P X t t

X t X t

X t t P

β β β

β β

β

β β β β β

β β β

+ +

+ + +

+ + +

+ + +

+ + + + +

= − −

+ − − −

+ − −

= − +

− − +

 

From (1), we have ( )
1 1 22 1 2 1,2a t a t a tX t t T Tβ β+ + +− = −  and 

i ii a t a tT P β+ += , substituting both to the above for-
mulation, we get 

( ) ( ) ( )1 20,1,2 2 0,2 2 2 1,2 2 ,a a a t a tT T T X t T T Tβ β β+ += − − + − − +  

which gives 

( )
1 22 0,1,2 0,2 1,2 2a a a t a tX t T T T Tβ β β+ + = − − +                           (2) 

Observing (1) and (2), we arrive at our main result in this section: 
Theorem 2.1. 

( )
( )

2 1
1

2

2 0,1,2 0,2 1,2 2 1,2 0,1,2

2 2 0,2 2 0,2

1a a t a t a
a t

a a a t

X t T T T T T T
X t T T T T

β β β
β

β β
+ +

+
+

− − + −
= = = −

− −
               (3) 

Therefore by writing out a few recursions, we are able to eliminate all ( )aX t  terms and express the age- de-
pendent β  as a simple expression of the T  terms, which are directly observable. A special case for applica-
tion of Theorem 2.1 is when 1 2 0t t= = . This implies a situation where repeated tests are performed on the same 
individual to measuring the sensitivity. For example, assume up to three repeated tests with the same sensitivity 
are performed at the same time, at three testing centers with same equipment. We label the testing centers as 
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Center 1, Center 2 and Center 3. 
Let 0T  be the probability of being detected at Center 1, regardless of what the results from Centers 2 and 3. 

Let 0,0T  be the probability of being detected by Center 2, but not Center 1, regardless of the result from Center 
3. This is equivalent to the probability of being detected by Center 3, but not Center 2, regardless of the result 
from Center 1. Lastly, let 0,0,0T  be probability of being detected by Center 3, but not Center 1 or 2. The subtlety 
here is that 0,0,0T  is not the probability of being detected by one center out the three, but just 1/3 of it, because 
we have ordered the centers beforehand. Then we have 

Corollary 2.2. When at least three repeated tests with the same sensitivity β  can be performed at the same 
time, we have 

0,0 0,0,0

0 0,0

1
T T
T T

β
−

= −
−

 

The result is achieved by simply taking limits 1 0t →  and 2 0t →  in the derivation for Theorem 2.1. 
Theorem 2.1 is far from being intuitive, but corollary is easily verified, when we realize that when 1 0t =  

and 2 0t = , there is 0 a aT P β= , ( )0,1 1a a aT P β β= − , and ( )2
0,1,2 1a a aT P β β= − . 

Advantage of Theorem 2.1. One main advantage of Theorem 2.1 is that it enables us to ignore the considera-
tion for transition rate w  and sojourn time distribution ( )q t  in our set-up, which, even in the simplest cases, 
creates a complicated relationship. For example, consider the cohort of age 50, all getting their first screening 
exam. The probability of being detected, if we write it all out as an integral [13], is 

( )50
0 50 0 50

d dx xx
T w q y y xβ

∞

−
= ∫ ∫  

where xw  is the transition probability from 0S  to pS  at age x  and ( )xq t  is the sojourn time distribution 
if the transition 0 pS S→  happens at age x . The interpretation of this expression is straight-forward: to be de-
tected at age 50, the transition 0 pS S→  needs to happen at some age x  before 50, therefore the first integral; 
and pS  needs to last from age x  to at least age 50, therefore the second integral. 

Thus in just this one term, all the xw ’s and xq ’s for x  less than age 50 are involved, when we do not even 
know what type of distribution xq  is, which may vary for different x ’s. This is just the simplest case—when 
there are multiple exams involved, the expressions for the probability of detection will involve several double 
integrals. One of the more rigorous approaches by Shen and Zelen ([10]) uses such expressions to form likelih-
ood function to find estimates for β , w  and q . But due to the complexity of such expressions, even when 
age-dependency is ignored, and q  is assumed to be exponential (so there are only three parameters to deter-
mine: β , w  and the parameter for the exponential q ), there is no guarantee that a global maximum exists, or 
can be determined [11]. 

However Theorem 2.1 allows us to bypass w  and xq  and find an expression for β  in as an exact expres-
sion of T ’s. This, of course, does not mean that the effects of β  on detection can be isolated from that of w  
and xq , but that the information of w  and xq  are already incorporated in the T ’s. We also want to point out 
that the T ’s involved in Theorem 2.1 are naturally observable probabilities in the case of breast cancer screen-
ing (which is the main area of study for the authors): it is recommended that women to be screened either once 
every year, which gives terms 1,2T , 0,1,2T , or once every other year, which gives term 0,2T . 

Another important advantage of Theorem 2.1 is that once (age-dependent) β  is determined, we will be able 
to determine age-dependent w and q with various approaches in a more exact manner. This we will explore in 
another paper. 

One limitation of the Theorem 2.1 is that it does not provide a way to apply the “interval cases”, or the cases 
that enter clinical stages between two scheduled screening exams. These cases, however, can be used later on to 
determine w and ( )q t  once β  is determined. 

3. Symmetry between X and T 
An interesting mathematical result involves certain symmetry between X and T. We use the same setup as in the 
last section: suppose there are no examinations before age a, and a series of exams are scheduled (but not nec-
essarily taken) at times 0 1 20 nt t t t= ≤ ≤ ≤ ≤  ( )1 0t ≥  at ages 1 2, , , , na a t a t a t+ + + , with no examinations 
at other times. Consider a person of age a at time 0 0t = , taking m examinations at times 

1 2 mi i it t t≤ ≤ ≤ . 
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Recall that we let 
1 2 mi i iT


 be the probability for the person to be undetected by all of the first 1m −  exams and 
only detected to be in the pre-clinical stage at the last exam at time 

mi
t . 

Under the same set up, we introduce the new notation: 

( )1 2 11 1 2
,

m i m i i imi i i a t i i a t a t a tY X t t β β β+ + + += − ⋅


                         (4) 

where ( )11i ma t i iX t t+ −  is the probability for someone to enter pS  before age 
1i

a t+  and still being in pS  at 
age 

mi
a t+ , if there has not been any medical intervention. Thus 

1 2 mi i iY


 is the probability for such a patient 
being detected at examinations taken at times 

1 2 mi i it t t≤ ≤ ≤ . This is a hypothetical probability that will faci-
litate our derivation. 

We also recall how we have defined T : let 
1 2 mi i iT


 be the probability for the person to be undetected by all 
of the first 1m −  exams and only detected to be in the pre-clinical stage at the last examination at time 

mi
t . So 

the onset of pS  can happen anytime before 
mi

t , as compared to in the definition of ( )11i ma t i iX t t+ −  (and 
therefore 

1 2 mi i iY


), where the onset of pS  occurs before age 1a t+ . 
Recall we derived the following expressions in the last section (notice that ( )0

n n n na t a t a t a t nP X Yβ β+ + + += = ): 

( )
( ) ( )
( )

( )
( )

1

2 1 2

1 1 2 2 2

1

1 2

0,1 1 1

0,1,2 2 2

2 1

1 1 0,1

2 0,1,2 0,2 1,2 2

a a a t

a a a t a a a t a t

a t a t a t a t a t

a a a t

a a a t a t

T X t T

T X t X t

X t t P

X t T T

X t T T T T

β β

β β β β β

β β β

β β

β β β

+

+ + +

+ + + + +

+

+ +

= − +

= − +

− − +

= −

= − − +

 

or, after some reorganizing of the terms, and recognizing that ( )0 00a aT X Yβ= = , we have 

0 0

0,1 0,1 1 0,1 0,1 1

0,1,2 0,1,2 0,2 1,2 2 0,1,2 0,1,2 0,2 1,2 2

T Y
T Y Y Y T T
T Y Y Y Y Y T T T T

=

= − + = − +

= − − + = − − +

 

Therefore it is clear that there is a symmetric relationship between the T terms and the corresponding Y terms, 
in the case of 1, 2 and 3 examinations. The pattern of these expressions becomes more obvious in case of 4 ex-
aminations: (which will be proved along with the general case) to make it more obvious: 

0,1,2,3 0,1,2,3 0,1,3 0,2,3 1,2,3 0,3 1,3 2,3 3

0,1,2,3 0,1,2,3 0,1,3 0,2,3 1,2,3 0,3 1,3 2,3 3

T Y Y Y Y Y Y Y Y
Y T T T T T T T T

= − + + + − − − +

= − + + + − − − +
 

In the expression of 0,1,2,3T  in terms of the Y terms (and vice versa), the subscripts of Y terms go though all 
the eight subsets of { }0,1,2  union 3, and the sign in front of the Y terms alternate according to the size of the 
subset. These facts turn out to be universal. We have: 

Theorem 3.1. For any n , there is 

[ ]
( )0,1,2, ,

1
1 S

n S n
S n

Y T
⊂ −

= −∑
 

 

and 

[ ]
( )0,1,2, ,

1
1 ,S

n S n
S n

T Y
⊂ −

= −∑
 

 

where S goes over all subsets of [ ] { }1 0,1,2, , 1n n− = − , including the empty set, and S  is the size of S. 
Proof. Because we will be applying the inclusion-exclusion principle later, to make the corresponding argu-

ments, we revise the definition of the T ’s slightly. Assume a series of examinations are scheduled at times 
1 20 nt t t≤ ≤ ≤ ≤  ( )1 0t ≥  at ages a , 1ta + , 2 , , na t a t+ + , with no examinations at other times. However, 

assume that all the examinations are taken (again it is implied that one is still in either 0S  or pS  by the time 
nt , i.e., we limit to the cohort of such), and not all results are taken into consideration. Therefore even if pS  has 
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been detected at time it  ( )i n< , all the subsequent examinations will still be taken. Let 
1 2, , , mi i iT



 be the prob-
ability for the person be the probability for an individual undetected by the examinations at times 

1 2 1
, , ,

mi i it t t
−

 , 
and detected in pS  at exam 

mi
t , regardless of what happens at other examinations. Although the definition for 

T ’s has changed, the numerical expression of T ’s are the same as before. 
Let 

• iC  ( )i n<  be the event of being detected at nt  but undetected at it ; 
• nC  be the event of being detected at nt ; 
• A  be the event of being detected at all exams at 1 2, , , nt t t . 

Therefore we have 

0,1, , 1
n i

i n
C C A

= −

=






 

and ( )n nPr C T=  (which is also equal to nY ), while the size of the right-hand-side would be 

( ) ( )0,1, , 1 ii nPr C Pr A
= −

+




, since A and each Ci are mutually exclusive events. We also have ( ) 0,1, ,nPr A Y=


. 

By inclusion-exclusion principle [14], 

( ) ( ) ( )
0, , 1 0 < 1 0 10,1,. , 1

,i i i j i j k
i n i j n i j k ni n

Pr C Pr C Pr C C Pr C C C
= − ≤ ≤ − ≤ < < ≤ −= −

 
= − + + 

 
∑ ∑ ∑




   



 

But ( )1 2 mj j jPr C C C   is simply 
1 2, , , mj j jT



, therefore we have 

[ ]
( )

0,1,2, ,
0,1, , 1

, , , , , , 0,1,2, ,
0,1, , 1 0 1 0 1

1
0,1,2, ,

1
1

n i n
i n

i n i j n i j k n n
i n i j n i j k n

S
S n n

S n

T Pr C Y

T T T Y

T Y

= −

= − ≤ < ≤ − ≤ < < ≤ −

−

−

 
= + 

 
= − + + +

= − +

∑ ∑ ∑

∑









 







 

Or, [ ] ( )0,1,2, , 1 1 S
n S nS nY T

⊂ −
= −∑

 

. 

The second expression can be proved in a similar manner. With the same set up as the above, let 
• iD  ( )i n<  be the event of being detected by two examinations at it  and at nt ; 
• B  be the event of being undetected by every examination taken at 1 2 1, , , nt t t − , but detected at nt . 

Recall that nC  is the subset of all those detected at nt , then 

0,1, , 1
n i

i n
C D B

= −

=






 

and n n nC T Y= = . While this time the size of the right-hand-size is 
0,1, , 1 ii n D B

= −
+





, since B and each iD  
are mutually exclusive events. We also have 0,1, ,nB T=



. 
Again by inclusion-exclusion principle, 

( ) ( ) ( )
0, , 1 0 1 0 10,1, , 1

,i i i j i j k
i n i j n i j k ni n

Pr D Pr D Pr D D Pr D D D
= − ≤ < ≤ − ≤ < < ≤ −= −

 
= − + + 

 
∑ ∑ ∑




   



 

However ( )1 2 mj j jPr D D D   is simply 
1 2, , , mj j jY



, therefore we have 

[ ]
( )

0,1,2, ,
0,1, , 1

, , , , , , 0,1,2, ,
0,1, , 1 0 1 0 1

1
0,1,2, ,

1
1

n n i n
i n

i n i j n i j k n n
i n i j n i j k n

S
S n n

S n

T Y Pr D T

Y Y Y T

Y T

= −

= − ≤ < ≤ − ≤ < < ≤ −

−

−

 
= = + 

 
= − + + +

= − +

∑ ∑ ∑

∑









 






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Or, [ ] ( )0,1,2, , 1 1 S
n S nS nT Y

⊂ −
= −∑

 

. 

Corollary 3.2. There are infinitely many expressions of age-specificity in terms of T . 
Proof. This is because each 

ia tβ +  ( )0i >  can be expressed as 

\
i

S
a t

S i

Y
Y

β + =  

where S  is any subset of [ ] 0,1,2, ,n n=   that contains i , and \S i  means S  without i . For example,  

we saw in the last section that 
( )
( )

2 1
1

2

2 0,1,2

2 0,2

a a t a t a
a t

a a a t

X t Y
X t Y

β β β
β

β β
+ +

+
+

= = , and it is also equal to 1,2,3 1,4

2,3 4

Y Y
Y Y

= = , etc.  

Each Y  can be expressed in terms of T ’s.                                                      
Given expressions like Theorem 3.1, the proof for Theorem 2.1 is not as straightforward. However the pur-

pose of that proof was to relate some of the traditional considerations and reasoning’s to our new notions. This 
will be useful when evaluating important parameters such as age-dependent disease transition probabilities and 
sojourn time distribution. 

4. An Example 
We illustrate the proposed method using the data from the Health Insurance Plan Project, or HIP data [1]. HIP is 
a randomized screening trial of mammography screening vs. no screening for the women who did not have pre-
vious mammography. Even though HIP is a large-scale screening trial, because breast cancer incidence rate is 
relatively low, we do not have sufficient number of screen-detected and interval cases to readily estimate 
age-specific β . Thus for an illustration of the Theorem 2.1, we group all the women together as one age group, 
and assume that all patients had the same age at the initial examination. Because the cohort is required to have 
annual check-ups, we set 1 1t =  and 2 2t =  in the Theorem 2.1, and get 

1,2 0,1,2

2 0,2

1 .
T T
T T

β
−

= −
−

 

To calculate, saying 0,1T , we simply use the ratio between the number of cases detected at the first annual 
examination after the initial examination and all the cases who had taken both examinations. Using the HIP data, 
we get 

32 20
15936 136791 0.6977.

55 1
20166 1085

β
−

= − =
−

 

Note that this estimate is essentially identical to Shen and Zelen’s published estimate of 0.7 ([10] [11]) based 
on the maximum likelihood method, but is computationally trivial. 
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