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Abstract

In this paper, based on the Lax pair of the Jaulent-Miodek spectral problem, we construct the Dar-
boux transformation of the Jaulent-Miodek Equation. Then from a trivial solution, we get the exact
solutions of the Jaulent-Miodek Equation. We obtain a Kink-type soliton and a bell-kink-type soli-
ton. Particularly, we obtain the exact solutions which describe the elastic-inelastic-interaction
coexistence phenomenon.
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1. Introduction
In this paper, we consider the Jaulent-Miodek (JM) Equation [1]

q, +3qq, —2r, =0,

1.1
rt+2qxr+qrx _%qxxx =0. ( )

We study the exact solutions of the JM Equation (1.1) by using Darboux transformation (DT), which is an ef-
fective method to get exact solutions from the trivial solutions of the nonlinear partial differential equations
based on the Lax pairs [2]-[11]. As to the higher JM Equation, authors used several methods considering the
travellling wave solutions [12]-[14]. For the solutions of the JM Equation (1.1), in [1], the solitary wave solu-
tions have been obtained by Darboux transformation. In this paper, we start from a different Lax pair to get
some new exact solutions.

This paper is arranged as follows. Based on the Lax pair of the JM Equation (1.1), in Section 2, we deduce a
basic DT of the JM Equation (1.1). In Section 3, from a trivial solution, we get solitary wave solutions of the JM
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Equation (1.1). Particularly, we obtain the bell-kink-type solitary wave solutions. We also get the elastic-inelastic-
interaction coexistence phenomenon for the JM Equation (1.1). To the author’s best knowledge, this is a new
phenomenon for the JM Equation (1.1).
2. Darboux Transformation
We consisder the isospectral problem introduced in [15]
A AQ+r) .
= 2y 2.1

4, [1 L jqf ¢ (2.1)

and the auxiliary spectral problem
2.7 —q/l—q—X 2942 —(q2 -q, —2r)/1+qi—qr
2 2

¢ = $2V 4. (2.2)
21-q —2,12+q/1+q—2X

From the zero curvature equationU, -V, +UV —-VU =0, we get the JM Equation (1.1).
We introduce a transformation

¢=T¢ (2.3)

with
T +TU =UT, (2.4)
T +TV =VT . (2.5)

The Lax pair (2.1) and (2.2) is transformed into a new Lax pair

— (A AQ+TY L, -
= 2 Ug, 2.6
4, (1 L j¢ ¢ (2.6)
and
2 = q_X =12 =2 = q_xx —_—
|22 —qxl—? 204 —(q —qx—2r)1+7—qr 3
¢ = _ p=V4. 2.7)
2.-7q —2/12+c—1/1+q7x
We suppose that
N-1 N-1
AN+Y AL BN+ B A
A B k=0 k=0
T=«a =a , (28)
C D N-1 N-1
> c Ak > DA
k=0 k=0

where a, A, B,, C,, D (0<k<N-1), B, arefunctionsof x and t.
T T ; ; )
Let ¢(/1j ) :(qol(/lj ),(p2 (/IJ. )) and y/(/lj ) :(y/l(/lj ),y/2 (/11. )) be two basic solutions of the Lax pair (2.1)
and (2.2). From (2.3), there exist constants ; such that
N K NS K
A + ) A +o; EBN/Ij +Y B j:O,
- k=0 (2.9)
C A +0;>. DA =0
k=0
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with
. :‘92(’11)_”1'/’2(’11)
J 401(’11)_“1‘/’1(’11)

There are 4N -2 Equations and 4N +1 unknowns A, B, C., D, (0<k<N-1), By in (2.9). In
order to determine these unknowns uniquely, we add another three Equations

, 1< j<2N-1. (2.10)

4D, ,,-q q 1
=D, ,+2C, ,+—2* X B =— C,, ==, 2.11
AN—l N-1 N-2 4(q—4DN_1) N 2 N-1 2 ( )
The unknown « in T will be determined later.
From (2.8) and (2.9), we have
2N-1
detT(2)=B]1(41-4). (2.12)
j=1

which means 4, (1£ j<2N —1) are roots of detT =0 (notethat S isindependentof A4).
Proposition 1. Let « satisfy the Equation

0, Ina=2(A,;~Dy,-2Cy ). (2.13)

Through the transformation (2.3) with (2.4), the isospectral problem (2.1) is transformed into (2.6) with

g=q+4(A,, Dy, —-2C,,), (2.14)
F:r+4(AN-1_DN-1_2CN-2)(AN—1+DN-1_ZCN—2)+2<AN-LX+DN‘1~X)’
where A_,,D,_;,C,_, aredetermined by (2.9) and (2.11).
Proof. Let T =T "/detT and
[ fu(4) fp(A4
(T, +TU)T =[ n(4) o )j’ (2.15)
f21(/1) fZZ(A)

It is easy to see that f, (1), f,,(4), f, (1) are (2N) th-order polynomialsin 4, f, (1) isa (2N-1)th-or-
der polynomial in 4. By (2.1) and (2.10), we have Riccati Equation

o, =1-240,-(4,q+r)o}. (2.16)
Thenall 4, (1< j<2N-1) arerootsof f, (4)=0(k,I=12). Therefore we have
(T, +TU)T" =(detT)P(2), (2.17)
where
p(1)= {Pﬁf’ﬂ +RY PYA+RY)
o Bl
and Pij(") (i,j=1,2, k=0,1) areindependentof A.We can rewrite (2.17) as
T,+TU =P(2)T (2.18)
By comparing the coefficients of A"*, AN, A" with (2.11) and (2.13), we get

AN pl =g, (2.19)

210, ne=RY (R ~a) (R 1) A, 2R =0 (220)
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%ax |na=%a(1°>+(a<j>+1)BN L+PYD, , —gA, — -, (2.21)
P +% Py = % %( P -1)+ Dy, (P +1) =0 PY =1, P =1 (2.22)
ANTRY =20, Ina- Ay, +2(A), +(1—Pl(11))AN72+ZBN71—2Pl(21)CN72, (2.23)
%ax |na=P2<f>AN71+%P;§>+(P;§>—1)C ~Dys—m Py =0, (2.24)
P{'By.s =0, @Dy +Dyy, +aCy , —PE'Dy , — (P +1)Dy +%. (2.25)

From (2.21), (2.23) and (2.25), together with (2.11), (2.13), (2.14), (2.19), (2.20) and (2.24), we respectively
get

PY' =, R =0, Ry = (2.20)

Comparing with (2.4) and (2.18), we find that U = P(/l) andthen U and U have the same form. o
Remark. When N =1, supposing A, =B, =C,=D_,=0,DTis

q=q+4(A -Dy,), F=r+4(Ab—DO)(Ab+D0)+2(AOVX+DOVX). (2.27)

Proposition 2. Let « satisfy the Equation

2
8, Ina:(q—c_])AN71+2q_CN72—ZBN71+q?—q? T+ 2 (2.28)
where A, ,, B,,, C,_, are defined by (2.9) and (2.11), g and T are defined by (2.14). Through the
transformation (2.3) with (2.5), the auxiliary spectral problem (2.2) is transformed into (2.7) with (2.14).

To prove Proposition 2, we need to use Proposition 1 and the JM Equation (1.1), together with the help of the
mathematical software (such as Mathematica). Although the idea of the proof for Proposition 2 is the same as
Proposition 1, it is much more tedious and is omitted for brevity.

Since the transformation (2.3) with (2.14) transforms the Lax pair (2.1) and (2.2) into the same Lax pair (2.6)
and (2.7), the transformation (¢,q,r)— (5 q,r) determined by (2.3) and (2.14) is called the DT of the Lax
pair (2.1) and (2.2). Both the Lax pairs (2.1), (2.2) and (2.6), (2.7) obtain the JM Equation (1.1). Then, the
transformation (¢,q,r)—>(5, q,r) determined by (2.3) and (2.14) is also called the DT of the JM Equation
(1.2).

3. Exact Solutions

In this section, by using of the above obtained DT, we get new solutions of the JM Equation (1.1).
For simplicity, taking q=r =0, we get two basic solutions of the Lax pair (2.1) and (2.2)
i) i)
A )= , A )= , 31
ol4) iCOShlj(X—ﬂ,jt) v(%) ismmj(x—/ljt) G
A A
J J
with j=1,2,---,2N -1.
According to (2.10), we get
1+1 o5 (x 3u. -1
o :i+ e 24( AJt), = Hi ,j=12,---2N -1. (3.2
24, A 2(1- ;)

In the following, we discuss the two cases N =1 and N=2.
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1) For N =1, from (2.9) and (2.11), we have

24 _ 1+e* 4,
ﬂ’le A):D + 4D0x qx __il( 1) (33)

2+’ t2r °"4(q-4D,)  2+e+2r

0:

with & =, (x—At). Then the exact solution of the JM Equation (1.1) is

q [1] = _M = _j'l (1_Tanh (‘:51 _771)),

2+e* 42,

2 25 1 2 2
r[1]=_4(l+r1)ﬁ'l (e ]2- rl)=—21—Sech2(cfl—771)+21—(1—Tanh(§1—771))2,
(2+€* +2n) 2 4

(3.4)

with 7, =In,/2+2r, . This solution is similar with the solution in [11].

As 1, > -1, this is a solitary wave solution where q[1] is a kink-type soliton and r[1] is a bell-kink-type
soliton, i.e. this soliton is composed of a bell-type wave and a kink-type wave (see Figure 1).

2) For N =2, from (2.9) and (2.11), we have

Ac A D
C,=—2, D,=—2, A=D,+2C, ——, 35
0 A 1 A Ai 1 0 4Dl ( )
where
-4 4
2 A L2 @
1 Aoy o A A
A=l Ao, oy, ACo:T Lo, o,|, Ap=[1 - % (3.6)
1 Lo, o A A
2 K% L2 o
q[1] att=0
24 17~ 2 3 4 s5°

(b)
r[1] at t=0
ﬂ.\
2
1
I S— W 5 4 B
-1
i)
(© (d)

Figure 1. Plots of solitary wave solution of (3.4) with r, =3, 4 =2.
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with
1+ 5 (s .
L SN el LU N R ) 3.7)
24, A
The exact solution of the JM Equation (1.1) is
q|2|=4(A -D,-2C,),
[2)=4(A-D,-2¢,) o8)

r[1]=4(A -D,-2C,)(A +D,—2C,)+2(A, - Dy, ).

When the parameters are suitably chosen, the solution (3.8) describes the elastic-inelastic-interaction coexis-
tence phenomenon, i.e. the elastic and fission interactions coexist at the same time (see Figure 2).

In Figure 3, we can clearly find the interactions of the solitons. The solution q[2] is a solitary wave solu-

tion, where five kink-type solitons fuse into three kink-type solitons, i.e. K2 kink-type soliton and K4 kink-type

Figure 2. Plots of the solitary wave solution of (3.8) with r,=5,1,=3,,=-2, 4 =3, 4, =-1 4, =—-4.

q[2] at t=—2 q[2] at t=2
8
5 K4 K5 6
K4 K135 4
h K3 2
5 5 10 x | %
-10 -5 5
-2
K1 K2 X2
-5 —4
(@ (b)
r[2] at t=—2 r[2] at t=2
15
1
X
5 -10 -5 \/ 5
]
fr— i -10 K2
\ -5 BK3 5 10Bks BK135
BK1 -5 —20
BK2 BK4
(© (d)
Figure 3. Plots of the interactions of the solitary wave solution of (3.8) with r,=5,r,=3, r,=-2, 4 =3,
A=-14=-4
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soliton are head-on interactions (this is an elastic interaction), K1 kink-type soliton, K3 kink-type soliton and K5
kink-type soliton fuse into K135 kink-type soliton (this is a inelastic interaction). The solution r[2] is a soli-
tary wave solution, which is the same as q[2] , but the solitons are the bell-kink-type (see also Figure 3). This
phenomenon has been described in the Whitham-Broer-Kaup shallow-water-wave model [16]. It seems to be
new for the JM Equation.
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