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Abstract

We consider two problems from stability theory of matrix polytopes: the existence of common
quadratic Lyapunov functions and the existence of a stable member. We show the applicability of
the gradient algorithm and give a new sufficient condition for the second problem. A number of
examples are considered.
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1. Introduction

Consider the switched system
X(t)=Ax(t), Ae{A, A, A} @)

where x(t)eR”, t>0. In Equation (1), the matrix A switchesamong N matrices A, A,,--- A, .
Switching signal o (t) is piecewise continuous from the right function o :[0,00) > {1,2,---,N} and the
switching times are arbitrary. For the switched system (1) with initial condition X(O) =X, and with switching
signal o (t) denotes the solution by x(t,xo,a(-)).
Definition 1. The origin is uniformly asymptotically stable (UAS) for the system (1) if for every & >0 there
exists &>0 such that for every signal o (t) and initial state x, with ||x,| <&, the inequality
”x(t, x0,0(~))|| <¢ issatisfied forall t>0 and uniformlyon o(-)

limx(t, %, o(-))=0.

If all systems in (1) share a common quadratic Lyapunov function (CQLF) V (x)= x"Px then the switched
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system is UAS (T denotes the transpose).
In this case there exists acommon P >0 such that

ATP+PA <0 (i=12,-,N) @

and P is called a common solution to the set of Lyapunov matrix inequalities (2).

The problem of existence of common positive definite solution P of (2) has been studied in a lot of works
(see [1]-[9] and references therein). Numerical solution for common P via nondifferentiable convex optimiza-
tion has been discussed in [10].

In the first part of the paper, the problem of existence of CQLF is investigated by Kelley’s method. This me-
thod is applied when CQLF problem is treated as a convex optimization problem.

Second part of the paper is devoted to the following question:

Let BcR' be a compact, for qeB the matrix A(q) is a real nxn matrix. Is there a Hurwitz stable
member (all eigenvalues lie in the open left half plane) in the family

{A(9):q<B|
or equivalently is there q" € B such that A(q*) is stable? This problem is one of the hard and important
problems in control theory (see [11]). Numerical solution of this problem is considered in [12]. In this paper we
reduce this problem to a non-convex optimization problem.
2. Common Quadratic Lyapunov Function

For the switched system

X={A, Ay Ayt X

consider the problem of determination of CQLF V (x)= x"Px where P >0.We are going to investigate it by
Kelley’s cutting-plane method. This method gives new sufficient condition (Theorem 2) and new algorithm
(Algorithm 1) which is more effective in comparison with the algorithm from [10].

Consider the problem of existence of acommon P >0 such that

ATP+PA <0 (i=12N). ©))

Let xeR" be x" =(x,X%, %) and P bean nxn symmetric matrix defined as

X:I_ X2 ces Xn
S L | A
: : - : 2
Xn X2n—l Xr
Define
$(X) = MaX 1y Ay (AiTP +PA ) = MaX,qion juj=1 u’ (AiTP +PA )U- (4)

If there exists x. such that P(x.)>0 and ¢(x.)<0 then the matrix P(x.) is required solution. This
problem can be reduced to the minimization of a convex function under convex constraints.
Consider the following convex minimization problem

#(x) — minimize.

VIP(x)v>0 ®)

M-

Let X cR" beaconvex setand F:X — R be convex function. The vector g eR" is said to be a sub-
gradientof F(x) at x.e X ifforall xe X

F(X)=2F(x)+g" (x=x.).
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The set of all subgradients of F(x) at x=x. is denoted by oF (x.). If x. is an interior point of X
then the set aF(x*) is nonempty and convex. The following proposition follows from nondifferentiable opti-
mization theory.

Proposition 1. Let #(x) be defined as

¢(x)=max,, f(x,y) (6)

where Y iscompact, f (x, y) is continuous and differentiable in x. Then
of (X,
o¢(x) = conv{M: yeY (x)}
OX
where Y (x) is the set of all maximizing elements y in (6), i.e.

Y(x)={yeY:f(xy)=4(x)}.

If for a given x the maximizing element is unique, i.e. Y (x)={y(x)} then ¢(x) is differentiable at x
and its gradient is

of (x, y)l

V¢(x): OX

In the case of the Function (4)
_ O [ T(aT i . T
o (x) = conv{&(u (A"P+PA )u) i maximizesA,.,, (ATP+PA ),
u is a corresponding unit eigenvector}.

If for the given x the maximizing i is unique and A, (ATP+ PA) is a simple eigenvalues, the diffe-
rentiability of ¢ atthe point x is guaranteed [13].

We investigate problem (5) by Kelley’s cutting-plane method.

This method converts the problem (5) to the problem

c'z —> min

7
¢,(2)=0,c,(2)20, -1<x <1 (i=12,---,r) 0
where z=(%, %, %,L)", ¢=(0,0,,01)", ¢ (z)=L-¢(x), cz(z):minHvHﬂvTPv.
Let z° beastarting pointand z° z*,---,z% be k+1 distinct points.
At the (k +1) th iteration, the cutting-plane algorithm solves the following LP problem
minimize L
subjectto  —h' (z°)z >-h' (z°)z° —cl(zo)
—hZT(ZO)z >-h) zo)z0 -c,(2°
@)

where hj(zi) denotes a subgradient of —c;(z) at z'(i=12).
Let z¥ be the minimizer of the problem (8).

If z* satisfies the inequality min{cl(zl‘),cz(z,'f )}Z—g, where ¢ is a tolerance then z¥ is an approx-
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imate solution of the problem (7).
Otherwise define |~ as the index for the most negative C; (zf), update the constraints in (8) by including
the linear constraint

Cj* (ZkJrl)_h;l'x (Zk+1)(z_ Zk+1) >0

and repeat the procedure.

Recall that our aim is to find x. such that P(x.)>0 and ¢#(x.)<0, but not the solution of the minimiza-
tion problem (5), (7).

Theorem 2. If there exists k such that

G (zf)> ¢, (2)>0

where zf = (x,'f : Lk) is the minimizer of the problem (8), then the matrix P = P(Xf) is a common solution to

@3).

Proof:
p(x) =L —c,(2) <0,

k H T k
0<c,(z)= minv P(x)v

and by (5), ngf ) >0 isacommon solution to (3).

For the problem (5), (7) Kelley’s method gives the following

Algorithm 1. .

Step 1. Take an initial point 2’ =(x°,L°) . Compute ¢(x°) and c,(z°). If ¢(x°)<0 and cz(z°)>0
stop; otherwise continue.

Step 2. Determine z¥ by solving LP problem in (8). If cl(zf)> ¥ and C, (zf)> 0 then stop; otherwise
continue. Set z**! = z¥ update the constraints in (8) and repeat the procedure.

Example 1. Consider the switched system

Xe{Ai,Az,Ag}x
where
-2 5 -6 -8 17 =27 4 9 2
A=0 -8 0 ||A=9 -4 27 |and A=|-6 -8 4
-5 -2 -20 22 41 -2 1 -10 -6

are Hurwitz stable matrices. .
Choose the initial point z° =(xf,x§,x§,xj’,x§,xg,L°) :(1,0,0,1,0,1,1)T,then
1 00
P(x"): 01 0|
0 01

¢ (2°)=-7.5247, c,(2°)=1 and ¢(x°)= max}/lmax(ATP(X°)+P(XO)A):8.5247>O.

ie{1,2,3
We obtain z* :(—1,1,1,1, —1,1,—27.9933)T by solving LP problem in (8). Calculations give the following
Table 1, and

2% = (x*, %)’ = (0.7811,0.6268, -0.1283,1,-0.1254,0.2383, -0.8206) .

Since L'* —¢,(2°)=-0.0287<0 and c,(2*)=02075>0,
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Table 1. Kelley’s algorithm for Example 1.

k I ¢ (z4) c,(z")
1 —27.9933 —209.7383 —1.9999
2 —24.4038 -127.1153 —2.3326
3 —14.2596 -106.2473 —-1.8092
4 —10.0497 —63.4433 —-1.8878
14 —0.8465 —-1.1881 0.2694
15 —-0.8206 —-0.7919 0.2075

0.7811 0.6268 —-0.1283
0.6268 1 —0.1254
-0.1283 -0.1254 0.2383

P=P(x*)

is a common positive definite solution for

A'P+PA <0 (i=123).

3. Stable Member in a Polytope

This part is devoted to the following question: Given a matrix family {A(q):q € B} where BcR' is a
compact, is there a stable matrix in this family?

In [12], a numerical algorithm has been proposed for a stable member in the affine matrix family
{A(q) ‘ge R'} . In this algorithm the uncertainty vector q varies in the whole space R'. On the other hand
we consider the case where q varies inabox B cR' and use the gradient algorithm for minimization of the
nonconvex maximum eigenvalue function. By choosing appropriate step-size, we obtain the convergence.

Let 2,,Z,,---,Z, [r = n(nTJrl)j be a basis for the subspace of nxn symmetric matrices and
Q(a)=(-z))®(A"(9)Z +Z,A(a)),

¢(qu)=ﬂ’max (ZX|Q|(q)]
i=1
T T
where X = (X, %, %), q=(0, 0. 0) -
Consider the problem

#(x,q) — minimize.

min _v'P(x)v>0
Ixl=1.aeQ

Theorem 3. There is a stable matrix in the family A(q) ifand only if ¢ = min(xvq) ¢(x,q) <0.
Proof:

¢ <0< there exists (x",q”) such that ixi*Qi (a)<0

i=1

= [—gx;zi j ® {AT (q*)(—gxfzi j +(—§x§zi J A(q*)} <0
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& P(x*)zgxfzi >0 and A(q) P(x')+P(x')A(q") <.

By Lyapunov theorem, the matrix A(q*) is stable.
Example 2. Consider the family of matrices

A(G)= A+ A + 0 A +0sA, Ty, 0,. 0 <[-11]

where
1 0 2 0 2 0 3 0 -1 0 2 0 -1 0 0 1
%_—2 0 -3 0 A= -1 0 -3 2 Az_—3 -1 -3 0 A= 1 2 3 =2
/-5 1 -1 0/* |33 10?32 -1 2|1 20 -1/
3 -1 0 =2 4 -1 0 -2 2 -1 0 -2 0 2 1 -5

For gq= (O,O,O)T, A(q) = A, is unstable. We apply the gradient algorithm to find a stable member in the
family.

;
Let x°=(%,o,o,o%,o,oé,o,9 and q°=(10,0)". So

.
a°=(x°,q°)=(1,0,0,0,1,0,0,1,0,3,1,0,oj :
2 27722

Then
0 —P(x°) 0
2= A¢°) P(x)+ P(x) A(q)
Y2 0 0 0 0 0 0 O©
0 -2 0 0 0 0 0 0
0O 0 -Y2 0 0 0 0 0
0O 0 0 -Y2 0 0 0 0
o 0o 0 0 -10 5 0
O 0 0 0 -3 0 -6 2
O 0 0 0 -8 4 -2 0
O 0 0 0 -7 2 0 -4

Maximum eigenvalue of this matrix and its corresponding unit eigenvector are
Ay = 2.1866, v = (0, 0,0,O,0.7644,—0.4480,—0.1668,—0.4324)T
respectively. Gradient of the function ¢ at a° is
V¢|610 =(-2.44,-1.86,-11.04,-2.78,1.93,7.50, 4.30, 2.52,7.46,2.35,0.28,0.50,—2.73)T.

The first tencomponent of the vector a' =a’ —t -V¢|ao should be on the ten dimensional unit sphere. There-
fore t=0.01531 and

at= (0.53, 0.02,0.16,0.04,0.47,-0.11,-0.06,0.46,-0.11,0.46,0.99,-0.007, 0.04)T .
After 4 steps, we get
a' = (x“ , q“) =(0.59,0.03,0.04,0.009,0.41,-0.05,—-0.04,0.49,-0.15,0.45,0.98,-0.03, 0.08)T
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and

¢(x4, q“) =-0.2585<0. Therefore A(q“) is stable.

4. Conclusion

Two important problems from control theory are considered: the existence of common quadratic Lyapunov
functions for switched linear systems and the existence of a stable member in a matrix polytope. We obtain new
conditions which give new effective computational algorithms.
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