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Abstract 
We introduce a simple recursive relation and give an explicit formula of the Kauffman bracket of 
two-strand braid link nx1 . Then, we give general formulas of the bracket of the sequence of links 
of three-strand braids ( )α n x x x x1 2 1 2=  . Finally, we give an interesting result that the Kauffman 

bracket of the three-strand braid link m nx x1 2  is actually the product of the brackets of the two- 

strand braid links mx1  and nx1 . Moreover, a recursive relation for a b c dx x x x1 2 1 2  is also given. 
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1. Introduction 
The Kauffman bracket polynomial was introduced by L. H. Kauffman in 1987 [1] in concern with link inva-
riants. The bracket polynomial soon became popular due to its connections with the Jones polynomial, dichro-
matic polynomial, and the Potts model. While the HOMPLY polynomial and the bracket polynomial are distinct 
with different topological properties, there is a very beautiful relationship between them due to F. Jaeger [2], and 
it is also observed in a special case by Reshetikhin [3]. 

The Kauffman bracket (polynomial) is actually not a link invariant because it is not invariant under the first 
Reidemeister move. However, it has many applications and it can be extended to a popular link invariant, the 
Jones polynomial. In the present work we shall confine ourselves to the Kauffman bracket to avoid this work 
from unnecessary length and to leave it for applications. 

This paper is organized as follows: In Section 2 we shall give the basic ideas about knots, braids, and the 
Kauffman bracket. In Section 3 we shall present the main results. 

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2014.517262
http://dx.doi.org/10.4236/am.2014.517262
http://www.scirp.org/
mailto:arnizami@ue.edu.pk
mailto:mobeenmunir@gmail.com
mailto:umerlinks@hotmail.com
mailto:ansaramzan@yahoo.com
http://creativecommons.org/licenses/by/4.0/


A. R. Nizami et al. 
 

 
2747 

2. Basic Notions 
2.1. Links 
A link is a disjoint union of circles embedded in 3 . A one-component link is called a knot. Links are usually 
studied via projecting them on a plan; a projection with extra information of overcrossing and undercrossing is 
called the link diagram. 
 

 
 

Two links are isotopic if and only if one of them can be transformed to the other by a diffeomorphism of the 
ambient space onto itself. A fundamental result by Reidemeister [4] about the isotopic link diagrams is: Two 
unoriented links 1L  and 2L  are equivalent if and only if a diagram of 1L  can be transformed into a diagram 
of 2L  by a finite sequence of ambient isotopies of the plane and the local (Reidemeister) moves of the 
following three types: 

 

 
 

The set of all links that are equivalent to a link L  is called a class of L . By a link L  we shall always 
mean the class of L . 

The main question of knot theory is Which two links are equivalent and which are not? To address this 
question one needs a knot invariant, a function that gives one value on all links that belong to a single class and 
gives different values (but not always) on knots that belong to different classes. The present work is basically 
concerned with this question. 

2.2. Braids 
Braids were first studied by Emil Artin in 1925 [5] [6], which now play an important role in knot theory, see 
[7]-[9] for detail. 

An n-strand braid  is a set of n  non intersecting smooth paths connecting n  points on a horizontal plane 
to n  points exactly below them on another horizontal plane in an arbitrary order. The smooth paths are called 
strands of the braid. 

 

 
 

The product ab  of two n-strand braids is defined by putting the braid b  above the braid a  and then 
gluing their common end points. 

A braid with only one crossing is called elementary braid. The ith elementary braid ix  on n  strands is: 
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A useful property of elementary braids is that every braid can be written as a product of elementary braids. 
For instance, the above 2-strand braid is ( )( )( )3 1 1 1

i i i ix x x x− − − −= . 
The closure of a braid b  is the link b̂  obtained by connecting the lower ends of b  with the corresponding 

upper ends. 
 

 
 

An important result by Alexander [10] connecting knots and braids is: Each link can be represented as the 
closure of a braid. This result motivated knot theorists to study braids to solve problems of knot theory. 

Remark 2.1 In the last section, all the concerned links will be closures of products of elementary braids. 

2.3. The Kauffman Bracket 
Before the definition it is better to understand the two types of splitting of a crossing, the A-type and the B-type 
splittings: 
 

 
 

In the following, the symbols ○  and   represent respectively the unknot and the disconnected sum. 
Definition 2.2 The Kauffman bracket is the function 1: Links ,a a− ⋅ →    defined by the axioms: 

1= A BL a L a L−+  

( )2 2=L a a L−− −○  

= 1.○  

Here L , AL , and BL  are three links which are isotopic everywhere except at one crossing where the look 
as in the figure: 

 

 
 

Proposition 2.3 The Kauffman polynomial is invariant under second and third Reidemeister moves but not 
under the first Reidemeister move [11]. 
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3. Main Results 
In this section we shall introduce a recursive relation for the Kauffman bracket, shall give an explicit formula of  


1
nx , and shall express 1 2

m nx x  as the product of 

1
mx  and 

1
nx . 

First of all we give the Kauffman bracket of the k -twist unknot kU : 
 

 
 

Lemma 3.1 The Kauffman bracket of the k -twist unknot is 

( ) 31 .k k
kU a= −  

Proof. We prove it by induction on k : 
The case 0k =  holds by definition as 0U  is the unknot without any crossings. Now, with the assumption 

that the result holds for an arbitrary k , we have 
 

  
 

Theorem 3.2 (A recursive relation) The following relation holds for any 2 :n ≥  

 ( ) 

1 3 2 1 1
1 11 .nn n nx a a x− − − −= − +                             (3.1) 

Proof. We prove it using directly the definition and Lemma 3.1: 
 

 
  

 
From this recursive relation, we get the explicit formula for the 2-strand braid link 1

nx : 

Proposition 3.3 The Kauffman bracket of the link 1 , 2,nx n ≥  is 

 ( ) ( )
1 2 3 2 42

1
1

1 .
n n k n kn n

k
x a a

−
+ − + −− −

=

= − + −∑  

Proof. We prove it by induction on n . 
For 2n = , we have 
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which satisfies the recursive relation. 
With the assumption that the relation holds for an arbitrary n, we, using Theorem 3.2, get 

 ( )( ) ( ) 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 3 1 21 1
1 1

1 23 1 2 1 3 2 3 6

3 2 33 10 6 2

1 23 1 2 3 3 3 7

3 2 33 11 5 3

1 23 1 2 3 1 6 3

1

1 1 1

1 1

1 1 1

1 1

1 1 1

n nn n

n n nn n n

n nn n n

n n nn n n

n nn n n

n n nn n

x a a x

a a a a

a a a

a a a

a a a

a a a

+ − + −+ −

− −+ − − − −

− −− − + − −

− −+ − − −

− −− − + − −

− −+ − + −

= − +

= − + − + −
+ − + + − − 

= − + − + −
+ − + + − − 

= − + − + −





( )

( ) ( ) ( ) ( ) ( ) ( )

1 10

3 2 1 33 1 14 1 6 1 21 1 .

n

n nn n na a a

+ −

− + −+ − − + + − + −+ − + + − −

 

This completes the proof.  
In the following we give the Kauffman bracket polynomial of the closure of the braid ( ) 1 2 1 2n x x x xα =   (n 

factors); this sequence contains the powers of the Garside element 1 2 1 2 1 1x x x x x x∆ = = : ( )3 kkα = ∆ . 
Proposition 3.4 The Kauffman bracket of ( ) ( )1 2 1 -timesn x x x nα =   satisfy the recurrence relations: 

( )2 12 6 16 6 8 6 4 6 4 6kk k k k ka a a a a− − − − − −∆ = ∆ − − + +  

( )2 12 6 15 6 7 6 3 6 5 6
1 1

kk k k k kx a x a a a a− − − − − −∆ = ∆ − − + +  

( )2 12 6 14 6 6 6 2 6 6 6
1 2 1 2

kk k k k kx x a x x a a a a− − − − − −∆ = ∆ − − + +  

2 1 6 2 1 13 6 5 6 1 6 7 6k k k k k ka a a a a+ − − − − − −∆ = ∆ − − + +  

2 1 6 2 1 12 6 4 6 6 8 6
2 2

k k k k k kx a x a a a a+ − − − − − −∆ = ∆ − − + +  

2 1 6 2 1 11 6 3 6 1 6 9 6
2 1 2 1

k k k k k kx x a x x a a a a+ − − − − − − −∆ = ∆ − − + +  

Proof. Simply, apply the definition for different values of k , and write recursively each next bracket in terms 
of the previous one.  

Lemma 3.5 The Kauffman brackets for 0k =  are: 
0 4 42a a−∆ = + +  

0 1 5
1x a a− −∆ = +  

0 6
1 2x x a−∆ =  
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7a a−∆ = +  

4 8
2 1x a a−∆ = − + +  

7 3 1 9
2 1x x a a a a− −∆ = − + +  

Proof. The proofs of first three cases are given (proofs of remaining cases are similar): 
 

 
  

 
Theorem 3.6 For any 0k ≥  the Kauffman bracket of ( ) ( )1 2 1 -timesn x x x nα =   is given by: 

2 6 6 4 6 4

2 6 3 6 1 6 3 6 5
1

2 6 2 6 2 6 6
1 2

2 1 6 1 6 7

2 1 6 4 6 6 8
2

2 1 6 7 6 3 6 1 6 9
2 1

2

.

k k k k

k k k k k

k k k k

k k k

k k k k

k k k k k

a a a

x a a a a

x x a a a

a a

x a a a

x x a a a a

− + − −

+ − − + − −

+ − + − −

+ − + − −

+ + − − −

+ + + − − − −

∆ = + +

∆ = − + + +

∆ = − + +

∆ = +

∆ = − + +

∆ = − + +

 

Proof. We prove it by induction on k . The case 0k =  is covered by Lemma 3.5, and the inductive step can 
be checked with Proposition 3.4. 

For instance, 

( ) ( ) ( )

2 2 6 2 10 6 2 6 2 6 10 6

6 6 4 6 4 6 10 6 2 6 2 6 10 6

6 6 10 6 2 6 10 6 2 6 10 6 2 6

6 1 4 6 1 4 6 1

2

2

2 .   

k k k k k k

k k k k k k k

k k k k k k k

k k k

a a a a a

a a a a a a a a

a a a a a a a

a a a

+ − − − − − −

− − − − − − − − −

+ − − − − − − − −

+ − + − − +

∆ = ∆ − − + +

 = + + − − + + 
= + + − − + +

= + + 

 

In connected sum 1 #n
kx U  of the braid link 1

nx  with the trivial knot kU  has the diagram: 
 

 
Lemma 3.7 

 ( ) 3
1 1# 1 .kn k n

kx U a x= −  

Proof. We prove it by induction on k : 
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For 1k = , we have 
 

 
 

Now, with the assumption that the result holds for an arbitrary k , we have 
 

 
 

as required.  

The following result confirms that the Kauffman bracket of 1 2
m nx x  is actually the product  

1 1 .m nx x  

Theorem 3.8 For any , 2m n ≥ , 
  

1 2 1 1 .m n m nx x x x=  

Proof. We prove it by induction on n : 
When 2n = , 
 

              (3.2) 

 

Suppose the result holds for n k= , that is   

1 2 1 1 .m k m kx x x x=  

Now, using Lemma 3.7, we have 
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  

( )   

 ( ) 

 ( ) ( ) ( )

( ) ( )
 ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1
1 2 1 1 2

3 1
1 1 1

3 1 1
1 1

13 1 3 3 3 7
1

1 2 23 11 5 3

2 13 1 2 3 1 6
1

2 23 1 10

#

1

1

1 1 1

1 1

1 1

1 1

m k m m k
k

k k m m k

km k k

k k km k k k

k kk k k

k kk km

k kk

x x a x U a x x

a a x a x x

x a a x

x a a a

a a a

x a a

a a

+ −

−

+ −

−+ − −

+ −− − + − −

− −+ − + −

−+ − −

= +

 = − +  
 = − +  

= − + − + −

+ − + + − − 

= − + −

+ − + + −





( ) ( )

 

1 6 1 2

1
1 1 .

k k

m k

a

x x

+ + − + −

+

− 

=

 

This completes the proof.  
Corollary 3.9 

 

1 2 1 2 .m n n mx x x x=  

Proof. It is obvious:      

1 2 1 1 1 1 1 2 .m n m n n m n mx x x x x x x x= = =  

Corollary 3.10 

 ( )1 2deg 3 4m nx x m n= + −  

and 

 ( )1 2span 4 .m nx x m n= +  

Proof. The result follows immediately from Theorem 3.8 as 

1deg 3 2nx n= −  and span 

1 2.nx n= − −   

For the following, let us fix the notation abcL  for the link with the understanding that the link contains a, b,  

and c  crossings of type 1 2,x x , and 1x , respectively, and that aba
abc xxxL 121



≠ . 
 

 
 

Proposition 3.11 The Kauffman bracket of the link abcL  is 

   ( )   2 2
1 1 1 1 1 1
a b c b b a c b a c

abcL x x x a a x x a x− + − − − += + + +  

Proof. We prove it by induction on b : 
For 1b = , we have 
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   ( )   

  ( )   

  

1 3 1
1 1 1 1 1 1 1

3 3 1
1 1 1 1 1

1
1 1 1 .

a c a c a c
a c

a c a c a c

a c a c

L x x x a a x x a x

a x x a a x x a x

a x x a x

− − +

− − − +

− +

= + + +

= + + +

= +
 

Now, with the assumption that the result holds for an arbitrary k , we have 1b k= +  

 
  

  

( )      ( )   ( )
( )      ( )   

( ) ( )( )  

1
1 1 1 2 1

1
1 1 1 2 1

3 1 2 2
1 1 1 1 1 1 1 1

3 1 1 1 3 1
1 1 1 1 1 1 1 1

13 1 3 3 5 3
1 1

# #

#

1

1

1 1

a c a k c
k

a c a k c
k

k k a c a k c k k a c k a c

k k a c a k c k k a c k a c

k kk k k k a c

a x U x a x x x

a x U x a x x x

a a x x a x x x a a x x a x

a x x a x x x a a x x a x

a a a a x x

−

−

− − + − − − +

+ − − + − − − − +

++ − − + − −

= +

= +

= − + + + +

= − + + + +

= − + − + − −

( )   

   ( ) ( )( )   ( ) 

1 2 1 2 1
1 1 1

1 2 1 2 11
1 1 1 1 1 1

k k a c k a c

k k ka k c a c a c

a a x x a x

x x x a a x x a x

− − + − − − − − +

− + + − + − − ++ +

+ + +

= + + +

 

as required.  
Proposition 3.12 The Kauffman bracket of the link 1 2 1 2

a b c dx x x x  is 

 ( )   

( )( )  

( )  

3 4 2
1 2 1 2 1 1 1

=1

1 3
1 1

3 4 2
1 1

1

1

1

1 .

d d ia b c d d i a b c

i

d b d b d a c

d d i d i b d b a c

i

x x x x a x x x

a a x x

a a x x

+ − +

+ − + − −

+ − + − − +

=

 = − 
 

+ − +

 + − + 
 

∑

∑

 

Proof. We prove it by induction on d : 
For 1d = , we have 

 ( )    ( )( )  

( )  

   ( )  

( ) 

1 11 3 4 2 3 1
1 2 1 2 1 1 1 1 1

1

1 1 3 4 2 1
1 1

1

3 1
1 1 1 1 1

1 1
1 1

1 1

1

.

d i da b c i a b c b b a c

i

i i b b a c

i

a b c b b a c

b b a c

x x x x a x x x a a x x

a a x x

a x x x a a x x

a a x x

+ +− + − + − −

=

+ − + − − +

=

− + − −

− + − +

 = − + − + 
 
 + − + 
 

= + +

+ +

∑

∑
 

Now, with the assumption that the result holds for d k= , we have 
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( )    ( )   ( )
( )    ( )( )  

( )  

( )    ( ) ( )( ) 

3 2 2
1 1 1 1 1 1

11 3 4 2 3
1 1 1 1 1

=1

3 4 2
1 1

=1

3 1 3 3 3 1
1 1 1 1

1

1 1

1

1 1 1

k k a b c b b a c b a c

k k i kk i a b c b k b k a c

i

k k i k i b k b a c

i

k k kk a b c k b k b a

a a x x x a a x x a x

a a x x x a a x x

a a x x

a x x x a a x x

− + − − − +

+ +− − + − + − −

+ − + − − +

+ + − − −

 = − + + +  
 + − + − + 
 

 + − +  
  

= − + − + −

∑

∑



( ) ( )   

( )( )   ( )  

( )( ) ( )    ( )( ) ( ) ( )( )  

( )( ) ( )

1

3 1 3 4 1
1 1 1

=1

1 3 1 1 3 4 1 1
1 1 1 1

=1

1 1 1 13 1 4 2 3 1 1
1 1 1 1 1

1

1 1 3 1

1

1 1

1 1

1 1

1

c

kk k ik b k i a b c

i

kk k ik b k b a c k i b k b a c

i

k k i kk i b k b ka b c a c

i

k k i k

i

a a x x x

a a x x a a x x

a x x x a a x x

a

++ − − +

+ +− − − − − − + − − − +

+
+ + + ++ − + − + + − − +

=

+
+ + + −

=

+ − + −

 + − + + − + 
 

 = − + − + 
 

+ −

∑

∑

∑

∑ ( )  4 2 1
1 1 ,i b k b a ca x x+ − − + + + 

 

 

as was required.  
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